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Abstract

Background: Solid tumors, including head and neck squamous cell carcinomas (HNSCC), arise as a result of genetic and
epigenetic alterations in a sustained stress environment. Little work has been done that simultaneously examines the
spectrum of both types of changes in human tumors on a genome-wide scale and results so far have been limited and
mixed. Since it has been hypothesized that epigenetic alterations may act by providing the second carcinogenic hit in gene
silencing, we sought to identify genome-wide DNA copy number alterations and CpG dinucleotide methylation events and
examine the global/local relationships between these types of alterations in HNSCC.

Methodology/Principal Findings: We have extended a prior analysis of 1,413 cancer-associated loci for epigenetic changes
in HNSCC by integrating DNA copy number alterations, measured at 500,000 polymorphic loci, in a case series of 19 primary
HNSCC tumors. We have previously demonstrated that local copy number does not bias methylation measurements in this
array platform. Importantly, we found that the global pattern of copy number alterations in these tumors was significantly
associated with tumor methylation profiles (p,0.002). However at the local level, gene promoter regions did not exhibit a
correlation between copy number and methylation (lowest q = 0.3), and the spectrum of genes affected by each type of
alteration was unique.

Conclusion/Significance: This work, using a novel and robust statistical approach demonstrates that, although a ‘‘second
hit’’ mechanism is not likely the predominant mode of action for epigenetic dysregulation in cancer, the patterns of
methylation events are associated with the patterns of allele loss. Our work further highlights the utility of integrative
genomics approaches in exploring the driving somatic alterations in solid tumors.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the eighth

most commonly diagnosed malignancy in males, responsible for

over an estimated 11,000 deaths each year in the United States

[1]. The genetic alterations common to HNSCCs have been

characterized using both cytogenetic and molecular approaches:

Importantly, the presence of genetic imbalances, specifically loss in

chromosomal regions 3p, 8p, 9p, 15p, 18q, 22q and gains in 1q,

3q, 8q, 11q, 14q, 16q, 20q have been shown to be significantly

associated with poor patient survival [2,3,4,5,6]. Epigenetic

alterations commonly observed in this disease include promoter

hypermethylation, resulting in gene silencing, of CDKN2A, CDH1,

DAPK1, RASSF1, and MGMT, which have been shown to be

associated with patient outcome [7,8,9]. Evidence has emerged

that CDKN2A [10,11], RASSF1 [12], and other genes are regulated

both by hypermethylation and allele loss in many solid tumor types

[13,14,15] leading to the hypothesis that, in addition to classical

Knudson inactivation of tumor suppressors through mutation

[16], first and second hits commonly occur in the form of

promoter methylation and loss of heterozygosity (LOH) even in

the absence of mutation.
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The combination of genetic and epigenetic alterations is

fundamental in the genesis of neoplasia, resulting in the

inappropriate activity level of cell signaling pathways that regulate

key processes such as cellular growth and differentiation, DNA

fidelity, apoptosis, and metabolic stability. Thus, a more complete

study of carcinogenesis would include simultaneous evaluation of

multiple types of alterations in common tumors. Investigation of

various cancers using genome level technologies, such as high-

resolution single nucleotide polymorphism (SNP) microarrays to

measure somatically arising allelic imbalance, have shown that

these genetic alterations profiles are remarkably diverse [3,17,18].

Further, recent large scale array-based studies of epigenetic events

have yielded similar insight into the pattern of gene silencing in

cancers, in that alterations to promoter methylation status of genes

occurs in a highly variable pattern even amongst tumors arising

from the same tissue or cell type [19,20,21]. Results from studies

employing these methods have been effective in gaining insight

into the basis of hereditary disease [22] and in identifying novel

candidate cancer genes [23].

Our technological capability to assess both genetic and

epigenetic genome-wide alterations has improved. Thus, it is

now critically important to begin integrated analyses that will

allow us to define the relationship between epigenetic alterations

(represented by changes in DNA methylation) and genetic changes

(represented by alterations in copy number) that comprise the

etiologic keystones of malignant disease. The need for combined

high-resolution profiling of DNA copy number and methylation

profiling is becoming recognized, particularly as pharmacologic

targeting of the epigenome has gained momentum, and methods

to simultaneously investigate both types of alterations are emerging

[24,25,26]. In addition, recent investigations in gliomas [21] and

cancer cell lines [27,28] using combinatorial high-throughput

methods have elucidated individual genes that are differentially

regulated through these mechanisms; however, the global

relationships between epigenetic and copy number profiles in

human tumors remain poorly characterized.

We hypothesized that epigenetic and genetic alterations in

HNSCC are clonally selected in a fashion that is not independent.

To investigate this, we have integrated these genomic-level data in

an analysis of 19 primary HNSCCs.

Results

DNA Copy Number and Methylation Measurement
Somatic DNA copy number analysis was performed on a

representative case-series of 19 malignant HNSCCs (Table 1) with

high-density Affymetrix 500 k SNP mapping arrays, using

matched blood DNA as referents. For the purpose of exploration,

copy number data were subjected to unsupervised hierarchical

clustering (Ward’s method with Hamming distance) and coordi-

nately arranged by chromosome (Figure 1A). Consistent with the

considerable literature addressing the cytogenetics of HNSCC

[29,30], frequent gross structural abnormalities of chromosomes

8q or 3q are observed in 6 (32%) of the cases, appearing as

amplifications (red) or allele losses (green), while smaller-scale

aberrations are identifiable in most samples.

Previously, we reported the methylation status of 1505 CpG loci

using the Illumina GoldenGate platform in 68 HNSCC tumors

(including the 19 samples with copy number data) [20]. Employing

an unsupervised method for clustering methylation data using a

mixture of beta distributions, termed recursively partitioned

mixture modeling (RPMM) [31], we showed that normal

epithelium is distinguished from tumor in the classifications

(epigenetic signatures) that result. When restricting to tumor-only

modeling, six methylation profile classes were defined, and class

membership was significantly associated with tumor stage

(p,0.01), patient age (p,0.01), and marginally associated with

tumor site (p,0.10) and Human Papillomavirus (HPV) status

(p,0.10) by permutation tests [20]. Tumor membership in Class 5

carried an increased risk of high stage disease while Classes 6 and 2

were associated with a protective effect against advanced stage.

Patients in Class 4 had a higher prevalence of HPV16 positivity

and Class 3 had the highest proportion of laryngeal tumors. These

associations lend biological significance to the six epigenetic

profiles that were identified. Subsequent analyses presented in this

report utilize these previously published methylation classifica-

tions. Loci profiled for methylation (hypermethylated = blue,

hypomethylated = yellow) for the 19 tumors with copy number

measurements were visualized by clustering (Figure 1B) and are

ordered by their corresponding placement within a dendrogram

obtained by RPMM grouping, with the terminal nodes filled by

Ward’s method of hierarchical clustering. RPMM classes are

indicated beneath the dendrogram.

Local Molecular Alterations Are Not Correlated
To compare methylation levels and copy number alteration

(CNA) in greater detail, we generated integrated color image plots

of methylation and copy number profiles for individual genomic

regions around specific loci (Figure 2C) and entire chromosomes of

interest (Figure 2A/B and Figure S1), where samples were grouped

by RPMM methylation class membership. These plots illustrate

the local relationships between DNA methylation and CNA.

Specifically, certain loci (e.g. SOX17, chromosome 8) in tumors

with allelic amplification exhibit hypermethylation in nearby

CpGs compared to those tumors without allelic imbalance in that

Table 1. Clinicopathologic characteristics of HNSCC study
participants.

All Cases
(n = 68)

Cases For Methylation
and Copy Number Analysis
(n = 19)

Gender, n (%)

Female 14 (21) 4 (21)

Male 54 (79) 15 (79)

Age at Diagnosis

Range 25–85 25–85

Mean (SD) 58 (11.4) 59 (15.1)

HPV16 Status, n (%)

Positive 10 (15) 3 (16)

Negative 56 (82) 16 (84)

Tumor Site, n (%)

Oral 35 (52) 15 (79)

Pharynx 26 (38) 2 (10.5)

Larynx 7 (10) 2 (10.5)

Clinical Stage, n (%)

I 5 (7) 2 (10.5)

II 9 (13) 2 (10.5)

III 9 (13) 5 (26)

IV 26 (38) 9 (47)

Unknown 19 (28) 1 (5)

doi:10.1371/journal.pone.0009651.t001

Molecular Alterations in HNSCC
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region. At the same time, methylation values were stable for most

loci across all the samples despite local regions of gain or loss,

demonstrating that, as we have previously reported [32], the

relationship between methylation profile and CNA is neither an

artifact of the analysis nor allelic bias in the samples.

Initial analyses sought to take advantage of ‘‘two hit’’ gene

inactivation, as proposed by Knudson [16], in order to identify

potential novel loci as candidates that are causal in this disease. We

scanned the genome for locations where there was a systematic

relationship between copy number and methylation, such as

previously reported sites of hypermethylation and LOH. Calcu-

lating the Pearson correlations for all overlapping loci, we

encountered only eight loci (q,0.05) that demonstrated a

significant correlation between these disparate mechanisms of

gene silencing. This apparent independence was true both at

individual loci and when averaged over multiple CpGs upstream

of the transcriptional start site (TSS) (Table 2). For example,

hypermethylation and LOH occurred infrequently within the

CDKN2A gene and only at one CpG, while more often DNA

methylation occurred in the absence of aberrant copy number

states or vice-versa (Figure 2C). Importantly, many other loci (such

as those within MGMT) had little variation in either form of

molecular alteration.

We next investigated each form of alteration individually, and

estimated the deviations from their expected normal values to

determine the significance of CNA and DNA methylation

alterations in HNSCC. Volcano plots of gene-specific mean

methylation alteration and mean copy number alteration versus p-

value revealed distinctions in promoter-associated alterations

between molecular processes, evident through an increased

tendency for significant loss of methylation versus a tendency for

significant increase in copy number (Figure 3A and Table S1). To

further explore allele losses in the context of the overall process of

methylation at the specific loci on the array, these data were

stratified by their RPMM methylation classification. Specifically,

‘‘left class’’ included tumors in RPMM Methylation Classes 1–4,

while ‘‘right class’’ included Methylation Classes 5–6. These

groupings represent the two main epigenetically distinct methyl-

ation class subsets and are defined as the initial left and right splits

of the RPMM clustering dendrogram, shown in Figure 1B, as

adapted from [20]. Interestingly, the pattern of allelic copy

number and methylation alterations differed considerably between

right and left classes (Figure 3B), with significantly decreased levels

of methylation alterations and significantly increased CNA

occurring primarily in the left class. This provides evidence that

different global processes are at work between the groups of

methylation classes and that this distinction is replicated in the

copy number data.

CNA and Methylation Profiles Are Not Independent
In order to more fully explore the evidence of a global

epigenetic effect on copy number, we plotted genome-wide allele

copy number changes in tumors stratified by RPMM methylation

class membership (Figure 4). The extent of copy number

alterations varied significantly by methylation class (permutation

test p,0.002), with tumors in Methylation Classes 1 and 3 showing

substantial, large-scale copy number alteration relative to other

tumors. This clearly shows that copy number and methylation

alterations do not occur independently. If there were no

association between genetic and epigenetic alterations, one would

observe an even distribution of aberrant copy number states across

methylation classes. To investigate the notion that clinical

variables previously shown to be associated with the methylation

classes may also be the reason for similar copy number data

clustering, tests for association between the degree of CNA and the

clinical covariates age, site, stage, and HPV16 status were

performed. Importantly, these tests were not statistically signifi-

cant, further indicating that a relationship between theses global

Figure 1. Hierarchical clustering heatmaps for 19 HNSCC tumors. A) DNA copy number states are arranged by chromosome for 500,000 SNP
loci. Copy number is red for amplified regions up to 4+ copies, white for 2 normal copies, and green for allele loss to 0 copies. Tumors are ordered by
unsupervised hierarchical clustering and are dichotomized into low/high CNA clusters. B) Methylation loci (more methylated = blue, less
methylated = yellow) are grouped by Euclidean distance and tumors samples are ordered first by RPMM class structure (green branches) then by
simple hierarchical clustering (black branches). Tumor IDs are provided below each plot and ‘‘high CNA’’ samples are colored orange for reference.
doi:10.1371/journal.pone.0009651.g001

Molecular Alterations in HNSCC
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processes of regulation exists rather than purely a manifestation of

clinical parameters in both datasets.

Global Methylation in High/Low CNA Tumors
Since it has long been hypothesized that genomic instability is

related to decreased levels of global DNA methylation, we

measured LINE-1 methylation, as a surrogate marker of global

methylation, in tumors with available DNA (n = 11). The tumors

that hierarchically clustered in the high CNA group (see Figure 1A)

had generally lower LINE-1 methylation than tumors with low

levels of allelic imbalance (mean differential methylation: 213.2%,

95% CI: (233.6%–7.2%)).

Discussion

We recently constructed epigenetic profiles of HNSCC,

reporting that DNA methylation events are common and

associated with etiologically important exposures [20]. Aberrant

DNA methylation events have been hypothesized to accumulate

initially in a stochastic fashion and, through positive selection,

result in clones that have a growth advantage that leads to the

genesis of a rapidly-dividing tumor. Here we expand upon these

data and include an analysis of chromosomal integrity in these

same tumors. Using genomic-level measurements, we observed a

highly significant association between copy number and DNA

methylation profiles, definitively showing that these modes of gene

regulation are linked in HNSCC. These observations supplement

recent evidence from Sadikovic et al. that copy number alterations

are generally correlated with both methylation and gene

expression levels in osteosarcomas [33]. At the same time, while

specific targeting of genes through both mechanisms occurs in a

deterministic manner within subgroups of patients, when we tested

for regionally matching local (gene level) epigenetic and copy

number events we only observed that global, rather than local,

Figure 2. Integration of copy number and methylation values for 19 HNSCCs. Tumor profiles in combined color image plots for A)
chromosome 8 and B) chromosome 3 are grouped by RPMM-modeled methylation classes. Methylation values (more methylated = blue, less
methylated = yellow) are located to the right, while copy number (red = gain, green = loss) is displayed on the left within each panel. SNP loci are
matched to the nearest CpG locus and these matched loci (common to both subpanels) are oriented coordinately along the chromosomes. For
legibility, the loci are grouped by gene. Note: Chromosome diagrams are not to scale, but centromeric regions are correctly located between genes.
C) Gene-focused copy number and methylation data. The x-axis displays the genomic coordinate (x1026) for each locus. Vertical yellow lines mark the
TSS and dashed blue lines denote locations of the mapped CpG loci, whose values are displayed on the right portions of the plot for each gene.
Methylation average b is bright blue for fully methylated and bright yellow for unmethylated. Copy number is displayed on the left plot and SNP loci
marked red represent amplified alleles and green for deleted allele calls.
doi:10.1371/journal.pone.0009651.g002
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alterations were correlated. This indicates that coordinated two-hit

gene inactivation (LOH followed by epigenetic silencing) is not the

dominant character of somatic alteration over the genome. As the

GoldenGate methylation array investigates nearly 800 cancer-

involving genes and is enriched for tumor suppressor-associated

loci, we were uniquely positioned to investigate just this question.

Recent evidence supports our conclusion, as gene regulation by

CNA and DNA methylation measured at 691 loci in meningiomas

appears to be somewhat mutually exclusive [34]. In addition, our

combined analysis of the promoter regions of previously reported

genes with allele loss or hypermethylation demonstrates that this

situation is rare (see Table S2), however a much larger

investigation with higher resolution is needed to determine if

these alterations occur systematically.

One possible explanation for the association between global

profiles of DNA methylation and copy number is that amplifica-

tion or loss of genetic material may result in a bias of measured

methylation for CpGs within that region, potentially contributing

to the inferred methylation profile (e.g. in our RPMM approach).

Indeed, previous microarray-based methods to determine meth-

ylation status have been hindered by copy number changes that

bias the measured relative methylation values at CpG loci [35].

However, our recent work utilizing bead-arrays has shown that

CNA produces little bias in absolute methylation data generated

on the GoldenGate methylation panel, except in the case of

homozygous deletion [32]. We and others have previously

demonstrated the validity of Illumina GoldenGate methylation

array results with other high- and low-throughput technologies

[36,37].

Integrative analysis revealed that several tumors with similar

methylation profiles had large regions of chromosomal abnormal-

ity, particularly in chromosomes 8 and 3, consistent with the

possible formation of isochromosomes i(8q) and i(3q) in aneuploid

cells. These cytogenetic abnormalities commonly appear in

HNSCC, possibly a result of chromosomal missegregation events

during mitosis [29]. We also observed that Methylation Class 3

tumor data reflect gross allelic amplification of 8q, which extends

through the centromere and partially into 8p, possibly indicating a

distinct mechanism of formation for this anomaly. Among tumors

with an amplified 8q arm, several methylated CpG loci were

observed in this region relative to tumors without this gross

chromosomal alteration. Two mechanisms can be posited to

explain this result. Firstly, epigenetic dysregulation may occur

early in the genesis of these head and neck tumors and aberrant

methylation marks are faithfully replicated despite the amplifica-

tion event, which is consistent with previous reports implicating

epigenetic modification as an early event in the progression of this

disease [reviewed in 38]. In fact, there is evidence that aberrant

methylation in certain chromosomal regions, especially located

near centromeres, predisposes the surrounding area to genetic

alteration, including fragile breakpoint sites [39,40]. On the other

hand, it is possible that this differential methylation occurs

following the chromosomal aberration, possibly in response to

the genetic event and selective pressures. However, we are unable

to distinguish between these possibilities in our data, highlighting

the need for mechanistic studies.

Gain of 8q has been reported as a relatively common event in

HNSCC, particularly at 8q24 [41], which houses the MYC

oncogene, and 8q22, thought to be targeting LRP12 [42].

Similarly, in one-third of our cases we observed amplification of

this entire arm, while putative tumor suppressor genes, such as

SOX17 and PENK, within this amplified chromosomal arm are

methylated. These findings are suggestive of a context wherein

genetic modification (possibly a result of genomic instability) is

responsible for perpetuating inappropriate oncogene expression

with concomitant epigenetic silencing of local tumor suppressors

(Figure 2A).

Molecular alterations in chromosome 3 have been previously

reported as the most prevalent and potentially most important in

HNSCC [43]. Consistent with these findings, we observed

extensive copy number and methylation alterations in this

chromosome. For example, the gastric cancer-associated tumor-

suppressor HRASLS in the amplified q-arms were more highly

methylated than those tumors which possessed normal 3q. In

addition, the proto-oncogenic MST1R loci, associated with poor

prognosis through potentiation of cell scattering and invasion in

breast cancer [44], were unmethylated in most tumors irrespective

of chromosome 3p loss. However, we observed a number of genes

that did not follow the expected directions of methylation within

copy number variable loci, indicating that they may be hitchhikers

or simply regulated by other genetic or epigenetic means. Overall,

these structural modifications in chromosomes 3 and 8 are

consistent with the literature and are thought to develop early

during the genesis of disease [30,45].

Although 13 of the tumors examined (Methylation Classes 1, 3,

and 6, Fig. 4) demonstrated a preponderance of CNA, we

observed a notable lack of CNA among the remaining tumors. We

hypothesize that this may be due to these samples having higher

levels of aberrant epigenetic or non-copy number altering genetic

events such as mutation or chromosomal rearrangements. It is also

possible that clinical stage could account for the observed levels of

abnormal copy number, as this has been reported in other cancers

[46]. Other possible confounders include HPV16 status and tumor

site, although our data do not indicate associations between any of

these covariates and CNA. Larger future studies are required to

investigate the nature of these notable differences with statistical

rigor.

There was also an apparent relationship between global

hypomethylation, represented by the extent of LINE-1 DNA

sequence methylation, and the increased levels of allelic imbalance

Table 2. Methylation and CNA-correlated regions.

Estimate* p-value q-value

Locus

GRB10_P260_F 0.96 ,1.0E-04 0.01

GRB10_E85_R 0.94 ,1.0E-04 0.01

IHH_P529_F 0.99 ,1.0E-04 0.01

HOXA11_P92_R 0.94 1.0E-04 0.02

DDR2_E331_F 20.91 2.0E-04 0.03

TERT_E20_F 0.85 2.0E-04 0.03

FZD9_P15_R 0.85 4.0E-04 0.03

WNT1_P79_R 0.86 4.0E-04 0.03

PI3_P274_R 20.82 5.0E-04 0.05

IHH_P246_R 0.82 7.0E-04 0.05

Gene Promoter

HOXA11 0.94 1.0E-04 0.04

NID1 20.75 1.4E-03 0.12

GRB10 0.73 1.8E-03 0.12

TIMP3 20.75 2.0E-03 0.12

AFP 20.71 2.2E-03 0.12

*Point estimates represent Pearson product-moment correlation coefficients.
doi:10.1371/journal.pone.0009651.t002
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among HNSCC cases. This finding is consistent with the literature

[47,48] and with the hypothesis that global hypomethylation of

transposable elements culminates in genomic instability. While it is

apparent that the various modes of alteration are related, the

timing of these events is less clear. Our data underscore the need

for additional investigations into the chronology of multifaceted

somatic alterations leading to the onset and progression of this

deadly disease.

In our analysis to define the local relationships between copy

number and methylation, we observed only one gene (where

promoter-associated CpG alterations were averaged), HOXA11,

with a marginally significant correlation between methylation and

copy number alteration, although a number of individual CpG

loci reached significance, including sites within potentially

oncogenic GRB10, IHH, and HOXA11. While the strong positive

correlation at these sites could indicate selection pressure for dual

mechanism inactivation was occurring to promote neoplasm

formation, there was little evidence of this pressure acting over the

entire set of measured genes. Our finding that different genes are

preferentially targeted through different mechanisms in HNSCC

could reflect dramatic differences in the timing of these events (e.g.

one type of somatic changes predominating early in clonal

evolution with the other becoming dominant later in clonal

evolution). Alternatively, it is possible that other simultaneous

genetic events obviated the need for epigenetic modifications (e.g.

copy number-activating mutations common in other cancers [49])

or that sequence context (e.g. proximity to fragile sites or the CpG

Figure 3. Log significance plots for mean alteration difference in array genes. Gene regions were compared to their expected value
(normal tissue betas for methylation and copy number = 2 for CNA) and t-tests were performed. Negative log-transformed p-values (generated by
tumor/normal t-tests) are shown on the y-axes and the indicated mean alterations are displayed in the x-dimension. The space above the dotted line
represents a significance level of p,0.05. A) Promoter-associated methylation alterations (663 genes) and copy number-altered genes (n = 15,790) are
shown and B) separated by overall methylation class structure (Left Class n = 10, Right Class n = 9) as defined by grouping the methylation classes
based on the original RPMM dendrogram splitting in [20].
doi:10.1371/journal.pone.0009651.g003

Figure 4. Copy number plots by RPMM class. Copy number data
for 19 tumors are coordinately arranged by chromosome and grouped
together according to RPMM-modeled methylation classes. The total
number of methylation classes is reduced from the original six [20] to
five in this study because membership in Class 2 methylation profile is
not represented in the subset of 19 tumors investigated.
doi:10.1371/journal.pone.0009651.g004

Molecular Alterations in HNSCC
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content of promoter regions) may interact with carcinogen

exposure to select the order and the type (epigenetic or genetic)

of alteration that inactivates genes. At the same, our stratified

analysis of the two main biological methylation subgroups revealed

that the events leading to abnormal copy number and CpG

methylation are fundamentally different in each group, suggestive

of an overall collateral relationship.

In sum, epigenetic profiles in HNSCC are significantly

associated with the extent of CNA, but this global relationship is

not widely reflected at the local level. Furthermore, the molecular

targets of each are dissimilar. The precise mechanisms responsible

for gene inactivation are obscure but in the framework of

carcinogenic progression within Knudson’s two-hit model, our

data indicate that local, coordinate DNA methylation and copy

number alteration do not dominate the profile of changes in

primary HNSCC.

Materials and Methods

Study Population/Ethics. The study group were members of a case-

control population presenting at Boston-area hospitals from 2000–

2004, as previously described [50]. In short, samples from incident

cases of HNSCC were microscopically examined and histologi-

cally confirmed to have .75% tumor content by the study

pathologist. This study was conducted according to the principles

expressed in the Declaration of Helsinki. Selected patients were

enrolled upon providing written, informed consent. All protocols

and documentation were approved the Brown University

institutional review board administered through the Research

Protections Office (Protocol #0707992334). Clinical information

was collected and HPV16 status was assessed using short fragment

PCR to amplify a region of the L1 gene of HPV16, according to

previously published methods [51].Tumor specimens from all

head and neck sites (excluding glandular, nodal, and nasopharyn-

geal carcinomas) selected for CpG methylation analysis included

26 fresh-frozen samples and 42 formalin-fixed paraffin-embedded

(FFPE) archived pathology samples. From those 68 samples, 19

fresh-frozen tumors were selected for copy number analysis by

frequency matching to the larger methylation cohort on age,

gender, and stage. Matched peripheral blood was used for SNP-

probe normalization. Eleven fresh-frozen non-malignant speci-

mens from the oral cavity, pharynx, and larynx were procured

through the National Research Disease Interchange (NRDI).

DNA Extraction and Array-based Methylation Analysis. FFPE tumors

were sectioned and DNA was isolated, as previously published

[20]. DNA was extracted from fresh-frozen tissues and matched

peripheral blood samples using the QIAamp DNA mini kit

according to the manufacturer’s protocol (Qiagen, Valencia, CA).

For methylation assessment, sodium bisulfite modification of the

DNA was performed using the EZ DNA Methylation Kit (Zymo

Research, Orange, CA) with 1 mg of DNA, as described previously

[20]. Illumina GoldenGateH methylation bead arrays were used to

simultaneously interrogate 1505 CpG loci associated primarily

with promoter regions of 803 genes. Arrays were run at the

University of California- San Francisco Genomics Core Facility

according to the manufacturer’s protocol.

LINE-1 Methylation. Global DNA methylation was quantified for

11 of the 19 tumor samples with available substrate by

pyrosequencing following bisulfite-PCR, with primers and proto-

cols as described in [52]. Four CpG dinucleotides within the

human LINE-1 transposon consensus sequence 302–331 (Acces-

sion X58075) were analyzed using the PyroMark Q96 MD system.

DNA methylation at each locus was calculated by taking the

percent of methylated signal divided by the sum of the methylated

and unmethylated signals and reported as the mean over all four

CpGs. Pyrosequencing reactions were performed in triplicate and

bisulfite conversion efficiency was monitored using internal non-

CpG cytosine residues.

SNP Genotyping for Copy Number Status. Tumors were examined for

copy number alterations by hybridizing isolated tumor DNA to

the GeneChipH Human Mapping 500 K single-nucleotide poly-

morphism array (Affymetrix, Santa Clara, CA) following estab-

lished protocols according to the manufacturer at the Harvard

Partners Microarray Core Facility. Probe intensities at each locus

were determined in the Affymetrix GeneChip Operating Software

and genotypes calls were generated using the Genotyping Analysis

Software (Affymetrix). Probe signals were normalized to the

matched samples using Copy Number Analysis Tool v4.0.1 [53]

(Affymetrix) with the defaults for tuning parameters, Gaussian

smoothing, transition decay, and median scaling. Copy number

states were inferred by Hidden Markov Model analysis in the same

application.

Statistical Analysis. BeadStudio software from the array manu-

facturer Illumina (San Diego, CA) was used for methylation

dataset assembly. All array data points are represented by

fluorescent signals from both M (methylated) and U (unmethy-

lated) alleles, and methylation level is given by b= (max(M, 0))/

(|U|+|M|+100), the average methylation (b) value is derived from

the ,30 replicate methylation measurements and a Cy3/Cy5

methylated/unmethylated ratio. Subsequent analyses were carried

out in the R statistical software package (http://www.r-project.

org/). For visualization, hierarchical clustering was performed on

sample copy number data calls using a Hamming distance metric

and calculated by Ward’s minimum variance method. Copy

number clusters were dichotomized into low and high allelic

imbalance (Figure 1A); the difference in absolute mean LINE-1

methylation between the two groups was estimated and confidence

intervals were computed. Fisher’s exact test for small sample sizes

was used to test the degree of abnormal copy number (high/low

clustering) for association with the covariates stage (dichotomized

as I/II and III/IV), site, and presence of absence of HPV16 viral

integration, using a Monte Carlo simulation for site. A Wilcoxon

rank-sum test was used to test age as a continuous variable versus

degree of copy number variation. For visualization of methylation

data, tumors were ordered first by methylation classifications

developed in [20] by a recursively partitioned mixture model

(RPMM), as described in Houseman et al. [31]. Finally, the

terminal nodes were obtained by hierarchically clustering

methylation b values using Ward’s method with a Euclidean

distance metric.

Although the 19 tumor samples were the primary focus of this

investigation, we used the six classes obtained from the RPMM-

clustering on 68 tumors, described in [20], because we anticipated

better precision in capturing the true biological inferences with the

larger sample size. The relationship between DNA copy number

and methylation class membership was tested using the mean

value of |CNS-2|, where CNS is the copy number state of each of

500,446 loci. A permutation test with 10 k iterations using the

Kruskal-Wallis test statistic was performed. Locus-specific rela-

tionships between copy number and methylation were examined

graphically in a chromosome-specific manner. Analyses were

restricted to autosomal chromosomes. We investigated the local

relationship between methylation and CNA at 1413 loci by

calculating the Pearson product-moment correlation coefficients.

Note that the discrete nature of the Hidden Markov Model

motivates the use of the Pearson, rather than Spearman,

coefficient. GoldenGate CpG loci were matched to Affymetrix

SNPs in the manner described in [32]. In short, each locus was
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matched to CNS data by selecting the locus having closest HG18/

NCBI36 coordinate (typically within 1 kb). P-values were

calculated via permutation test (5 k permutations). To correct

for multiple comparisons, q-values were computed by the qvalue

package in R. To assess correlation at the gene (rather than locus)

level, CpGs were matched to genes by chromosomal position, and

assigned promoter status if they were upstream of the TSS.

Methylation at promoter CpGs were averaged together by gene.

Similarly, copy number calls were averaged together for all SNPs

associated with a gene. To investigate the molecular processes

individually by locus, two-sided, two-sample t-tests assuming

unequal variance were used to compare methylation between

the 19 tumors and 11 non-diseased tissues. For copy number, a

one-sample t-test was used, with the normal copy number call

assumed to be 2. Mean alteration differences were considered

statistically significant where q,0.05.
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