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Abstract

Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent
reanalysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and
transmission of the influenza virus. Here, we extend these findings to the human population level, showing that the onset of
increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity
levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions
temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The
model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to
produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute
humidity drives seasonal variations of influenza transmission in temperate regions.
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Introduction

In temperate regions, wintertime influenza epidemics are respon-

sible for considerable morbidity and mortality [1]. These seasonal

epidemics are maintained by the gradual antigenic drift of surface

antigens, which enables the influenza virus to evade host immune

response [2]. Recent influenza epidemics have resulted from the

cocirculation of three virus (sub)types, A/H1N1, A/H3N2, and B,

with one generally predominant locally in a given winter [3–5]. In

contrast, influenza pandemic activity can occur any time of year,

including during spring or summer months, in the rare instances

when a novel virus to which humans have little or no immunity jumps

from avian or mammalian hosts into the human population, as in the

on-going H1N1v pandemic [6–9]. Despite numerous reports

describing wintertime transmission of epidemic influenza in temperate

regions [10], our understanding of the mechanisms underlying

influenza seasonal variation remains very limited.

Experimental studies suggest that influenza virus survival within

aerosolized droplets is strongly associated with the absolute humidity

(AH) of the ambient air, such that virus survival improves markedly

as AH levels decrease [11]. A similar relationship is observed

between AH and airborne influenza virus transmission among

laboratory guinea pigs, in that transmission increases markedly as

AH levels decrease (Figure 1). Within temperate regions of the

world, AH conditions are minimal in winter and maximal in

summer (Figure 1D). This seasonal cycle favors a wintertime

increase of both influenza virus survival and transmission, and may

explain the observed seasonal peak of influenza morbidity and

mortality during winter. Annual wintertime mortality peaks are

evident in the long-term mortality records of excess pneumonia and

influenza (P&I) in the US, a robust indicator of the timing and

impact of epidemics at national and local scales [4] (Figure S1).

Here, we develop epidemiological support for these previous

laboratory-based findings implicating AH as a driver of seasonal

influenza transmission. First, we analyze the spatial and temporal

variation of epidemic influenza onset across the continental US,

1972–2002, and correlate this observed variability with records of

AH for the same period and locations. Second, we show that a

mathematical model of influenza transmission in the US can

reproduce the spatial and temporal variation of epidemic influenza

when daily AH conditions within each state are used to modulate

the basic reproductive number, R0(t), of the influenza virus.

Results

AH and the Onset of Wintertime Influenza Outbreaks
Our first test of the hypothesis that low AH drives wintertime

increases of influenza transmission is to assess whether the onset of
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the influenza epidemic each winter—which shows substantial

annual variation (Figure S1)—corresponds to a period of unusually

low AH. We define the onset of wintertime influenza as the date at

which, for the 2 wk prior, the observed excess P&I mortality rate

had been at or above a prescribed threshold level (e.g., 0.01

deaths/100,000 people/day). This onset date was identified

separately for each of the 30 winters in the 1972–2002

observational record at each of the 48 contiguous states plus the

District of Columbia (DC). We then examined the anomalous AH

(AH9) conditions prior to and following these onset dates. AH9 is

the local daily deviation of AH from its 31-y mean for each day (as

shown for five states in Figure 1D), defined as:

AH ’~AH{AH ð1Þ

where AH denotes the 1972–2002 daily average value. At

temperate latitudes, such as in the US, wintertime AH levels are

already much lower than summer (Figure 1D). By using AH9, we

can determine whether the onset of wintertime influenza occurs

when AH is above or below typical local daily AH levels.

Negative AH9 values are typically observed beginning 4 wk

prior to the onset of influenza epidemics (Figure 2), with the largest

excursion occurring 17 d prior to onset. This result is robust to the

choice of the mortality threshold level used to define onset date

(from 0.001 to 0.02 excess P&I deaths/100,000 people/day). To

assess the statistical significance of the association between

negative wintertime AH9 and epidemic onset, we bootstrapped

the distribution of observed wintertime AH9 records and found

strong statistical support (p,0.0005, see Text S1). Depending on

the threshold used to define onset, 55%–60% of onset dates

demonstrate negative AH9 averaged over the 4 wk prior to onset.

Although highly statistically significant, this shift from the

expected 50% likelihood is small. These findings indicate that

negative AH9 are not necessary for wintertime influenza onset but

instead presage an increased likelihood of these onset events. In

effect, negative AH9 in the weeks prior to onset provide an

additional increase of influenza virus survival and transmission

over typical local wintertime levels and may further facilitate the

spread of the virus.

Regional differences in the association of negative AH9 with

onset date are also evident. The association is strongest in the

eastern US, in particular the Gulf region and the northeast

(Figures S2, S3, and S4). Although the association does not reach

statistical significance in much of the western US, AH9 are typically

negative during the weeks prior to onset in this region as well.

Next, we used the same approach to examine whether other

potential environmental drivers of influenza are associated with

wintertime influenza onset. The findings indicate that negative

relative humidity (RH) and temperature anomalies, as well as

positive solar insolation anomalies, are also associated with onset

date (Table 1). However, the direction of the associations of the

daily wintertime anomalies of solar insolation and RH with

epidemic onset are contrary to the association between these

environmental factors and epidemic activity at the seasonal time

scale. Decreased solar insolation during the winter months is

posited to increase influenza activity by decreasing host melatonin

and vitamin D levels and thus host resistance [12,13]; however,

our findings indicate that influenza onset is associated with increased

daily solar insolation anomalies. Similarly, RH is highest in winter

[11], but influenza onset is associated with low RH anomalies.

Specific weather patterns may explain the observed correlations

between these meteorological anomalies and influenza onset.

Anomalously low AH over the continental US is typically

associated with excursions of colder air masses from the north.

These air masses, which often follow a cold front, bring cloud-free

skies (i.e., increased solar insolation) and reduced surface

temperature and humidity levels. As the air mass moves

southward, it slowly warms; however, unless it traverses a large

open water source, AH does not increase substantially. As a

consequence, anomalously low RH levels can develop within these

air masses as well. Thus, the anomalies of solar insolation and RH

could be noncausally linked with influenza outbreaks through their

association with weather conditions that bring negative AH9 to a

region.

Temperature and AH are strongly correlated (Table S1); both

are minimal in winter when influenza transmission is maximal and

have negative anomalies associated with influenza onset, tenden-

cies which agree with the associations determined from laboratory

data [11,14,15]. To establish which of these variables is most

critical for onset, we rely on previous laboratory analyses exploring

the impact of both environmental factors that indicate AH is the

essential determinant of influenza virus survival and transmission

[11]. Furthermore, AH9 is the only anomaly variable whose

association with onset is significant at p,0.00002 for all four onset

threshold levels (Table 1).

In addition, it should be noted that seasonal temperature

conditions are often highly managed indoors, where most of the

US population spends the bulk of its time. Average daily outdoor

temperatures can differ over 20 uC from winter to summer, but

seasonal heating and air conditioning greatly reduce this

temperature cycle indoors. In contrast, AH possesses a large

seasonal cycle both outdoors and indoors [11].

Model Simulations of Influenza Seasonality
To further assess the hypothesis that AH is a fundamental driver

of influenza seasonality, we examined whether a population-level

model of influenza transmission forced by AH conditions could

reproduce the observed seasonal patterns of P&I mortality. We

simulated influenza transmission for five states representative of

different climates within the US: Arizona, Florida, Illinois, New

York, and Washington. The model considers three disease classes:

susceptible, infected, recovered; to integrate the impact of waning

immunity following antigenic drift, we allow individuals to go back

Author Summary

The origin of seasonality in influenza transmission is both
of palpable public health importance and basic scientific
interest. Here, we present statistical analyses and a
mathematical model of epidemic influenza transmission
that provide strong epidemiological evidence for the
hypothesis that absolute humidity (AH) drives seasonal
variations of influenza transmission in temperate regions.
We show that the onset of individual wintertime influenza
epidemics is associated with anomalously low AH condi-
tions throughout the United States. In addition, we use AH
to modulate the basic reproductive number of influenza
within a mathematical model of influenza transmission
and compare these simulations with observed excess
pneumonia and influenza mortality. These simulations
capture key details of the observed seasonal cycle of
influenza throughout the US. The results indicate that AH
affects both the seasonality of influenza incidence and the
timing of individual wintertime influenza outbreaks in
temperate regions. The association of anomalously low AH
conditions with the onset of wintertime influenza out-
breaks suggests that skillful, short-term probabilistic
forecasts of epidemic influenza could be developed.

Absolute Humidity and Wintertime Influenza
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Figure 1. Analyses of laboratory data, environmental data, and SIRS model simulations. (A) Log-linear regression of guinea pig airborne
influenza virus transmission data [14,15] on specific humidity (a measure of AH); (B) log-linear regression of 1-h influenza virus survival data [28] on
specific humidity; (C) functional relationship between R0(t) and q(t) per Equation 4; (D) 1972–2002 daily climatology of 2-m above-ground NCEP-NCAR
reanalysis specific humidity [23] for Arizona, Florida, Illinois, New York state, and Washington state; (E) 1972–2002 average daily values of R0(t) derived

Absolute Humidity and Wintertime Influenza
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to the susceptible class at a defined rate (SIRS model). Observed

1972–2002 daily AH conditions within each state are used to

modulate the basic reproductive number, R0(t), of the influenza

virus, i.e., the per generation transmission rate in a fully susceptible

population. These daily fluctuations of R0(t) alter the transmission

probability per contact within the SIRS model and thus affect

influenza transmission dynamics. The SIRS model contains four

free parameters: two (R0max and R0min) that define the range of

from the specific humidity climatology using the best-fit parameter combination from SIRS simulations (R0max = 3.52; R0min = 1.12) and the functional
form (Figure 1C and Equation 4); (F) average RE(t) for all wintertime outbreaks in the ten best-fit simulations at each state shown for 100 d prior to
through 150 d post outbreak onset (minimum 400 infections/day during 2 wk prior; minimum 5,000 infections/day at least 1 d during subsequent
30 d). Figure 1A and 1B are redrawn from Shaman and Kohn [11] using specific humidity as the measure of AH.
doi:10.1371/journal.pbio.1000316.g001

Figure 2. AH9 associated with the observed onset of epidemic influenza. Top, plots of AH9 averaged for the site-winters with an influenza
outbreak showing the 6 wk prior to and 4 wk following outbreak onset. The conditions at each of the site-winters are defined based on the onset
date for that site-winter. The onset dates are defined as the date at which wintertime observed excess P&I mortality had been at or above a
prescribed threshold level for two continuous weeks (e.g., 0.01 deaths/100,000 people/day). Not every site-winter produced an outbreak as defined
by a particular onset threshold. Depending on the threshold level used, 1,181–1,420 epidemics were identified among 1,470 possible (30 winters each
for the 48 contiguous states plus the District of Columbia). Each solid line is the averaged AH9 associated with influenza onset as defined by a
different threshold mortality rate. The dashed line shows AH9 = 0. Bottom, plot of R0(t) anomalies using the above AH9 values. The R0(t) anomalies are
calculated using the best combined-fit estimates of R0max and R0min (Table 1). The dashed line shows R0(t)9 = 0.
doi:10.1371/journal.pbio.1000316.g002
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R0(t), one for the duration of immunity (D), and one for the

duration of infectiousness (L).

If absolute humidity controls influenza seasonality, best-fit

simulations with the AH-driven transmission model should meet

the following criteria: 1) the mean annual model cycle of infection

should match observations in each state; 2) these simulations

should converge to similar parameter values, i.e., the virus

response to AH should be consistent among states; and 3) AH

modulation of transmission rates (R0(t)) within the model must

match the large range implied by the laboratory data (Figure 1).

Multiple 31-y (1972–2002) simulations were run at each of the

five states with randomly chosen parameter combinations. We then

compared the mean annual cycle of daily infection from each

simulation with a similar average of 1972–2002 observed excess P&I

mortality rates [3,4]. Best-fit model simulations at each site capture

the observed seasonal cycle of influenza (Figure 3). These

simulations produce not only the late-year rise in transmission and

infection, but also the wintertime peak during early January,

typically followed by a secondary peak during late February/early

March. In both models and observations, the dual winter peaks are

not typically seen in individual years; rather these epidemic

trajectories reflect the averaging of individual wintertime outbreaks

that peak anytime between December and April (Figure S5).

We also searched for the best-fit parameter combinations for

all five sites evaluated together. The parameter combinations of

these best ‘‘combined fits’’ are characterized by high R0max

(generally.2.8), high R0min (.1), and low mean infectious period

(2,D,4.2 d) (Figure S6; Table 2). Best-fit simulations at each of

the five sites individually occupy a similar parameter space

(Figures S7, S8, S9, S10, and S11; Table S2). In particular, these

simulations converge to high R0max, which indicates a similar

response to AH variability (see Text S1).

There is some correlation among SIRS model parameter values

in simulations that fit the observed excess P&I mortality well. For

instance, among better-fit simulations, L and D tend to be inversely

related (Figures S6, S7, S8, S9, S10, and S11). In addition, broad

regions of parameter space appear capable of producing high-

quality, low root mean square (RMS) error simulations (Figure S6).

The stochastic components of the SIRS model may contribute in

part to this behavior. The flat goodness-of-fit within model

parameter space indicates that no one parameter combination is

strictly ‘‘best,’’ rather, a range of parameter combinations may

produce good simulations of influenza transmission. These

parameter ranges are: L = 3–8 y, D = 2–3.75 d, R0max = 2.6–4,

and R0min = 1.05–1.30. We reran the SIRS model repeatedly

sampling this approximate subset range of parameter space. Best-

fit simulations from this subset range of parameter space (Table

S3) were of similar quality and exhibited the same flat goodness-of-

fit within model parameter space as the best-fit simulations

presented in Table 2.

Because the SIRS model simulates only influenza-related

infections, not deaths, a scaling factor is needed to compare

model-simulated rates of infection with the observed excess P&I

mortality rates. This scaling factor can be understood as the case

fatality ratio, i.e., the probability of mortality given infection.

Reassuringly, all best-fit simulations produce a scaling factor of the

same order of magnitude and roughly consistent with the expected

value of the case fatality ratio for P&I-related deaths (see Text S1).

The model also explains regional variations in influenza dynamics.

Due to the modeled nonlinear relationship between R0(t) and AH

(Figure 1C), the seasonal cycle of R0(t) is sensitive to both AH seasonal

cycle amplitude and mean AH levels (Figure 1D and 1E). In Florida,

mean AH levels are higher than for the other four states, but the

seasonal AH cycle remains large and produces a seasonal R0(t) cycle of

sufficient amplitude to generate an effective reproductive number,

RE(t) = R0(t) *S(t)/N, greater than 1 (Figure 1F) and organize influenza

epidemics preferentially during winter. Outbreak dynamics reinforce

this phase organization in that wintertime epidemics confer immunity

to a large proportion of the model population, which then reduces

population-level susceptibility during the following summer when R0(t)

is low. In Arizona and Washington state, the seasonal AH cycle is less

than for the other three states, but average AH levels are lower, at a

range where laboratory findings indicate sensitivity to variation in AH

is greater; consequently R0(t) retains a sizeable seasonal cycle

(Figure 1E). For all five states, the AH-driven seasonal variation of

R0(t) is large enough that RE(t) is strongly modulated by AH conditions

and exceeds 1 during winter as outbreaks develop (Figure 1F).

The humidity-driven SIRS simulations satisfy our three criteria

for supporting the hypothesis that AH controls influenza seasonality

in temperate regions. The simulations produce a consistent response

in the five climatologically diverse US states using similar parameter

values. The large sensitivity of simulated influenza transmission to

AH is consistent with the analysis of laboratory experiments that

show large changes in influenza virus survival and transmission in

response to AH variability (Figure 1A and 1B).

Cross-Validation of the Model Findings
To further validate the SIRS model findings, we determined

whether the best-fit simulations derived from the five selected

states could reproduce the seasonal cycles of influenza elsewhere in

the US. The ten best combined-fit parameter combinations

(Table 2) were used to perform 31-y (1972–2002) SIRS simulations

at each of the contiguous 48 states plus DC.

The results of this cross-validation demonstrate good simula-

tions of observed excess P&I mortality for a majority of states

(average r.0.7, minimum r.0.5, see Methods and Table 3). Some

Table 1. Association of daily anomalies in various environmental variables with wintertime influenza onset during 1972–2002 for
the contiguous US.

Onset Threshold (Deaths/100,000/Day) AH9 (1,000*kg/kg) RH9 (%) Temperature9 (Kelvin) Solar Radiation9 (W/m2)

0.005 20.138 (,0.00002) 20.420 (0.00166) 20.221 (0.00004) 0.431 (0.0397)

0.01 20.124 (,0.00002) 20.586 (0.00006) 20.212 (0.00044) 0.547 (0.0068)

0.015 20.114 (,0.00002) 20.709 (,0.00002) 20.178 (0.00398) 0.594 (0.0051)

0.02 20.107 (,0.00002) 20.639 (,0.00002) 20.184 (0.00402) 0.316 (NS)

Four different onset thresholds are shown. Average values for each variable are for the period 4 to 0 wk prior to onset. Significance estimates based on bootstrapping
are also shown in parentheses.
NS = not significant.
doi:10.1371/journal.pbio.1000316.t001
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states, particularly the sparsely populated western states perform

less well. These states often have low workflow [4], which may

reduce the rate of introduction of the virus each winter. In

addition, heterogeneous AH fields across some states (particularly

large ones) create some error due to simulation with a single

average statewide AH value. Thirteen states in the continental US,

including Arizona, possess low workflow rates [4]. Six of these 13

states are among the ten worst cross-validation performers; such a

clustering is unlikely to occur by chance alone (p,0.005). In

addition, seven of the ten worst performers are states with the ten

lowest population densities (p,0.0001).

Overall, the cross-validation shows that the best combined-fit

parameter combinations can simulate influenza seasonality

throughout the country. Future use of higher resolution AH and

observed P&I data that better represent local conditions may

improve these model results.

Additional SIRS Model Results
We also used SIRS model simulations to provide additional

support for the association between negative AH9 and epidemic

onset (Figure 2). Best-fit SIRS model runs reveal a comparable

effect in which large negative AH9 develop about 2 wk prior to

onset as defined by SIRS model infection rates (Figure 4). The 1-

wk difference in lag between this analysis with model infection

rates (2 wk) and the analysis with observed excess P&I mortality

rates (3 wk) roughly corresponds to the median time from infection

to mortality [16–18]. The broader peak of negative AH9 seen in

Figure 2 is likely due to other, real-world factors that affect onset

response and are not represented in the SIRS model (see Text S1).

Finally, we examined whether the school calendar, which alters

person-to-person contact rates, could provide a better simulation

of seasonal influenza than AH. School holidays have been

estimated to lead to changes of ,25% in influenza transmission

[19] and occur during summer in the US, as well as at the end of

the calendar year and again in spring. A number of SIRS model

simulations were performed that included a stepwise increase of

R0(t) during the school year (see Text S1). Simulations in which

school closure was the only modulation of R0(t) were able to

generate a winter seasonal cycle of influenza; however, these

simulations did not reproduce observed excess P&I mortality as

well as those with AH alone (see Figures S14 and S15; Table S5;

Text S1). In addition, a 40%–90% change in influenza

transmission (R0(t)) was needed to effect this seasonality (Table

S5). This range of R0(t) changes is slightly larger than the

previously estimated modulation of ,25%; however, these

previous estimates were derived from an age-structured population

model, so direct comparison is difficult.

Discussion

Distinguishing among potential environmental drivers of

influenza seasonality, such as AH, RH, temperature, solar

insolation, and the school calendar, is difficult since all

demonstrate a similarly strong annual periodicity. Nevertheless,

our findings indicate that AH is a major (and likely the

predominant) determinant of influenza seasonality due to: 1) the

empirical association of negative AH9 with the onset of wintertime

influenza outbreaks (Figure 2), which is statistically stronger than

for RH, temperature or solar insolation (Table 1); 2) the relative

consistency of the response to AH among the five states modeled

in detail (i.e., similar parameter space; Table S2); and 3) the SIRS

cross-validation showing that the same best-fit parameters (Table 2)

can produce successful simulations of influenza seasonality

throughout much of the US (Table 3).

In addition, several findings undermine the hypothesis that the

association between the seasonal influenza cycle and AH is in fact

due to confounding by other potential drivers. The case for solar

insolation is weakened by its implausible positive association with

wintertime influenza onset. Although laboratory analyses find that

low RH favors influenza virus survival and transmission, RH is in

fact typically incorrectly phased in the outdoor environment (i.e.,

Figure 3. Mean annual cycles for the best-fit SIRS model simulations at the five state sites. Here, best-fit simulations were selected
individually for each state based on RMS error after scaling the 31-y mean daily infection number to the 31-y mean observed daily excess P&I
mortality rate. Thick blue line shows the best-fit simulation; thinner green lines show the next nine best simulations.
doi:10.1371/journal.pbio.1000316.g003

Table 2. Parameter combinations for the ten best-fit simulations at the Arizona, Florida, Illinois New York, and Washington state
sites.

Rank RMS Error
Correlation
Coefficient (r) L (Years) D (Days)

R0max

(Persons/Person)
R0min

(Persons/Person)
Scaling Factor
(61e24)

1 0.0070 0.85 5.35 3.24 3.52 1.12 1.70

2 0.0070 0.85 5.40 2.41 2.89 1.16 1.92

3 0.0075 0.83 3.28 4.18 3.40 1.22 1.04

4 0.0075 0.82 3.70 2.03 2.05 1.15 1.85

5 0.0075 0.82 7.77 2.59 3.69 1.30 2.28

6 0.0076 0.82 6.23 2.37 2.71 1.23 2.28

7 0.0076 0.82 6.05 2.56 3.79 1.06 1.83

8 0.0076 0.82 4.61 2.71 2.61 1.29 1.70

9 0.0076 0.81 7.39 2.85 3.69 1.27 2.22

10 0.0076 0.81 3.58 3.61 3.19 1.20 1.18

Five thousand simulations were performed at each site with the parameters R0max, R0min, D, and L randomly chosen from within specified ranges. Best-fit simulations
were selected for the five sites in aggregate based on RMS error after scaling the 31-y mean daily infection number to the 31-y mean observed daily excess P&I mortality
rate at each site. The scaling factor itself, representing mortality per infection, is also shown.
doi:10.1371/journal.pbio.1000316.t002
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Table 3. Correlation coefficients for the contiguous US and District of Columbia of SIRS-simulated 1972–2002 influenza incidence
with 1972–2002 observed excess P&I mortality.

Ten-Run Table 1 Ranked Parameter Combination

State Average 1 2 3 4 5 6 7 8 9 10

MO 0.92 0.93 0.95 0.87 0.89 0.91 0.93 0.85 0.93 0.95 0.97

OKa 0.91 0.94 0.95 0.95 0.96 0.84 0.90 0.88 0.85 0.91 0.93

KS 0.90 0.96 0.89 0.84 0.85 0.89 0.92 0.89 0.92 0.91 0.91

KY 0.89 0.91 0.88 0.87 0.90 0.83 0.88 0.88 0.95 0.87 0.92

AR 0.88 0.88 0.88 0.86 0.90 0.91 0.89 0.89 0.84 0.93 0.86

IA 0.88 0.91 0.88 0.92 0.81 0.91 0.91 0.86 0.85 0.89 0.87

PA 0.88 0.88 0.91 0.85 0.82 0.90 0.96 0.93 0.89 0.80 0.87

NHa 0.88 0.90 0.85 0.88 0.85 0.80 0.95 0.91 0.85 0.89 0.93

NY 0.88 0.88 0.82 0.92 0.78 0.87 0.85 0.94 0.95 0.96 0.81

IL 0.87 0.95 0.92 0.87 0.95 0.73 0.80 0.95 0.94 0.76 0.79

MA 0.86 0.89 0.86 0.87 0.93 0.69 0.77 0.90 0.87 0.90 0.97

IN 0.86 0.95 0.90 0.78 0.95 0.84 0.80 0.82 0.81 0.92 0.86

VA 0.86 0.80 0.75 0.83 0.81 0.93 0.84 0.93 0.79 0.94 0.94

NC 0.85 0.75 0.86 0.85 0.90 0.85 0.81 0.88 0.95 0.74 0.96

AL 0.85 0.83 0.84 0.85 0.97 0.69 0.90 0.89 0.97 0.76 0.85

MI 0.85 0.74 0.90 0.90 0.76 0.89 0.89 0.72 0.89 0.92 0.89

WV 0.84 0.83 0.84 0.90 0.86 0.92 0.81 0.84 0.79 0.86 0.75

WI 0.84 0.86 0.73 0.86 0.85 0.70 0.89 0.78 0.89 0.92 0.91

NE 0.84 0.91 0.78 0.78 0.87 0.94 0.87 0.67 0.81 0.93 0.81

MEa 0.84 0.72 0.91 0.76 0.86 0.86 0.92 0.79 0.81 0.89 0.86

TN 0.84 0.88 0.83 0.88 0.78 0.72 0.81 0.85 0.92 0.86 0.83

AZa 0.82 0.69 0.80 0.85 0.82 0.82 0.90 0.84 0.86 0.81 0.84

COa 0.82 0.85 0.90 0.80 0.84 0.60 0.86 0.72 0.86 0.92 0.91

MS 0.82 0.76 0.82 0.78 0.60 0.97 0.78 0.83 0.92 0.88 0.89

OH 0.82 0.76 0.87 0.91 0.79 0.79 0.76 0.66 0.80 0.91 0.91

TX 0.81 0.66 0.78 0.87 0.92 0.78 0.75 0.87 0.81 0.86 0.79

SDa 0.81 0.87 0.84 0.69 0.83 0.87 0.83 0.66 0.79 0.84 0.84

MN 0.81 0.84 0.72 0.74 0.81 0.83 0.85 0.80 0.76 0.86 0.84

MD 0.80 0.74 0.80 0.84 0.85 0.79 0.81 0.84 0.76 0.81 0.80

SC 0.80 0.80 0.84 0.89 0.84 0.76 0.92 0.55 0.84 0.86 0.74

WA 0.78 0.91 0.81 0.60 0.86 0.85 0.84 0.74 0.67 0.79 0.73

VT 0.77 0.68 0.84 0.87 0.76 0.76 0.87 0.72 0.73 0.64 0.82

GA 0.76 0.69 0.80 0.81 0.80 0.86 0.87 0.68 0.59 0.76 0.79

CT 0.76 0.75 0.75 0.83 0.76 0.71 0.66 0.87 0.80 0.65 0.83

LA 0.74 0.45 0.72 0.75 0.58 0.82 0.89 0.76 0.85 0.79 0.73

NMa 0.73 0.77 0.89 0.53 0.73 0.71 0.77 0.77 0.82 0.64 0.71

FL 0.71 0.64 0.75 0.74 0.73 0.57 0.73 0.78 0.71 0.70 0.77

DC 0.69 0.72 0.73 0.69 0.72 0.65 0.71 0.74 0.68 0.71 0.59

CA 0.68 0.74 0.57 0.63 0.61 0.69 0.78 0.52 0.67 0.79 0.77

UTa 0.68 0.68 0.74 0.66 0.59 0.68 0.77 0.75 0.63 0.55 0.73

NJ 0.67 0.74 0.67 0.82 0.56 0.69 0.48 0.71 0.60 0.62 0.85

RI 0.64 0.78 0.68 0.73 0.75 0.51 0.49 0.69 0.34 0.67 0.76

OR 0.62 0.79 0.58 0.59 0.73 0.63 0.44 0.68 0.79 0.56 0.43

IDa 0.62 0.65 0.74 0.62 0.63 0.75 0.61 0.30 0.63 0.69 0.53

WYa 0.59 0.69 0.57 0.55 0.59 0.71 0.67 0.43 0.65 0.43 0.64

DE 0.56 0.44 0.66 0.55 0.47 0.65 0.65 0.41 0.52 0.52 0.68

MTa 0.55 0.54 0.55 0.37 0.75 0.50 0.63 0.59 0.61 0.47 0.52

NDa 0.55 0.61 0.67 0.53 0.62 0.37 0.60 0.47 0.64 0.42 0.57
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maximal during winter, minimal during summer) and cannot

explain peak wintertime influenza incidence. The case for

temperature is weakened by the small amplitude of its seasonal

cycle in most indoor environments. Finally, reanalyses of

laboratory experiments indicate that AH is the best single-variable

constraint of influenza virus survival and transmission [11];

associations with temperature and RH likely merely reflect their

positive covariability with AH at various time scales. Still, a role for

temperature or other (possibly multiple) covariable factors cannot

be entirely discounted. Further laboratory investigation is needed

to determine the effects of humidity, evaporation, and temperature

on virus protein structure and survival.

SIRS model simulations also indicate that although the school

calendar can explain seasonal epidemic influenza, the correspon-

dence with observations is not as good as for simulations driven by

AH (Figures S14 and S15). The required increase in transmissi-

bility during school terms is greater than estimated previously;

with such large variation in transmission, inclusion of non-summer

breaks creates a noticeable decline in transmission in the

Christmas and spring periods that is not observed in data (see

Text S1). Nonetheless, an effect of school closure on influenza

transmission rates is well documented [19,20] and cannot be

discounted. It is certainly possible that the effects of AH and the

school calendar on influenza transmission act in concert with one

another; however, our statistical and SIRS model findings indicate

that AH variability provides a more parsimonious explanation for

the seasonality of epidemic influenza in temperate regions, and in

addition, is associated with the onset date of individual wintertime

outbreaks. The argument that AH at least partly determines

influenza seasonality is supported by: 1) laboratory evidence [11];

2) the much weaker seasonality in the tropics where humidity is

high year-round, but a school calendar exists; 3) the AH9-onset

analysis (Figures 2 and 4); 4) the plausibility of parameter

combinations and the effect size for AH within SIRS model

simulations (Figures 1 and 3; Table 2); and 5) the superior overall

quality of AH-forced simulations (Figure S14) and their reduced

sensitivity to stochastic processes within the SIRS model (Figure

S15).

There are minor differences among the sites in the best-fit

parameter values for the SIRS model (Figures S7, S8, S9, S10, and

S11, and Table S2), some of which could be host mediated. For

instance, Florida and New York show a tendency toward lower

duration of immunity. This difference could be derived from a

number of host-mediated factors specific to these states. The

findings presented here do not preclude an influence of such

factors on influenza transmission and seasonality. Differences in

population susceptibility and infectivity (e.g., population age and

general health), seasonal variations of host behavior (e.g., more

time indoors in close contact during winter [19]), and host

resistance (e.g., wintertime melatonin or vitamin D deficiencies

[12,13]) may still affect influenza transmission rates.

Among states, there are also differences of average peak SIRS-

simulated RE(t) (Figure 1F); however, there is no systematic

relationship between rates of observed excess P&I deaths and those

peak RE(t) values among these sites. For instance, Florida and New

York have similar rates of observed excess mortality per 100,000

persons, but different peak RE(t) levels. State-to-state differences in

contact rates and population age and structure, in particular the

proportion of seniors, who are at highest risk of influenza-related

death during seasonal epidemics, undoubtedly affect influenza

infection and mortality rates, and modulate the amplitude and

duration of individual outbreaks. In addition, the dominant

influenza subtype is a key predictor of influenza-related mortality

rate each season; A/H3N2-dominant seasons are associated with

two to three times higher death rates than H1N1 and B-dominant

seasons [3,4]. These other factors are not accounted for in our

SIRS model; hence, there is not a good one-to-one correspon-

dence between the average peak size of RE(t) and rates of observed

excess P&I deaths. However, within the SIRS model, a

relationship between RE(t) and simulated infection rates does exist.

Among the ten best-fit simulations at each site, the average

maximum RE(t) rank (from greatest to least) as New York, Illinois,

Washington, Arizona, Florida. Similarly among these runs, the

average maximum epidemic size ranks (from greatest to least) as

New York, Washington, Illinois, Arizona, Florida. This more

direct response is not unexpected; within the SIRS model, higher

RE(t) directly corresponds to greater transmission and, conse-

quently, more rapidly developing, larger outbreaks.

It should be noted that observed excess P&I mortality is an

imperfect indicator of influenza incidence, as other respiratory

illnesses exhibit similar seasonal periodicities. No doubt these other

diseases contribute to the seasonality of the observational time

series used here (Figure 3, Figure S1). However, excess P&I

mortality generally shows a strong correspondence with other

indicators of influenza incidence, such as hospitalization data and

laboratory notifications [4]. A clearer picture of the environmental

determinants of influenza seasonality and onset will emerge when

the effects of AH and other environmental variables on these

potentially confounding, seasonal respiratory pathogens are also

elucidated.

The initial evidence demonstrating that AH affects influenza

virus survival and transmission was derived from laboratory

experiments studying the airborne transmission of influenza;

however, our SIRS model uses no specific mode of transmission.

Thus, other modes of transmission, in particular indirect

transmission via fomites, if similarly affected by AH, might also

have a role determining the seasonality of influenza in temperate

regions. In addition, the SIRS model is highly idealized and fails to

represent many factors in the real world that can affect

transmission rates, including clustered populations, structured

interactions, variation in host infectiousness, and multiple

influenza strains conferring various levels of cross-immunity.

Ten-Run Table 1 Ranked Parameter Combination

State Average 1 2 3 4 5 6 7 8 9 10

NVa 0.40 0.33 0.46 0.26 0.42 0.54 0.67 0.17 0.19 0.50 0.47

aLow workflow states.
The ten best common-fit parameter combinations (Table 2) were used for these hindcast projections. Results are ordered based on best average correlation (among the
ten simulations for each state). The ten states with lowest 1972–2002 population density are shown in bold.
doi:10.1371/journal.pbio.1000316.t003

Table 3. Cont.
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Future work could incorporate these effects into a more realistic

influenza model that also accounts for the effects of AH. Such

efforts would also enable better discrimination between the effects

of school terms and AH. Also, the effects of AH on influenza

transmission should be incorporated into models accounting for

travel and workflow [4,21,22] to explain the seasonal geographic

spread of influenza.

The analyses presented here need to be extended elsewhere,

including the tropics, where AH is high year-round and the

seasonality of influenza is often less clearly defined. High AH does

not preclude but merely reduces influenza virus survival and

transmission, so it is possible a role for AH also exists in the tropics.

However, the findings presented here suggest that R0(t) would be

less sensitive to AH variability in areas of very high year-round

AH, such as the tropics, which may allow for other, possibly host-

mediated, factors to play a more predominant role in generating

seasonal variability in influenza incidence.

Laboratory studies provided the initial evidence that AH may

determine the seasonality of influenza in temperate regions [11].

The model and statistical results presented here indicate that the

effects of AH observed in the laboratory are sufficient to explain

patterns observed at the population level and illustrate the power

Figure 4. AH9 associated with SIRS simulated influenza onset. Top, plots of average AH9 associated with wintertime influenza onset for the
ten best-fit SIRS model simulations at the five state sites (Arizona, Florida, Illinois, New York, and Washington). The onset dates are defined as the date
on which wintertime infection rates have been at or above a prescribed level for two continuous weeks (e.g., 50 infections/100,000 people/day). Each
solid line is the averaged AH9 associated with influenza onset as defined by a different threshold infection rate. The dashed line shows AH9 = 0.
Bottom, plots of R0(t) anomalies using the AH9 values. The R0(t) anomalies are calculated using the parameters R0max and R0min from each best-fit
simulation (Table S3). The dashed line shows R0(t)9 = 0.
doi:10.1371/journal.pbio.1000316.g004
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of epidemiological modeling rooted in individual-level experi-

ments. The results indicate that AH affects both the seasonality of

influenza incidence and the timing of individual wintertime

influenza outbreaks in temperate regions. The association of

negative AH9 with wintertime influenza outbreak onset is

remarkable given the noise in the data and suggests that skillful,

short-term probabilistic forecasts of epidemic influenza could be

developed.

Methods

SIRS Model and Methods
The SIRS model equations are:

dS

dt
~

N{S{I

L
{

b tð ÞIS

N
ð2Þ

dI

dt
~

b tð ÞIS

N
{

I

D
ð3Þ

where S is the number of susceptible people in the population, t is

time in years, N is the population size, I is the number of infectious

people, N2S2I is the number of resistant individuals, b(t) is the

contact rate at time t, L is the average duration of immunity in

years, and D is the mean infectious period in years. The basic

reproductive number at time t is R0(t) = b(t)D.

Observed AH conditions were derived from National Centers

for Environmental Prediction–National Center for Atmospheric

Research (NCEP-NCAR) reanalysis [23]. For each state (Arizona,

Florida, Illinois, New York, and Washington), a daily 1972–2002

time series of 2-m above-ground specific humidity, q(t), was

constructed by averaging all grid cells with $10% of their area

within that state. The equation relating q(t) to R0(t) uses an

exponential functional form similar to the relationships between

AH and both influenza virus survival and transmission, derived

from laboratory experiments (Figure 1):

R0 tð Þ~ exp a|q tð Þzbð ÞzR0 min ð4Þ

where a = 2180, b = log(R0max2R0min), R0max is the maximum

daily basic reproductive number, and R0min is the minimum daily

basic reproductive number. The value of a is estimated from the

laboratory regression of influenza virus survival upon AH

(Figure 1A). Equation 4 dictates that R0(t) = R0max when

q(t) = 0 kg/kg and that R0(t) approaches R0min asymptotically as

q(t) increases.

For simulations, we use a stochastic Markov chain formulation

in which individuals are treated as discrete entities, and transitions

between model states (i.e., susceptible, infected, recovered) are

determined by random draws corresponding to rates determined

from Equations 2 and 3. Using the daily time series of q(t), which

alters R0(t), daily influenza transmission was simulated for each of

the five state sites during 1972–2002 for a model population of

500,000 individuals. Initial conditions included 50,000 susceptible

persons and 100 infected persons; however, results were not

sensitive to these numbers. Simulations were performed with daily

random seeding of infected individuals (i.e., each day there is a

10% probability that a single susceptible individual becomes

infected), meant to represent reintroduction of the virus in the

model domain due to travel. The model is perfectly mixed and

simulations were performed with two influenza virus subtypes: A-

H1N1/B and A-H3N2 (see Figures S12 and S13). No cross

immunity was conferred within the model between these virus

subtypes. Each year, beginning in May, the random seeding of

infectious individuals in the population (representing emigration/

travel) is fixed to the dominant recorded subtype for the US (i.e.,

either A-H1N1/B or A-H3N2), based on Centers for Disease

Control/Morbidity and Mortality Weekly Report (CDC/

MMWR) laboratory and antigenic surveillance data [3,4].

Five thousand simulations at each site were run using

combinations of the four model parameters: R0max, R0min, D,

and L chosen using a Latin hypercube sampling structure with

uniform distribution. The ranges of these parameters were

specified to reflect known influenza dynamics (see Table S4, Text

S1). Estimates of R0 derived or used by many authors range from

1.3 to 3 [16,21,22,24–27]. To effect this range, given Equation 3

and variations of q(t), we used an R0max ranging from 1.3 to 4.

R0min provides the R0 below which the model cannot fall. This

minimum recognizes that other modes of influenza transmission

exist that may not be modulated by absolute humidity. R0min

values range from 0.8 to 1.3. Per Equation 4, decreasing humidity

increases R0(t). The range of this nonlinear increase is set by the

randomly chosen R0max and R0min parameters. Estimates of D

range from 2 to 7 d [16,25], and estimates of L range from 2 to

10 y. Both influenza virus subtypes used the same four randomly

chosen parameters during each simulation, though results were

similar when each subtype was assigned different parameters (eight

in total).

The quality of each simulation at each site was evaluated based

on RMS error with observed excess P&I mortality [3,4] (Figure

S1), lagged 2 wk. The lag accounts for mean time from infection to

mortality. Prior to determining the RMS error, each model run

was scaled to enable comparison of simulated infections with

observed mortality rates (see Text S1).

Prior to the model cross-validation throughout the contiguous

US, we first determined the effect that stochasticity within each

SIRS simulation has on the quality of fit with observations. We

reran the ten best common-fit parameter combinations 100 times

each for New York, each time with a different random seeding,

and found that correlations to observed P&I mortality ranged from

r = 0.65 to r = 0.97 with an average of r = 0.87. In contrast,

multiple simulations with the 4,500th best parameter combination,

out of 5,000, produced correlations that ranged from r = 20.18 to

r = 0.34. Thus, random seeding within a particular model run

produces a range of correlation coefficient outcomes; however,

good model runs should produce high positive correlation with

observations (average r.0.7, minimum r.0.5).

Supporting Information

Figure S1 Observed P&I mortality per 100,000 people in
the US, 1972–2002. (A) Time series of weekly P&I mortality

(blue line). Note the winter seasonal mortality peaks each winter.

The dotted vertical lines denote the first week of January of each

year, and the red curve is a seasonal baseline representing the

expected P&I mortality in the absence of influenza. (B) A robust

indicator of the timing and impact of influenza epidemics is excess

P&I mortality (black line), which measures mortality attributable

to influenza above the seasonal baseline.

Found at: doi:0.1371/journal.pbio.1000316.s001 (0.15 MB PDF)

Figure S2 Plots of AH9 averaged for the 6 wk prior and
4 wk following the onset of wintertime influenza for
three regions within the US. The three regions are as follows:

top, the Southwest (Arizona, Colorado, Nevada, New Mexico,

and Utah); middle, the Northeast (Connecticut, the District of

Columbia, Delaware, Maine, Maryland, Massachusetts, New

Hampshire, New Jersey, New York, Pennsylvania, Rhode Island,

Absolute Humidity and Wintertime Influenza
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Vermont, and West Virginia); and bottom, the Gulf region

(Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana,

Mississippi, North Carolina, South Carolina, Tennessee, and

Virginia). The onset dates are defined as the date at which

wintertime observed excess P&I mortality had been at or above a

prescribed threshold level for two continuous weeks (e.g., 0.01

deaths/100,000 people). Each solid line is the averaged AH9

associated with influenza onset as defined by a different threshold

mortality rate. The dashed line shows AH9 = 0. Both Texas and

California were excluded from these regional analyses due to

their large geographic size, which span a large range of AH

conditions.

Found at: doi:0.1371/journal.pbio.1000316.s002 (0.31 MB GIF)

Figure S3 Plots of AH9 averaged for the 6 wk prior and
4 wk following the onset of wintertime influenza for
three additional regions within the US. As for Figure S2,

but for: top, the Northwest (Idaho, Montana, Oregon, and

Washington); middle, the Great Lakes region (Illinois, Indiana,

Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin); and

bottom, the Plains (Kansas, Nebraska, North Dakota, South

Dakota, and Wyoming).

Found at: doi:0.1371/journal.pbio.1000316.s003 (0.30 MB GIF)

Figure S4 Map of regional state groupings used in the
analyses presented in Figures S2 and S3. Southwest states

are in red; Northeast states are in blue; Gulf states are in green;

Pacific Northwest states are in cyan; Great Lakes states are in

yellow; and Plains states are in magenta. California, Oklahoma,

and Texas were not included in any region, but were used in the

analysis performed for the contiguous US (Figure 2; Table 1).

Found at: doi:0.1371/journal.pbio.1000316.s004 (0.03 MB GIF)

Figure S5 Plots of SIRS model–simulated infections for
individual years from the best-fit simulation in New
York state.
Found at: doi:0.1371/journal.pbio.1000316.s005 (0.09 MB EPS)

Figure S6 Plots of RMS error of the 5,000 SIRS dual-
strain simulations as a function of parameter space.
Shown are the RMS error based on combined simulation fit at all

five sites in aggregate (the same parameter combinations were run

at all five sites).

Found at: doi:0.1371/journal.pbio.1000316.s006 (1.50 MB GIF)

Figure S7 Plots of RMS error of the 5,000 SIRS dual-
strain simulations at Arizona as a function of parameter
space.
Found at: doi:0.1371/journal.pbio.1000316.s007 (1.50 MB GIF)

Figure S8 Plots of RMS error of the 5,000 SIRS dual-
strain simulations at Florida as a function of parameter
space.
Found at: doi:0.1371/journal.pbio.1000316.s008 (1.49 MB GIF)

Figure S9 Plots of RMS error of the 5,000 SIRS dual-
strain simulations at Illinois as a function of parameter
space.
Found at: doi:0.1371/journal.pbio.1000316.s009 (1.52 MB GIF)

Figure S10 Plots of RMS error of the 5,000 SIRS dual-
strain simulations at New York state as a function of
parameter space.
Found at: doi:0.1371/journal.pbio.1000316.s010 (1.52 MB GIF)

Figure S11 Plots of RMS error of the 5,000 SIRS dual-
strain simulations at Washington state as a function of
parameter space.
Found at: doi:0.1371/journal.pbio.1000316.s011 (1.48 MB GIF)

Figure S12 Power spectra of the third best-fit New York
single-strain SIRS simulation (top) and the New York
observed excess P&I mortality data (bottom), shown for
1975–2002. Harmonic 28 gives the power at 1-y period;

harmonic 56 gives the power at 6-mo period.

Found at: doi:0.1371/journal.pbio.1000316.s012 (0.06 MB GIF)

Figure S13 Power spectra of the tenth best-fit New York
dual-strain SIRS simulation. Power spectra of a typical

(tenth) best-fit New York dual-strain discrete SIRS simulation

(top), broken down by subtype (middle two panels), and the New

York observed excess P&I mortality data (bottom), 1975–2002.

Found at: doi:0.1371/journal.pbio.1000316.s013 (0.12 MB GIF)

Figure S14 Histograms of correlation coefficients for
SIRS model ensemble simulations in New York state.
Each distribution presents the correlation coefficients for 5,000

simulations, each run with a different parameter combination, for

a given model forcing. Shown are results for simulation with

school forcing (no weekends or holidays), school forcing (with

weekends and holidays), AH forcing, and combined AH and

school forcing. For the combined AH and school forcing, the

school forcing did not represent weekends and holidays.

Correlations are with 1972–2002 New York state observed excess

P&I mortality.

Found at: doi:0.1371/journal.pbio.1000316.s014 (0.03 MB EPS)

Figure S15 Test of the effect of stochasticity within the
SIRS model on well-matched simulations in the state of
New York. The ten best-fit parameter combinations for the AH-

only (Table S2) and school-only (no breaks; Table S5) simulations

were each run an additional 100 times, each time with a different

random seeding. Histograms of correlations with 1972–2002 New

York state observed excess P&I mortality are shown.

Found at: doi:0.1371/journal.pbio.1000316.s015 (0.01 MB EPS)

Table S1 Correlation coefficients of daily anomalies in
wintertime (October–February) surface meteorological
variables for the lower 48 US states and DC across all
these sites, 1972–2002.
Found at: doi:0.1371/journal.pbio.1000316.s016 (0.03 MB DOC)

Table S2 Parameter combinations for the ten best-fit
dual-strain SIRS simulations at each site with the
parameters R0max, R0min, D, and L randomly chosen from
within specified ranges. Best-fit simulations were selected

based on RMS error after scaling the 31-y mean daily infection

number to the 31-y mean observed daily excess P&I mortality rate.

The scaling factor and correlation with observed mean annual

excess P&I mortality rates are also shown.

Found at: doi:0.1371/journal.pbio.1000316.s017 (0.13 MB DOC)

Table S3 Parameter combinations for the ten best-fit
simulations at the Arizona, Florida, Illinois New York,
and Washington state sites. Five thousand simulations were

performed at each site with D = 2.4 d and the three remaining

parameters randomly chosen from the ranges: L = 2–8 y,

R0max = 2–4, and R0min = 1–1.3. Best-fit simulations were selected

for the five sites in aggregate based on RMS error after scaling the

31-y mean daily infection number to the 31-y mean observed daily

excess P&I mortality rate at each site. The scaling factor itself,

representing mortality per infection, is also shown.

Found at: doi:0.1371/journal.pbio.1000316.s018 (0.05 MB DOC)

Table S4 Comparison of best common-fit model simu-
lation (Table 1) parameter fluctuations at the five sites
with those of Dushoff et al., 2004.
Found at: doi:0.1371/journal.pbio.1000316.s019 (0.07 MB DOC)
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Table S5 Parameter combinations for the ten best-fit
simulations using only the school calendar at the New
York state site. Five thousand simulations were performed with

the parameters SC, R0min, D, and L randomly chosen from within

specified ranges. Best-fit simulations were selected based on RMS

error after scaling the 31-y mean daily infection number to the 31-

y mean observed daily excess P&I mortality rate.

Found at: doi:0.1371/journal.pbio.1000316.s020 (0.04 MB DOC)

Text S1 Supporting text providing additional descrip-
tions of methodologies and findings.
Found at: doi:0.1371/journal.pbio.1000316.s021 (0.17 MB DOC)
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