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Rapid Increases in the Steady-State Concentration of Reactive Oxygen
Species in the Lungs and Heart after Particulate Air Pollution Inhalation

Sonia A. Gurgueira,1 Joy Lawrence,1 Brent Coull,2 G.G. Krishna Murthy,1 and Beatriz González-Flecha1

1Department of Environmental Health, and 2Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA

Ambient air particles are chemically complex
and include minerals, organics, and biologic
air pollutants. Epidemiologic studies have
shown that increased levels of ambient air-
borne particulate matter (PM) are associated
with increased cardiopulmonary morbidity
and mortality (reviewed by Kaiser 2000).
Particulate air pollution shares some
physicochemical properties with mineral
dusts known to act through oxidant mecha-
nisms, such as silica and asbestos (reviewed
by Churg et al. 1997; Mossman 2000).
Known source constituent particles such as
oil fly ash, coal fly ash, and diesel exhaust,
extensively used as surrogates of PM, are also
effective pro-oxidants in vitro as well as in
vivo (Baeza-Squiban et al. 1999; Kadiiska et
al. 1997; Nel et al. 2001; Stringer and
Kobzik 1998), suggesting that PM toxicity
may be due to increased generation of reac-
tive oxygen species (ROSs) in target cells.

In the last few years, the study of the
intrinsic toxicity of “real-world” ambient air
particles has notably expanded due to the
development of the technology to collect,
sort, and concentrate PM from urban air
samples without altering their physicochemi-
cal properties (Sioutas et al. 1995). Some of
the epidemiologic findings on the health
effects of PM, including inflammation and
toxicity, have been successfully reproduced
in the laboratory in humans (Ghio et al.

2001), dogs (Clarke et al. 2000b), and rats
(Clarke et al. 2000a).

In vitro studies have also showed a vari-
ety of biologic responses to concentrated
ambient particles (CAPs), including redox
regulation and proliferation (Jimenez et al.
2000; Timblin et al. 1998), increased pro-
duction of proinflammatory cytokines
(Imrich et al. 1999; Monn and Becker
1999), increased oxidation of redox-sensitive
fluorescent dyes (Baeza-Squiban et al. 1999;
Goldsmith et al. 1998; Prahalad et al. 1999;
Shukla et al. 2000), and transcriptional acti-
vation of redox-sensitive genes (Shukla et al.
2000). Although the in vitro findings sup-
port the hypothesis that ROSs are mediators
of PM biologic effects, we have no direct evi-
dence to date of a particle-driven increased
production of oxidants in vivo.

In this study, we used inhalation exposure
of rats to CAPs aerosols, combined with mea-
surements of in situ chemiluminescence (CL),
to evaluate the ability of CAPs to increase
ROS concentrations in intact animals in real
time and in a noninvasive manner. CL is a
low-intensity emission in the visible range
mainly due to the decay of excited states of
molecular oxygen (singlet oxygen and excited
carbonyls; Boveris et al. 1980; Cadenas and
Sies 1984), which are formed during the ter-
mination steps of the chain reaction of lipid
peroxidation (Halliwell and Gutteridge

1990). The spontaneous CL of the organs in
situ correlates with the square of the intracel-
lular concentration of H2O2 and with the
development of oxidative damage (Boveris
and Cadenas 1997; González-Flecha et al.
1993). Measurements of low-level CL have
been used to assess the concentration of oxi-
dants in several models of toxicity to the
lung, heart, and liver. Acute administration
of paraquat, in doses known to cause exten-
sive lung damage (30 and 60 mg/kg body
weight), produced > 100% increases in lung
CL (Turrens et al. 1988). Perfusion of iso-
lated rat lungs with tert-butyl hydroperoxide
or activated polymorphonuclear leukocytes
resulted in 200–400% increases in CL and
were associated with significant edema and
accumulation of thiobarbituric acid–reactive
substances (TBARSs) (Barnard et al. 1993).
In the mouse heart, measurements of CL
have been used to study the differential toxi-
city of the antitumor drugs adriamycin and
mitoxantrone. Acute administration of adri-
amycin to mice resulted in 10-fold increases
in spontaneous heart CL and 80% increases
in TBARS accumulation. In contrast,
administration of mitoxantrone, a functional
analog with lower toxicity, did not affect the
production of free radicals or the accumula-
tion of oxidized lipids in the heart (Lores
Arnaiz and Llesuy 1993).

In a previous study we used this tech-
nique to quantify the increases in the
steady-state concentrations of oxidants asso-
ciated with the development of oxygen tol-
erance in a model of adaptation to mild
hyperoxia (Evelson and González-Flecha
2000). We show here that inhalation of
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In vitro studies suggest that reactive oxygen species contribute to the cardiopulmonary toxicity of
particulate air pollution. To evaluate the ability of particulate air pollution to promote oxidative
stress and tissue damage in vivo, we studied a rat model of short-term exposure to concentrated
ambient particles (CAPs). We exposed adult Sprague-Dawley rats to either CAPs aerosols (group
1; average CAPs mass concentration, 300 ± 60 µg/m3) or filtered air (sham controls) for periods
of 1–5 hr. Rats breathing CAPs aerosols for 5 hr showed significant oxidative stress, determined
as in situ chemiluminescence in the lung [group 1, 41 ± 4; sham, 24 ± 1 counts per second
(cps)/cm2] and heart (group 1, 45 ± 4; sham, 24 ± 2 cps/cm2) but not liver (group 1, 10 ± 3;
sham, 13 ± 3 cps/cm2). Increases in oxidant levels were also triggered by highly toxic residual oil
fly ash particles (lung chemiluminescence, 90 ± 10 cps/cm2; heart chemiluminescence, 50 ± 3
cps/cm2) but not by particle-free air or by inert carbon black aerosols (control particles). Increases
in chemiluminescence showed strong associations with the CAPs content of iron, manganese,
copper, and zinc in the lung and with Fe, aluminum, silicon, and titanium in the heart. The oxi-
dant stress imposed by 5-hr exposure to CAPs was associated with slight but significant increases
in the lung and heart water content (~5% in both tissues, p < 0.05) and with increased serum lev-
els of lactate dehydrogenase (~80%), indicating mild damage to both tissues. Strikingly, CAPs
inhalation also led to tissue-specific increases in the activities of the antioxidant enzymes superox-
ide dismutase and catalase, suggesting that episodes of increased particulate air pollution not only
have potential for oxidant injurious effects but may also trigger adaptive responses. Key words:
CAPs, concentrated ambient particles, oxidative stress, particulate air pollution, reactive oxygen
species. Environ Health Perspect 110:749–755 (2002). [Online 12 June 2002]
http://ehpnet1.niehs.nih.gov/docs/2002/110p749-755gurgueira/abstract.html



ambient air particles, but not control inert
particles, rapidly increases the steady-state
concentrations of oxidants in the lung and
heart but not in the liver. The oxidative
stress imposed by CAPs is associated with
the metal content in particles in a tissue-spe-
cific manner and leads to mild increases in
lung and heart edema as well as in serum lev-
els of lactate dehydrogenase (LDH). Animals
breathing CAPs for 5 hr also show an
increase in the activity of several antioxidant
enzymes in both heart and lung.

Materials and Methods

CAPs. We used the Harvard Ambient
Particle Concentrator (HAPC) to concen-
trate ambient air particles for subsequent
aerosol exposure of animals (Sioutas et al.
1995). The principle of virtual impaction
was used to concentrate ambient particles in
the size range of 0.1–2.5 µm (fine particles;
concentration factor, 26 ± 4; Sioutas et al.
1995). CAPs remained in suspension with-
out physical or chemical alteration for
inhalation exposures or for collection onto
filters for mass and composition analysis.
During the operation of the HAPC, we con-
tinuously monitored mass concentrations
(gravimetrically determined) and the size of
the particles (using a microorifice impactor)
(Godleski et al. 2000). We determined trace
metal concentrations using X-ray fluores-
cence (Chester LabNet, Tigrad, OR, USA).

Exposure to CAPs. We used pathogen-
free male Sprague-Dawley rats (Taconic
Farms, Germantown, NY, USA) weighing
250–300 g. Animals were fed a conventional
laboratory diet and water ad libitum. We
exposed rats to CAPs aerosols (CAPs group)
or filtered air (control group) in the chamber
of the HAPC (Clarke et al. 2000a). The ani-
mals were awake and unrestricted during the
exposures, and we exposed and tested the
CAPs and control groups simultaneously.
We carried out each exposure with groups of

six animals: three were exposed to CAPs
aerosols and three to filtered air (sham con-
trols). At 1, 3, and 5 hr, we removed two
animals (one exposed to CAPs and one sham
control) from the chamber to be assessed for
oxidative stress, tissue damage, and antioxi-
dant enzymes as described below. We con-
ducted each experiment with groups of two
animals. The temperature in the room and
chamber was 25°C.

Exposure to carbon black and ROFA.
We carried out exposures to carbon black
and residual oil fly ash (ROFA) in a 40 × 25
× 60 cm chamber. We used a Wright dust
feeder (model MK-II; L. Adams Ltd.,
London, UK) to generate carbon black and
ROFA aerosols. Carbon black (catalog no.
C198) was purchased from Fisher Scientific
(Pittsburgh, PA, USA). We analyzed the
elemental composition of carbon black by
X rays using a LEO 1450 VP scanning elec-
tron microscope with an Oxford Si detector
(Leo Microscopy, Inc., Thornwood, NY,
USA). Carbon black particles consisted of
85.9 ± 0.2% carbon, 13.0 ± 0.2% oxygen,
and 1.17± 0.02% sulfur. We detected no
transition metals. We obtained fly ash from
a Boston, Massachusetts, area oil-fired
power plant (Killingsworth et al. 1997).
The metal content of ROFA was as reported
by Killingsworth et al. (1997). We packed
ROFA or carbon black particles into the
dust feeder and flushed it with a stream of
air at 14 L/min (6 pounds per square inch
gauge). We passed the air stream containing
the aerosols through a size-selective
impactor (to eliminate particles > 2.5 µm)
and then fed it into the exposure chamber
isokinetically. We determined particle con-
centration from the mass change on the fil-
ter and the total volume of air sampled. We
also monitored the particle concentration
during exposures using a real-time aerosol
monitor (model RAS-1; MIE Inc., Bedford,
MA, USA).

Exposure to filtered air. For the experi-
ments in which rats were exposed for 3 days
to either room air or filtered air, long-term
continuous exposures to filtered air took place
in a 40 × 40 × 60 cm chamber. We used a
Millipore 0.2 µm filter to retain PM, and fil-
tered air was humidified with sterile water
before delivery to the chamber at a flow rate
of 12 L/min. The temperature in the room
and chamber was maintained at 25°C.

Organ CL. We measured CL of the lung,
heart, and liver in situ as previously described
(Evelson and González-Flecha 2000) using a
Thorn EMI CT1 single-photon counting
apparatus with an EMI 9816B photomulti-
plier (Electron Tubes, Inc., Rockaway, NJ,
USA) cooled at –20°C. Rats were anes-
thetized (sodium pentobarbital, 50 mg/kg
body weight) and connected to an animal
ventilator (5 mL/breath, 60 breaths/min;
Harvard Apparatus, Cambridge, MA, USA).
Once we intubated and ventilated the ani-
mal, we opened the chest and placed the ani-
mal in the measurement compartment. We
carried out the surgical procedure and mea-
surements in < 10 min, allowing analysis to
begin within 15 min of CAPs exposure. We
kept rats at ~37°C using isothermal pads
(Braintree Scientific, Braintree, MA, USA).
The emission data is expressed as counts per
second per unit of tissue surface (cps/cm2).
We placed a high-pass cutoff filter (Wratten
no. 25; Eastman Kodak, Rochester, NY,
USA), which allows wavelengths > 600 nm,
in the optical path to avoid hemoglobin inter-
ference. Photon counting decreased only by
15–20%, thus indicating that 80–85% of the
emitted light could be regarded as singlet oxy-
gen emission (singlet oxygen dimol emission,
634 and 703 nm; Cadenas and Sies 1984).

Tissue preparation. After measuring CL,
we removed the animals from the ventilator;
we then rapidly removed the lungs, liver,
and heart, and froze them in a dry ice bath.
We took separate samples from each tissue
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Figure 1. Time course of increase of in situ CL from the lung (A), heart (B), and liver (C) of rats exposed to CAPs (average mass concentration, 300 ± 60 µg/m3) or
filtered air for 1, 3, and 5 hr. See “Materials and Methods” for details. Each point represents the mean ± SEM (n = 10 determinations).
Compared with their sham controls or with time 0, *p < 0.001 and **p < 0.005.
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and time point to determine water content
or enzymatic activities. We also withdrew
blood samples from the inferior vena cava to
determine serum markers of tissue damage
[LDH and creatine phosphokinase (CPK)
activities]. We homogenized samples for the
determination of enzymatic activities in 5
volumes of 120 mM KCl, 30 mM phos-
phate buffer (pH 7.2) with added protein
inhibitors (1 µg/mL leupeptin, 1 µg/mL
aprotinin, 10 µg/mL soybean trypsin
inhibitor, 1 µg/mL pepstatin, and 0.5 mM
phenylmethyl sulfonyl fluoride) at 0–4°C.
We centrifuged the suspensions at 600 × g
for 10 min at 0–4°C to remove nuclei and
cell debris. We discarded the pellets and
used the supernatants as homogenates.

Enzymatic measurements. We measured
fumarase activity by following the increase in
absorbance at 240 nm at 25°C in a reaction
mixture containing 30 mM phosphate (pH
7.4), 0.1 mM EDTA, and 5 mM L-malate
(Racker 1950; Sigma Chemical Co., St.
Louis, MO, USA). We determined total
superoxide dismutase (SOD) activity from the
rate of inhibition of the oxidation of 20 µM
ferrocytochrome c at 550 nm in a reaction
mixture consisting of 50 mM phosphate
buffer (pH 7.8), 50 µM xanthine, and 5 mU
xanthine oxidase (McCord and Fridovich
1969). We measured MnSOD activity after
inhibition of the Cu/Zn isoenzyme by addi-
tion of 1 mM KCN (Beauchamp and
Fridovich 1973). We determined catalase
activity by measuring the decrease in absorp-
tion of H2O2 at 240 nm in a reaction
medium containing 2 mM H2O2 (Nelson
and Kiesow 1972). We determined hemoglo-
bin on rat lung homogenates using a standard
kit (Sigma Chemical Co., St. Louis, MO,
USA) and quantified it by comparison with
standard hemoglobin solutions. SOD activity
attributable to hemoglobin represented 1–5%
of the total SOD activity in both lung and
heart. We measured protein concentration in
homogenates by the method of Lowry et al.
(1951) using bovine serum albumin as stan-
dard. We carried out measurements in a
Perkin Elmer Lambda 40 spectrophotometer
(Perkin-Elmer, Norwalk, CT, USA).

Serum markers of tissue damage. We
measured LDH and CPK activity and hemo-
globin content in serum samples spectropho-
tometrically using standard kits (Sigma
Chemical Co.).

Water content. We weighed lung and
heart samples (~100 mg) and then dried
them in a conventional oven (~80°C). We
reweighed tissues after 24 hr to obtain the
wet/dry ratios.

Statistics. Values in tables and figures
are mean ± SEM. We analyzed data statisti-
cally by factorial analysis of variance fol-
lowed by Fisher’s test for comparison of
means. For elemental composition correla-
tion analyses, we fitted separate linear
regression models using actual elemental
concentration univariately as predictors. We
performed all statistical analyses using
Statview software (Abacus Concepts, Inc.,
Berkeley, CA, USA) for Macintosh. We car-
ried out graphical diagnostics of model ade-
quacy and outlier detection using the S-Plus
statistical package (Mathsoft, Inc., Seattle,
WA, USA) (Venables and Ripley 1994). 

Animal care. Animals were handled
humanely in the performance of this project
to minimize the use of animals and to pre-
vent animal distress. All protocols of expo-
sure and other procedures used in this study
were approved by the Harvard Animal Use
Committee. The Harvard School of Public
Health is accredited by the American
Association for the Accreditation of
Laboratory Animal Care, meets National
Institutes of Health standards as set forth in
the Guide for the Care and Use of Laboratory
Animals (Institute of Laboratory Animal
Resources 1996), and accepts as mandatory
the National Institutes of Health’s Principles
for the Use of Animals (NIH 2000).

Results

CAPs increases the steady-state concentration
of oxidants in the lung and heart. Inhalation
exposure to CAPs increases the steady-state
concentration of oxidants in the rat lung and
heart. In vitro studies suggest that biologic
effects of particulate air pollution are initiated
by an increased generation of ROS in cells
exposed to particles. To determine whether
PM affects ROS production in intact ani-
mals, we exposed adult Sprague-Dawley rats
to aerosols of CAPs and monitored the
steady-state concentration of oxidants in the
lung, heart, and liver by measuring their
spontaneous in situ CL. We chose to study
the lung and heart because they are the major
targets of particulate air pollution (Kaiser
2000). The central role of the liver in the

detoxification of a wide range of xenobiotics
suggests that this organ may also be a target
for the soluble fractions of inhaled particles.

Figure 1 shows the mean values of in situ
CL in the lung, heart, and liver of rats
exposed to CAPs or filtered air for 1–5 hr.
Our data show a significant increase in lung
and heart CL at 5 hr of exposure. The time
courses of increase in CL in the lung and
heart follow slightly different patterns. Lung
CL increased linearly with the time of expo-
sure (Figure 1A). On days of high pollution
(CAPs concentration > 500 µg/m3), differ-
ences between the CAPs and filtered air
groups were apparent after only 1 hr of
exposure (data included in Figure 1A). In
contrast, heart CL showed a lag phase of
about 1 hr before any increase could be
detected (Figure 1B). The increases in lung
and heart CL were specifically due to inhaled
CAPs because they were absent in the con-
trol animals breathing filtered air under the
same experimental conditions (Figure 1).
Liver CL was unchanged throughout the 5
hr of exposure to CAPs (Figure 1C).

To determine if the oxidant effect of
CAPs in lung and heart tissue depended on
particle composition, we tested model envi-
ronmental particles of different composition
for their pro-oxidant effects in lung and
heart (Table 1). ROFA is composed of fugi-
tive oil combustion particles, which con-
tribute to PM in urban air and have been
shown to cause pulmonary injury and
inflammation (Kodavanti et al. 2001;
Madden et al. 1999; Nadadur et al. 2000).
The large batch of ROFA particles available
allows a constant composition of particles
during experimental exposures. ROFA is
rich in transition metals, specifically vana-
dium, Fe, and nickel (Killingsworth et al.
1997). Carbon black fine particles resemble
the carbonaceous core of PM, but because of
their synthetic origin, they do not carry sig-
nificant levels of adsorbed metals or organic
compounds. Consistent with this lack of
active components, fine carbon black parti-
cles are mostly inert in in vivo systems; there-
fore, we used them as negative control
particles (Killingsworth et al. 1997; Murphy
et al. 1998).

Table 1 shows that exposure to inert car-
bon black particles does not exert oxidant
effects on the heart or lung. In contrast,
ROFA aerosols produced a strong increase in
lung and heart CL after exposures as short as
30 min (Table 1). These results strongly sug-
gest that the oxidant effect of environmental
particles (CAPs and ROFA) is due to specific
components not present in the chemically
inert carbon black particles.

To further test this thesis, we took advan-
tage of the day-to-day variations in CAPs
composition, which provided a set of samples

Articles • Oxidant effects of particulate air pollution

Environmental Health Perspectives • VOLUME 110 | NUMBER 8 | August 2002 751

Table 1. Lung and heart CL in rats exposed to particles of different composition.

Treatment CL (cps/cm2)
(concentration/time) Lung Heart

Filtered air (0 µg/m3, 5 hr) 24 ± 1 24 ± 3
ROFA (1.7 mg/m3, 30 min) 90 ± 10* 50 ± 3*
Carbon black (170 µg/m3, 5 hr) 22 ± 3 25 ± 5

Values indicate mean ± SEM (n = 4–6).
*p < 0.001, compared with filtered air control.



with a range of metal concentrations suffi-
cient for statistical analyses (Table 2). Using
univariate regression analyses, we identified
several components with significant associa-
tions to increased CL in the lung or heart
(Table 3). Because of the strong effect of
CAPs inhalation on both lung and heart CL,
many elements show positive correlations
with the CL levels (Table 3). However, we
found the stronger and more significant
associations for Mn, Fe, Cu, and Zn in the
lung and for total mass, Al, Si, Ti, and Fe in
the heart (Table 3).

The effect of CAPs on the steady-state
levels of oxidants could be due to reversible
or irreversible interactions of the particles
with cellular components. To determine
what type of interaction was responsible for
the observed increases in CL in this model,
we used two complementary approaches. In
one approach we simulated transient
increases in particulate air pollution by
exposing rats to CAPs for 5 hr and then
allowing them to recover in ambient air
(room air) for 24 hr. In the other approach,
we exposed rats to particle-free (filtered) air
for 3 days, which is known to decrease the
concentrations of oxidants in the lung and
heart (Evelson and González-Flecha 2000),
and then allowed them to recover in room air
for up to 8 hr. Table 4 summarizes the effects
of both treatments on the steady-state con-
centrations of oxidants in the lung. Rats
breathing CAPs for 5 hr showed a significant
increase in their in situ lung CL. However,
CAPs-initiated oxidative stress is not
detectable in rats allowed to recover in room
air after the simulated “peak” in particulate
air pollution (Table 4). Similarly, the second
approach showed that decreases in ambient
particle levels also affect ROS production in
the lung, and this effect is also reversible.
Rats breathing particle-free filtered air for 3
days had significantly lower levels of oxidants
in their lungs (Table 4). As in the model of
acute exposure to increased pollution, the
effect of chronic “depletion” in PM is
reversed shortly after reexposure to room air.

CAPs-induced oxidative stress is associ-
ated with mild damage to the lung and
heart. To assay for lung and heart damage in
this model, we measured water content
(edema) and serum levels of LDH and CPK
in rats exposed to CAPs for 5 hr. We mea-
sured these markers in blood and tissue sam-
ples collected from the same rats assayed for
CL (Figure 1). The water content of both
lung and heart increased significantly upon
exposure to CAPs but not to filtered air
(Table 5). The wet/dry ratio in both tissues
showed significant increases as a function of
the length of exposure and with respect to
the control (filtered air) animals for exposure
times longer than 3 hr (Table 5). In agree-
ment with the lack of oxidative unbalances
in the liver, the wet/dry ratio in this tissue
remained unchanged throughout the expo-
sure (filtered air sham, 3.5 ± 0.1; CAPs 3 hr,
3.5 ± 0.1; CAPs 5 hr, 3.3 ± 0.1). Because we
collected these samples immediately after the
end of the exposure, the observed increase in
water content indicates an almost immediate

interaction (and toxicity) of environmental
particles with lung and heart cells. To evalu-
ate longer-term responses, we also studied
rats exposed to CAPs or filtered air for 5 hr
and tested for lung and heart edema and
serum markers of tissue damage 24 hr after
the end of the exposure (Tables 5 and 6).
Interestingly, the wet/dry ratio in rats
breathing room air for 24 hr after 5 hr of
exposure to CAPs returned to control values
in the lung but not in the heart (Table 5).
These results indicate that the lung can read-
ily compensate for transient increases in the
levels of ambient air particles. In contrast,
the effects of CAPs on the heart tissue are
more pronounced and longer lasting.

Rats breathing CAPs also showed
increases in the serum levels of LDH and
CPK, as a function of the length of exposure
and compared with filtered air controls
(Table 6). LDH activity increased approxi-
mately 2-fold in rats exposed to CAPs for 5
hr and returned to control values 24 hr after
the end of the exposure. CPK activity also
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Table 3. Statistical parameters for the regression of lung and heart CL and the mass CAPs elemental
components.

Lung CL Heart CL
Element r 2 p-Value r 2 p-Value

Al 0.14 0.140 0.67* 0.001
Si 0.31 0.020 0.61* 0.002
S 0.14 0.140 0.08 0.360
Cl 0.14 0.070 0.08 0.360
K 0.39 0.008 0.30 0.500
Ca 0.41* 0.007 0.36 0.030
Ti 0.38 0.008 0.59* 0.002
V 0.02 0.620 0.42 0.020
Cr 0.04 0.440 0.32 0.046
Mn 0.51* 0.001 0.43 0.010
Fe 0.46* 0.003 0.50* 0.007
Ni 0.00 0.840 0.27 0.070
Cu 0.42* 0.005 0.29 0.060
Zn 0.48* 0.002 0.38 0.020
As 0.31 0.020 0.08 0.340
Se 0.05 0.410 0.06 0.430
Br 0.24 0.040 0.13 0.230
Cd 0.01 0.680 0.38 0.030
Ba 0.36 0.011 0.22 0.110
Pb 0.31 0.020 0.38 0.020
Total mass 0.03 0.450 0.51 0.003

The most significant associations are indicated by asterisks (*).

Table 2. Elemental composition of CAPs (µg/m3).

Total
Date mass Al Si S Cl K Ca Ti V Cr Mn Fe Ni Cu Zn As Se Br Cd Ba Pb

7 Jul 2000 130.7 4.986 10.19 3.673 0.209 2.171 4.690 0.392 0.026 0.013 0.130 5.936 0.012 0.079 0.521 0.005 0.000 0.012 0.018 0.376 0.099
9 Aug 2000 957.5 1.513 9.634 110.7 0.000 3.480 2.720 0.441 0.075 0.028 0.136 7.596 0.094 0.156 0.537 0.037 0.111 0.207 0.014 0.709 0.180
10 Aug 2000 334.0 0.534 3.730 29.5 0.051 2.121 3.408 0.163 0.016 0.011 0.096 3.628 0.010 0.112 0.421 0.019 0.020 0.050 0.000 0.469 0.082
11 Aug 2000 352.8 8.938 21.11 17.3 0.005 4.030 8.962 0.803 0.157 0.038 0.320 11.171 0.035 0.232 0.677 0.018 0.000 0.052 0.000 1.222 0.177
17 Aug 2000 99.6 0.901 2.729 4.630 0.230 1.024 2.721 0.140 0.016 0.013 0.059 3.608 0.012 0.084 0.187 0.006 0.002 0.025 0.004 0.466 0.062
23 Aug 2000 328.8 2.208 7.850 32.48 0.148 2.021 2.111 0.371 0.110 0.027 0.158 6.889 0.089 0.150 0.699 0.025 0.022 0.082 0.015 0.545 0.240
8 Sep 2000 229.5 1.437 5.253 20.31 0.156 1.528 1.891 0.258 0.053 0.028 0.106 4.944 0.044 0.145 0.436 0.007 0.082 0.071 0.000 0.468 0.155
15 Sep 2000 219.3 0.000 1.165 27.58 0.434 0.634 1.451 0.087 0.033 0.028 0.050 2.370 0.029 0.056 0.299 0.000 0.022 0.065 0.010 0.369 0.075
29 Nov 2000 226.6 0.449 3.597 29.70 0.390 1.013 2.299 0.251 0.041 0.014 0.101 6.167 0.030 0.188 0.327 0.018 0.013 0.034 0.002 0.504 0.080
11 Dec 2000 465.0 0.417 7.133 76.59 7.015 2.860 8.987 0.488 0.624 0.024 0.453 13.618 0.518 0.346 2.169 0.028 0.062 0.282 0.000 0.992 0.262
18 Dec 2000 121.0 0.159 1.007 5.120 0.124 0.255 0.550 0.023 0.006 0.012 0.017 0.829 0.011 0.021 0.056 0.005 0.000 0.008 0.005 0.293 0.027
8 Feb 2001 255.0 1.319 5.816 14.29 7.210 1.306 3.644 0.228 0.036 0.014 0.073 4.965 0.035 0.113 0.239 0.017 0.002 0.032 0.000 0.416 0.073
22 Feb 2001 219.0 1.678 5.522 10.04 3.549 1.438 4.640 0.210 0.048 0.015 0.085 4.721 0.057 0.093 0.211 0.007 0.001 0.118 0.003 0.436 0.086



showed a significant increase in the serum
activity as a function of the time of exposure
to CAPs but not to filtered air (Table 6).
However, because of a slight increase in the
CPK values of the control group, the differ-
ences between CAPs and filtered air control
groups for the same times of exposure did
not reach statistical significance (Table 6). As
in the case of LDH release, CPK activity
returned to control levels in animals tested
24 hr after the end of a 5-hr exposure to
CAPs. For both enzymes, the increase in
serum activity is mild and compatible with
reversible tissue damage.

Short-term exposure to CAPs up-regu-
lates antioxidant activities. In addition to their
effect on the intracellular production of ROS,
some xenobiotics can also affect antioxidant
defense systems (Lissi et al. 1991). To test
whether this was the case for CAPs, we mea-
sured the activity of SOD and catalase (the
main detoxifying systems for superoxide and
hydrogen peroxide, respectively) in tissue
samples collected from rats exposed to CAPs
or filtered air for 5 hr (Figure 1). Because of
the short exposure and the relatively low toxi-
city of CAPs, we expected to see no change
in these antioxidants. However, our data
showed an increase in SOD and catalase
activities in both lung and heart (Table 7).
The pattern of increase in these activities was
tissue specific. In the lung, we found the
higher level of induction (70%) for MnSOD,
the mitochondrial isoform of SOD (Table
7). Cu/ZnSOD, the cytosolic isoform, was
unchanged, and catalase was increased by
30%. In the heart, in contrast, Cu/ZnSOD
showed the highest level of induction
(100%), MnSOD was increased by 40%,
and catalase by 20% (p > 0.05).

To confirm that the increases in SOD
and catalase activities were due to specific
regulatory effects and not to a global effect
on proteins, we measured the activity of
fumarase, an essential tricarboxylic acid cycle
enzyme resistant to oxidants (Evelson and
González-Flecha 2000). Fumarase activity

was unchanged in rats exposed to CAPs
compared with their filtered air controls.

Discussion

Epidemiologic studies have shown that expo-
sure to airborne PM is associated with
increased cardiopulmonary morbidity and
mortality. The mechanisms by which particu-
late air pollution causes cardiopulmonary
effects at the cellular level are poorly under-
stood. The ability of PM to increase the intra-
cellular production of ROS, although
assumed to be essential for their biologic
effects, has never been tested in vivo. In the
present study, we have taken advantage of two
unique tools, the HAPC and the measure-
ments of organ CL, to begin to investigate the
postulate that particle toxicity operates
through oxidant-dependent mechanisms
derived from specific particle components.
We found that inhalation of CAPs increases
by 2-fold the steady-state concentration of
ROS in the rat lung and heart. Organ CL
measures the steady-state concentration of
singlet oxygen (1O2), a by-product of lipoper-
oxidation, in intact organs. In this way, organ
CL provides an accurate measure of the redox
status of the tissue. The spontaneous CL of
the organs in situ has been successfully used to
assess oxidant stress in several models of toxic-
ity to the lung, heart, and liver. The magni-
tude of increase in lung and heart CL

observed in rats breathing CAPs for 5 hr is
similar to that previously reported by us in
rats exposed to 85% O2 for 3–5 days, a treat-
ment associated with mild and transient lung
and heart injury (Evelson and González-
Flecha 2000), and by Turrens et al. (1988) in
rats treated with sublethal doses of paraquat
(30 mg/kg, intraperitoneal). 

In our model, in situ CL of the lung
increases shortly after exposure to CAPs
(Figure 1) and returns to control values a few
hours after removal of the animals from the
HAPC (Table 4). The rapid increase in the
lung concentrations of ROSs upon exposure
to CAPs indicates an almost immediate effect
of particles, or particle components, on the
intracellular sources of free radicals.
Furthermore, the transient nature of these
increases points to a reversible interaction of
particle components with cellular targets.
Both observations would be compatible with
Fenton-type reactions catalyzed by transition
metals, redox-cycling processes, or biochemi-
cal changes triggered by noncovalent binding
to membrane receptors. Single-component
regression analyses showed a strong associa-
tion of the oxidant effect of CAPs aerosols
generated on different days and their content
of transition metals, specifically to the CAPs
content of Mn, Zn, Fe, and Cu (Table 3).
The notable lack of association with the
total mass of particles strongly supports a

Articles • Oxidant effects of particulate air pollution

Environmental Health Perspectives • VOLUME 110 | NUMBER 8 | August 2002 753

Table 4. Effect of changes in the levels of ambient
air particles on rat lung CL (cps/cm2).

Treatment Lung CL

Exposure to concentrated ambient particles
Filtered air (5 hr) 24 ± 1
CAPsa (5 hr) 41 ± 4**
CAPsa (5 hr)/room air (24 hr) 25 ± 4
Filtered air (5 hr)/room air (24 hr) 20 ± 2

Exposure to particle-free ambient air
Room air (3 days) 27 ± 3
Filtered air (3 days) 16 ± 1**
Filtered air (3 days)/room air

3 hr 20 ± 7
5 hr 32 ± 8
8 hr 32 ± 2

Values indicate mean ± SEM (n = 4–6). 
aAverage CAPs concentration = 300 ± 60 µg/m3. **p < 0.001
compared with the control values.

Table 6. Serum markers of tissue damage in rats exposed to CAPs or filtered air.

Serum markers
LDH (IU/mL) CPK (IU/mL)

Time of exposure Filtered air CAPs Filtered air CAPs

1 hr 440 ± 40 570 ± 100 260 ± 40 360 ± 30
3 hr 570 ± 60 700 ± 140 420 ± 50 510 ± 60##

5 hr 530 ± 60 950 ± 180*,# 440 ± 30 550 ± 50##

24 hr after 5 hr exposure. 520 ± 20 580 ± 10 420 ± 10 430 ± 10

Values indicate mean ± SE (n = 10). 
*p < 0.03 compared to the control values for the same time of exposure. #p < 0.03 compared to the values after 1 hr exposure.
##p < 0.01 compared to the values after 1 hr exposure.

Table 5. Wet/dry ratios in the lung and heart of rats exposed to CAPs or filtered air.

Time of Lung Heart
exposure Filtered air CAPs Filtered air CAPs

1 hr 4.81 ± 0.06 4.77 ± 0.04 4.15 ± 0.02 4.11 ± 0.03
3 hr 4.72 ± 0.03 4.90 ± 0.04 *,# 4.20 ± 0.02 4.33 ± 0.04 *,##

5 hr 4.84 ± 0.04 4.92 ± 0.02# 4.12 ± 0.04 4.29 ± 0.01**,##

24 hr after 5 hr exposure 4.75 ± 0.08 4.8 ± 0.1 4.21 ± 0.02 4.27 ± 0.02##

Values indicate mean ± SE (n = 6–10).
*p < 0.05 compared with control values for the same time of exposure. **p < 0.002 compared with control values for the same
day of exposure. #p < 0.02 compared with values after 1 hr exposure. ##p < 0.0001 compared with values after 1 hr exposure.

Table 7. Activity of antioxidant enzymes in the lung and heart of rats exposed to CAPs or filtered air.

Lung Heart
Activity Filtered air CAPs Filtered air CAPs

Cu/ZnSOD (U/mg protein) 38 ± 7 38 ± 10 170 ± 20 340 ± 60*
MnSOD (U/mg protein) 6 ± 3 10 ± 2* 11 ± 1 15 ± 2 *
Catalase (mU/mg protein) 43 ± 4 55 ± 5* 0.28 ± 0.03 0.34 ± 0.02
Fumarase (U/mg protein) 0.17 ± 0.01 0.19 ± 0.01 1.7 ± 0.1 1.8 ± 0.1

Values indicate mean ± SE (n = 10). 
*p < 0.05 compared to control values. 



cause–effect relationship between the pres-
ence of these metals and the oxidant capabil-
ity of CAPs aerosols, as opposed to a
nonspecific effect caused by the physical
interaction of foreign particles with lung
cells. The association of the CAPs oxidant
effect with their content of redox-active met-
als also supports the idea of an increased
occurrence of Fenton-type reactions in the
lung of CAPs-exposed animals.

These results agree with previous reports
showing associations of different biologic
readouts with the levels of transition metals
in CAPs. Intratracheal instillation of ROFA
particles with high Mn content induced
bronchoalveolar lavage (BAL) eosinophilia
in vivo (Jiang et al. 2001). Inhalation of sol-
uble Fe, V, and Ni sulfates showed substan-
tial cardiopulmonary toxicity in rats with
acute or subacute ozone-induced pulmonary
inflammation (Watkinson et al. 2001).
Addition of surface iron converts nonreac-
tive titanium dioxide particles into fibrino-
genic particles (Dai et al. 2001). Finally, in a
model similar to ours but with exposure
time of 6 hr/day on 3 consecutive days,
CAPs inhalation in rats elicited acute lung
inflammation and the intensity of the
inflammation was associated with the levels
of metals (Saldiva et al. 2001).

The effect of CAPs on the ROS concen-
trations in the heart seems to operate
through a different series of mechanisms. In
contrast to lung CL, heart CL showed a 1-hr
lag phase (Figure 1B) that may reflect the
time required for the lung cells to signal the
heart of the presence of an oxidant insult.
The oxidant effect of CAPs on the heart is
associated with CAPs components different
from those associated with the development
of oxidative stress in the lung. Heart CL
strongly correlated with the CAPs content of
Al, Si, Ti, and Fe, as well as with the total
mass. The common association of lung and
heart CL with Fe content suggests that at
least some of the effects may be due to direct
mechanisms, probably Fenton-type reac-
tions. However, indirect mechanisms are
also suggested by the associations of heart
CL with nonredox active components such
as Si and Ti and with the total CAPs mass.
Reports by Clarke et al. (2000a, 2000b) also
show association of increased pulmonary
neutrophil percentages with the content of
Al and Si in CAPs.

We also found that 5-hr inhalation expo-
sure to CAPs causes significant tissue edema
(Table 5) and increased release of LDH
(Table 6). These results agree with the
increased levels of BAL neutrophils and cir-
culating lymphocytes reported in rats
exposed to CAPs for 3 days (Clarke et al.
2000a). The slight increases in water content
(≤ 5% for both tissues; Table 5) and release

of LDH (≤ 80%; Table 6) and CPK
(≤ 50%; Table 6) reported here for the
short-term exposures tested are compatible
with mild, reversible damage. As for the
increases in lung and heart CL, the magni-
tude of increase in the lung and heart water
content was similar to that reported in rats
breathing 85% O2 for 3 days (Evelson and
González-Flecha 2000), a treatment associ-
ated with significant, although not lethal,
injury to the lung and heart. In contrast, the
increases in LDH and CPK values observed
in animals breathing CAPs, although indica-
tive of an increased permeability in cellular
membranes, are below the levels associated
to massive morphologic changes (González-
Flecha et al. 1993).

One of the most striking findings of this
study is that particulate air pollution has the
ability to up-regulate antioxidant enzymes.
We found that 5-hr exposures to 100–500
µg/m3 CAPs increased SOD and catalase
activities in a tissue-specific manner (Table
7). MnSOD induction was more marked in
the lung than in the heart (70% vs. 40%),
whereas increases in Cu/ZnSOD are observ-
able only in the heart (100%). On the other
hand, catalase was increased by 30% in the
lung and showed a trend of increase that did
not reach statistical significance in the heart.
These patterns of antioxidant enzyme induc-
tion agree with results from gene array stud-
ies of the responses to inhaled CAPs in the
rat lung (Godleski JJ. Personal communica-
tion). In these experiments, rats exposed to
CAPs aerosols for 6 hr/day on 3 consecutive
days showed increased lung mRNA levels of
MnSOD and catalase. In contrast, expression
of Cu/ZnSOD was slightly decreased after
exposure. Taken together, these results sug-
gest transcriptional regulation of antioxidant
enzymes by short-term exposures to CAPs.
Up-regulation of antioxidant enzymes has
been described in other models of oxidant
inhalation. Rats breathing 85% oxygen for
> 5 days develop resistance to 100% oxygen,
and this increased tolerance is associated with
higher levels of MnSOD and Cu/ZnSOD in
the lung (Clerch and Massaro 1993; Crapo
and McCord 1976). Long-term exposure to
ozone has also been reported to cause site-
specific increases in the activities of antioxi-
dant enzymes (Plopper et al. 1994).

There is abundant data that MnSOD can
be induced by ROS (reviewed by Crawdford
1999) and proinflammatory cytokines in vitro
(reviewed by Valentine and Nick 1999).
Cu/ZnSOD, although found unresponsive to
ROS levels and many cytokines, can be up-
regulated by interleukin-1 (Tannahill et al.
1997), during cell differentiation (Valentine
and Nick 1999), and in response to oxygen in
very premature newborn baboons (Morton et
al. 1999). Finally, catalase regulation by

hydrogen peroxide has been documented in
several systems (Csonka et al. 2000;
Rohrdanz et al. 2001). CAPs exposure
increases ROS concentrations (Figure 1,
Table 4) as well as the levels of proinflamma-
tory cytokines (Calderon-Garciduenas et al.
2001; Shukla et al. 2000). Therefore, the
observed increases in activity of SODs and
catalase could be due to transcriptional acti-
vation mediated by these factors. 

In summary, our data show for the first
time that short-term inhalation exposure to
increased concentrations of particulate air
pollution promotes oxidative stress and mild
damage to the lungs and heart in vivo. The
observed up-regulation of antioxidant
defenses and the reversibility of the CAPs-
mediated oxidative stress and toxicity
strongly suggest that the lung and heart can
readily adapt to rapid increases in the intra-
cellular levels of oxidants. Further experi-
mentation is warranted to establish the
causal role of oxidants in CAPs toxicity as
well as to confirm transcriptional regulation
of antioxidant enzymes and establish the
mechanism operating this regulation. 
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