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ABSTRACT
In this paper, we consider the estimation of sparse nonlinear
communication channels. Transmission over the channels is
represented by sparse Volterra models that incorporate the ef-
fect of Power Amplifiers. Channel estimation is performed by
compressive sensing methods. Efficient algorithms are pro-
posed based on Kalman filtering and Expectation Maximiza-
tion. Simulation studies confirm that the proposed algorithms
achieve significant performance gains in comparison to the
conventional non-sparse methods.

Index Terms— Volterra series, Adaptive estimation, Com-
pressive sensing, Kalman filtering, Expectation Maximiza-
tion.

I. INTRODUCTION

Channel nonlinearities are mainly due to Power Amplifiers
(PA). PAs located at an access point of a downlink channel
(base stations in cellular systems and repeaters for satellite
links) often operate close to saturation in order to achieve
power efficiency. The models employed in the description of
PAs are either static (memoryless) or dynamic (models with
memory).

Wireless communication channels are characterized by time
varying multipath propagation effects. Quite often in prac-
tice, several reflections reach the receiver at different time in-
stances. These reflections arrive at the receiver with longer
delay than the first group. Hence, the wireless channel is
modeled by sparse fading rays and long zero samples and
thus admits a sparse representation [1]. The sparseness char-
acteristic is preserved when the PA representation is also de-
scribed by a sparse model [2]. Recent experimental results
reported in [2] indicate better performance if sparse nonlinear
models are employed for the representation of PA. Moreover,
the time-varying nature of the wireless channels suggest the
use of adaptive algorithms that minimize transmission delays
and take advantage of parameters sparsity. Thus, compressive
sensing provides a promising framework for such develop-
ments. Adaptive algorithms for sparse channel estimation are
developed in [3, 4]. In [3] two different sparsity constraints
are incorporated into the quadratic cost function of the LMS
algorithm, to take into account the sparse channel coefficient
vector. An `1-regularized RLS type algorithm based on a low
complexity Expectation-Maximization, is derived in [4].

In this paper we focus on adaptive estimation of sparse
nonlinear communication channels. Adaptation is carried out
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Fig. 1. Digital satellite link

by recursive algorithms that combine Expectation Maximiza-
tion and Kalman filtering. The expectation step is carried out
by Kalman filtering while the maximization step corresponds
to a soft-thresholding function due to the `1 regularization.

The rest of the paper is organized as follows. Nonlin-
ear channels and sparse channel estimation are discussed in
Section II. The proposed algorithms for adaptive tracking of
sparse nonlinear channels are given in section III. Simulation
results are presented in Section IV. Conclusions are discussed
in Section V.

II. SPARSE NONLINEAR CHANNEL ESTIMATION

In what follows, power amplifier nonlinear models are in-
corporated into the study of two important channels: 1) the
satellite link, and 2) the multi-path wireless channel. In both
cases, the overall communication channel is represented by
baseband Volterra series.

A. Nonlinear channel models

In satellite digital transmission, both the earth station and the
satellite repeater employ power amplifiers. The satellite am-
plifier operates near saturation due to limited power resources
and hence behaves in a nonlinear fashion. The satellite link
is represented by the block diagram of Fig. 1. The LTI filter
with impulse response g1 describes the cascade of all linear
operations preceding the power amplifier. Likewise the LTI
filter g2 represents the cascade of all linear devices following
the nonlinearity.

An analysis of the above system for static power ampli-
fiers is provided by Benedetto and Biglieri [5]. Let us next
consider power amplifiers with memory described by Volterra
models. To reduce the computational complexity we shall
follow standard practice [2, 6] and confine our study to diag-
onal Volterra models1. Straightforward calculation lead to the

1The analysis of general (non-diagonal) Volterra models is similar.



baseband Volterra model

r(t) =
bP−1

2 c∑
p=0

∫
· · ·

∫
h2p+1(τ 1:2p+1) (1)

×
p+1∏

i=1

x(t− τi)
2p+1∏

j=p+2

x∗(t− τj)dτ 1:2p+1.

where h2p+1(τ 1:2p+1) denotes the baseband kernel with
τ 1:2p+1 = (τ1, . . . , τ2p+1).

In most cases the filter g1 performs a specific functional-
ity (for instance pulse shaping) and hence is known. Since in
this paper we shall deal with channel estimation using known
inputs, we may with no loss of generality assume the input
signal is the output of g1. In this case the Volterra repre-
sentation from signal x(t) to signal r(t) gets simpler. More
precisely we have

r(t) =
bP−1

2 c∑
p=0

∫
h2p+1(t, τ1)|x(t− τ1)|2px(t− τ1)dτ1. (2)

The above expression represents also the multipath chan-
nel. In this case the modulated signal is amplified by a power
amplifier and then transmitted through the wireless medium.
The received waveform is the superposition of weighted and
delayed versions of the signal resulting from various multi-
paths plus additive white Gaussian noise. We shall assume
that the different nonzero fading rays arrive at the receiver at
different time instances and they vary slowly with time and
frequency hence the wireless channel becomes a frequency
selective channel [1] and is described by an impulse response
of the form

g2(ρ) =
N∑

i=1

aiδ(ρ− τi) (3)

where N is the number of paths, ai is the attenuation along
path i and τi is the clustered delay.

B. Sparse channel estimation

The transmission systems described in the previous section
operate in continuous time. Discrete Volterra forms result
when the modulation at the transmitter and the sampling de-
vice at the receiver are taken into account. We shall consider
memoryless modulation schemes whereby

x(t) =
∑

i

siδ(t− iTs). (4)

The sequence si consists of i.i.d (discrete) complex valued
random variables and Ts denotes the symbol period. Substi-
tuting x(t) from Eq. (4) into (1) yields the discrete baseband
Volterra model [5] which can be expressed as a linear regres-
sion. Let us define the vector

xi,M2p+1 =
[
si, si−1, · · · , si−M2p+1

]T

and the i-fold Kronecker product

x
(p+1,p)
i,M2p+1

= [⊗p+1
j=1xi,M2p+1 ]⊗ [⊗p

k=1x
∗
i,M2p+1

].

The Kronecker product contains all 2p + 1 order products of
the input with p conjugate copies. The output can be written
in the linear regression form

yi =
[
xT

i,M1
· · ·x(p+1,p)T

i,M2p+1

]



h1

...
h2p+1


 + vi (5)

with 1 ≤ i ≤ n. If we stack n successive samples in a column
format we obtain

yn = Xnh + vn (6)

where yn = [y1, · · · , yn]T , vn = [v1, · · · , vn]T and Xn =[
xT

1 , · · · , xT
n

]T .
Eq. (6) provides a noisy representation of a block of re-

ceived successive samples in terms of the columns of Xn

(also referred to as dictionary), that are formed by the prod-
ucts of shifted symbol sequences. The above representation
is sparse and hence recovery of the vector h can be accom-
plished by compressed sensing methods. Next we consider
sparsity. It is well documented in the literature that parsi-
monious models are highly desirable in the representation of
memory PA. In fact it has been experimentally observed [2]
that sparse diagonal Volterra models provide enhanced perfor-
mance in comparison to the full model. Furthermore, a phys-
ical justification of sparsity for the multipath channel is given
in [1]. The sparsity of the 2p + 1 kernel is at most sk × sm,
where sk is the sparsity of the PA and sm is the sparsity of
the multipath coefficients. Similar observations hold for the
satellite channel. It thus follows that the vector h in Eq. (6)
is sparse.

Recovery of the locations, the magnitudes and the non-
linear coefficients of h can be accomplished by the convex
program

min
h

{
1
2
‖yn −Xnh‖2`2 + γ‖h‖`1

}
. (7)

The `1-norm provides a convex relaxation to the `0 quasi-
norm. The scalar parameter γ provides a trade-off between
sparsity and total squared error. The optimization problem (7)
has been widely studied from the perspective of compressive
sensing (see, for instance, [7]).

III. ADAPTIVE ALGORITHMS

Since the parameter vector h changes with time we need a
model that captures the corresponding dynamics. A popular
technique in the adaptive filtering literature is to describe pa-
rameter variation by the first-order model [8]

hn = hn−1 + qn,Λ0
= h0 +

n∑

i=1

qi,Λ0
; h0 ∼ N (h0, σ

2
0IΛ0).

(8)



Table 1. Algorithms for sparse nonlinear channel identification
(a) EM-Kalman
Initialization : h0 = h̄0, P 0 = δ−1I with δ =const.
For n := 1, 2, . . . do

1: kn =
P n−1x

∗
n

σ2
v + xT

nP n−1x∗n
2: ψn = hn−1 + knεn

3: P n = P n−1 − knxT
nP n−1 + rn−1I

4: σ2
εn

= σ2
v + xT

nP n−1x
∗
n

5: rn = αrn−1 + (1− α)R

( |εn|2 − σ2
εn

xT
nx∗n

)

6: σ2
v = ασ2

v + (1− α)R
(|εn|2 − xT

nP n−1x
∗
n

)

7: hn = sgn
(
ψn

)[|ψn| − γ
(
σ2

0 + rn

)
I

]

+

end For

sgn(z) = z/|z| for any z ∈ C except z = 0

(z)+ = max(<(z), 0) + j max(=(z), 0)

(b) EM-RLS
Initialization : h0 = 0, P 0 = δ−1I with δ =const.
For n := 1, 2, . . . do

1: kn =
P n−1x

∗
n

λ + xT
nP n−1x∗n

2: ψn = hn−1 + knεn

3: P n = λ−1P n−1 − λ−1knxT
nP n−1

4: Rn = (1− λ) P n

5: hn = sgn
(
ψn

)[|ψn| − γ
(
σ2

0 + diag Rn

) ]
+

end For
(c) EM-LMS
Initialization : h0 = 0, 0 < µ < 2λ−1

max

For n := 1, 2, . . . do
1a: hn = hn−1 − γ sgn hn−1 + µx∗nεn

1b: hn = hn−1 − γ
sgn hn−1

1 + ε|hn−1| + µx∗nεn

end For

Λ0 denotes the support set of h0, i.e. the set of the non-zero
coefficients. The noise term qn is zero outside Λ0 and zero-
mean Gaussian inside Λ0 with diagonal covariance matrix
Rn,Λ0 = diag[σ2

q1
(n), . . . , σ2

qd
(n)], where d is the `0 norm

of h0. The variances {σ2
qi

(n)}d
i=1 are in general allowed to

vary with time. The stochastic processes v, q and the random
variable h0 are mutually independent.

We next incorporate Eq. (8) and the convex program (7)
into the Expectation-Maximization (EM) framework. The re-
sulting adaptive algorithms employ only one iteration per time
update for computational purposes. Let θ = h̄0 be the vector
of unknown parameters. Note that under the Gaussian as-
sumption postulated above, minimization of (8) is equivalent
to the maximization of the log-likelihood p(yn|θ) augmented
by an `1 penalty.

To apply the Expectation-Maximization method we have
to specify the complete and incomplete data. The vector hn at
time n is taken to represent the complete data vector, whereas
yn−1 accounts for the incomplete data [9]. In this context
the conditional density p(hn|yn−1) plays a major role. This
density is Gaussian with mean and covariance:

ψn = E[hn|yn−1]

P n = E[(hn −ψn)(hn −ψn)H ] = σ2
0I +

n∑
t=1

diag[σ2
qi

(t)].

Under broad conditions the maximizer of the incomplete
likelihood is obtained by maximizing the complete likelihood
function through successive application of the following two
steps:
E-step : computes the conditional expectation

Q(θ, θ̂n−1) = Ep(hn|yn−1;θ̂n−1)
[log p(hn; θ)] (9)

M-step : maximizes the Q-function minus the `1-penalty
with respect to θ:

θ̂n = arg max
θ

{
Q(θ, θ̂n−1)− γ‖θ‖`1

}
. (10)

Note that

log p(hn; θ) = const.− 1
2

(hn −ψ(θ))H
P−1

n (hn −ψ(θ)) .

Therefore the Q-function takes the form

Q(θ, θ̂n−1) = const. + θP−1
n ψn −

1
2
θHP−1

n θ (11)

where the constant incorporates all terms that do no involve θ
and hence do not affect the maximization.

The parameter ψn is recursively computed by the Kalman
filter [8], see Table 1(a) steps 1− 3, which in the special case
of the time-varying random walk model Eq. (8) takes an RLS
type appearance. Note that εn, in Table 1, denotes the predic-
tion error given by εn = yn − xT

nhn−1.
Maximization of the Q function leads to the soft thresh-

olding function

ĥn,i = sgn
(
ψn,i

)
[
|ψn,i| − γ

(
σ2

0 +

n∑
t=1

σ2
qi

(t)

) ]

+

(12)

This operation shrinks coefficients above the threshold in mag-
nitude value.

EM-Kalman filter. The Kalman filter computes ĥn un-
der the assumption that the variances σ2

v and {σ2
qi

(n)}d
i are

known. The noise variances can be estimated in various ways.
One method is to use the Maximum Likelihood estimates.
These estimates can be obtained by maximizing the Q-function.

Alternatively, under the assumption that the state noise is
Rn,Λ0 = rnI , then both noise disturbances can be estimated
adaptively. A smoothed estimate of the state and observation
noise can be respectively obtained according to steps 5 and
6 of Table 1(a), where α is a smoothing parameter and R(x)
is the ramp function (R(x) = x if x ≥ 0 and 0 otherwise).
These two methods for online estimation of the noise distur-
bances is due to Jazwinski [10].

EM-RLS filter. The recursive procedure for the determi-
nation of the Kalman filter in the case of the random-walk
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Fig. 2. NMSE of the three sparse adaptive algorithms

model, Eq. (8), resembles the RLS algorithm. In fact, the
RLS can be viewed as a special form of Table 1(a) which pro-
vides an alternative for the estimation of the noise variances.

The RLS filter is given by steps 1-3 of Table 1(b) [8], with
σ2

v = λ, Rn = (1− λ)P n.
Sparse LMS filter. For the purposes of simulations pre-

sented in the next section we discuss the LMS variant de-
veloped in [3]. LMS updates some convex cost function of
the prediction error signal εn plus an `1 penalty. The up-
date equation which minimizes the cost function is given in
step 1a of Table 1(c). The authors in [3] replace the `1-norm
penalty by the log-sum penalty function. Hence, the result-
ing update equation for this cost function becomes step 1b of
Table 1(c). The log-sum penalty function has the potential of
being more-sparsity encouraging since it better approximates
the non-convex `0-norm.

IV. SIMULATIONS

Experiments were conducted on the multipath channel setup
of Eq. (2). The algorithms were run for 2000 iterations and
averaged over 50 Monte Carlo runs to reduce realization de-
pendency. In all experiments the output sequence is disturbed
by additive white Gaussian noise for various SNR levels rang-
ing from 7 to 27dB. The Normalized Mean Square Error,
defined as NMSE= 10 log10

(
E[‖ĥ− h‖2`2 ]/E[‖h‖2`2 ]

)
, was

used to assess performance. The NMSE is computed after 500
iterations so that all algorithms have secured convergence.

A third order channel model was used to test the derived
algorithms. The wireless channel taps for the linear and cu-
bic part were generated by sparse Rayleigh fading rays. All
rays are assumed to fade at the same Doppler frequency of
fD = 80Hz with sampling period Ts = 0.8µs. The linear
and the cubic part have equal memory size M1 = M3 = 50
and the support signal consists of 2 randomly selected ele-
ments for each part. The input signal is drawn from a com-
plex Gaussian distribution CN (0, 1/4). We observe that the
EM-Kalman and EM-RLS algorithms provide gains of 7dB
and 5dB respectively, over the corresponding conventional
non-sparse algorithms.

The choice of the parameters γ, λ that were used to com-
pare performance of the sparse algorithms are summarized in
Table 2 for various SNR levels. The additional parameters re-
quired for the LMS are set to µ = 5× 10−2 and ε = 10. For

Table 2. Choice of parameters for the sparse algorithms
SNR KF RLS (λ, γ) LMS (`1, log)

7 3× 10−3 .999, 1× 10−1 5× 10−4,3× 10−3

11 2× 10−3 .999, 1× 10−1 4× 10−4,2× 10−3

15 1.4× 10−3 .997, 9× 10−2 3× 10−4,2× 10−3

19 9× 10−4 .995, 9× 10−2 3× 10−4,1.5× 10−3

23 6× 10−4 .995, 8× 10−2 3× 10−4,1.5× 10−3

27 3.5× 10−4 .991, 7× 10−2 3× 10−4,1.5× 10−3

the EM-Kalman and the EM-RLS, the initial noise variance is
set to σ2

0 = 0.01σ2
x.

It must be noted that due to the nature of the soft thresh-
olding step, the identified hn has many zero entries. This will
allow to implement the EM-Kalman and EM-RLS algorithms
in a low-complexity fashion similar to the approach taken in
[4]. Thus, the EM-Kalman and EM-RLS algorithms intro-
duce complexity gains as well as NMSE performance gains
over the non-sparse methods.

V. CONCLUSIONS

In this paper, sparse approximations have been studied for
nonlinear channel estimation. Adaptive algorithms combin-
ing Expectation-Maximization and Kalman filtering were de-
veloped and tested by simulations. Significant performance
gains were achieved in comparison to the conventional non-
sparse methods.
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