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Optimal Economic Stabilization Policy: 

An Extended Framework 

Benjamin M. Friedman 
Morgan Stanley & Co. 

This paper outlines an optimization framework which extends the fa- 
miliar Tinbergen-Theil model in two ways. First, a "piecewise quad- 
ratic" replaces the standard quadratic objective function. Second, the 
time horizon of the optimization becomes, within the context of eco- 
nomic stabilization problems, endogenous to the optimization process 
itself. The purpose of both extensions is to escape the conceptual re- 
strictiveness of the Tinbergen-Theil structure while preserving the 
practical convenience of that model for applied policy work. The paper 
also describes a solution algorithm incorporating these two extensions, 
and it presents the results of a sample computational application based 
on the 1957-58 recession. 

The goal of mitigating economic fluctuations and their social effects has 
long attracted economists' interest, and it continues to do so. After nearly 
a decade of seemingly perpetual expansion in the United States economy, 
the 1970 recession has once more focused attention on stabilization policy. 
How can policy cope with the apparently conflicting goals of high- 
employment prosperity and price stability? How rapidly should policy 
seek to return the economy to a full-employment situation? What timing 
patterns should the fiscal and monetary policy authorities adopt for their 
actions? These and similar questions form the basis of discussions on the 
academic, political, and popular levels. 

The post-WVorld War II economics literature has developed-in the 
work of Theil (1964), Tinbergen (1966), and others'-at least one practi- 

An earlier version of this paper was presented at the Second World Congress of the 
Econometric Society, Cambridge, England, September 1970. I am grateful for support 
from the Harvard University Society of Fellows and for helpful comments from 
Martin S. Feldstein and Dale W. Jorgenson. 

1 For additional contributions, see Hickman (1965) and Fox, Sengupta, and Thor- 
becke (1966). 
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Cal, convenient framework for planning quantitative aggregate policy to 
cope with such fluctuations, this is the familiar dynamic optimization of 
a quadratic criterion function subject to linear equality constraints. Never- 
theless, the conceptual restrictiveness of this framework prevents it from 
being widely useful in actual applications to policy formulation. The 
quadratic criterion function, for example, does not seem to offer a very 
good representation of policy makers' preferences; and the necessity of an 
arbitrary choice of time horizon prevents using the framework to answer 
several significant policy questions. 

At the same time, the more generalized mathematical programming2 and 
systems-control3 literatures have, on the whole, had too general a presenta- 
tion to be of great use in economic policy applications. The principles 
enunciated within the various divisions of optimization research are of 
great relevance and importance in such problems, but the difficulty of 
adapting these principles remains a significant obstacle to their applica- 
tion to economic policy problems and in particular to economic stabiliza- 
tion. Much "bridge" work remains to be done to select that part of the 
generality which is of sufficient potential value to keep, as well as to render 
it readily usable in an operational and computational sense. This paper is, 
at least in part, an attempt along such lines. 

This paper outlines an optimization framework which extends the 
Tinbergen-Theil model in two ways. First, a "piecewise quadratic" replaces 
the standard quadratic criterion function. Second, the time horizon of the 
optimization becomes, within the context of economic stabilization prob- 
lems, endogenous to the optimization process itself. The object of both 
extensions is to escape the conceptual restrictiveness of the Tinbergen-Theil 
structure while preserving its practical convenience for applied policy work. 
To focus clearly on these two extensions, this paper deals with a determin- 
istic system in which the potential impact of policy actions on the 
economy is known with certainty.4 

Section I discusses the piecewise quadratic criterion function. Section II 
discusses the endogenous time horizon and the associated concept of the 
"policy interval." Section III outlines the solution algorithm for the 
optimization and analyzes the interaction of these two extensions. Section 

2 See, for example, Pontryagin et al. (1962), Fan and Wang (1964), and Manga- 
sarian (1969). 

3 See, for example, Sage (1968) and Bryson and Ho (1969). 
4 Although this paper does not discuss the implications of uncertainty, it is best 

to state at the outset that the piecewise quadratic criterion function cannot yield the 
first-period certainty equivalence result which Simon (1956) and Theil (1957) have 
derived for quadratic criteria. Given the current state of economic knowledge, how- 
ever, the sacrifice of this property is not a major consideration for applied policy 
work, since the Simon-Theil result requires perfect knowledge of the parameters which 
reflect the impact of policy instruments on policy targets (that is, elements of matrix 
R in eq. [2] below) and permits uncertainty to enter the problem in a linear fashion 
only. 
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IV presents the results of a sample computational application of the 
algorithm. Section V briefly summarizes the optimization methods offered. 

I. The Piecewise Quadratic Criterion Function 

A standard form of criterion function for optimization problems is the 
quadratic 

W(x, y) a'x + b'y +-- (x'Ax + y'By + x'Cy + y'C'x) (1) 

in which vector x represents values of instrument variables, subject to 
control, vector y represents values of target variables, related to the instru- 
ments by a set of linear constraints 

Y Rx + s, (2) 

and a, b, A, B. and C are conformable vectors and matrices of previously 
established coefficients.5 

For expositional simplicity (involving no loss of generality), treat a and 
b as null vectors, C as a null matrix, and A and B as nonnegative diagonal 
matrices. Then for each variable xi or y?, there is some desired value or 
zero-penalty point xi* or yi*, and from the matrices A and B some penalty 
rate aii or biL. The penalty attached to a given realization for any variable 
is then - Xi where xi -- xi, or 2 bit342, where Yi 

In applications to economic policy, however, the quadratic function is 
not a very satisfactory representation of preferences likely to be pursued 
by policy makers. Exact desired values yi* and xi* for given policy targets 
or instruments in any period may not exist in these real preferences; often, 
policy makers see certain variables more as constraints, in the sense of 
bearing an implicit loss only for values outside some range. An even more 
unrealistic aspect of the quadratic function is the requirement that devia- 
tions of a target or instrument variable from its desired value bear the 
same loss regardless of the direction of the deviation. 

The piecewise quadratic function offers a more general framework for 
policy optimization. Specifically, it is in general asymmetrical and only 
convex (as opposed to strictly convex). In reality, it is three distinct func- 
tions, welded in such a way as to preserve those properties of the more 
restrictive quadratic form which are essential to the optimization process. 
The generalization achieved by this function relaxes the principal un- 
attractive requirements associated with the quadratic form, and its in- 
clusion within the framework of the Tinbergen-Theil approach therefore 
renders that approach more realistic and useful for examining economic 
policy problems. 

5 Equations (1) and (2) represent a dynamic system in that x and y are stacked 
vectors, as Section III below emphasizes. Since this paper deals entirely with a de- 
terministic system, matrix R and vector s are known with certainty in (2). 
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For each target variable yi and instrument variable xi bearing piece- 
wise quadratic treatment, two fixed values divide the entire range of pos- 
sible values of the variable into three distinct convex sets. The middle 
range is a closed, bounded set of values which uniformly bear a zero loss. 
The two extreme ranges, sets bounded on one side only and not closed 
on either side, contain values which bear nonzero losses. Two quadratic 
functions, one defined for either extreme range, determine these losses ac- 
cording to independent patterns, constrained so that the functions ap- 
proach limiting values of zero as the variables approach the boundaries of 
the middle range; these two functions are not defined for the boundary 
points. 

Applied, for example, to the I a x,2 terms in the sum I x'Ax in criterion 
function (1), the piecewise quadratic generalization has two effects. 

First, for each instrument variable xi bearing piecewise quadratic treat- 
ment, it replaces the constant aii by the decision rule 

aiju if xi e U(xi) {xi xi > xij} 

ai 

ii 

i i f Xi e M(xi) 
- {xix 

<- xi < 
xi 

) 
(3) 

w ajil if xie L(xi) -{xixi < xil}, 
where 

a-i= criterion coefficient applying to values of xi in U(xi), the upper 
extreme set for xi; 

aii - criterion coefficient applying to values of xi in L(xi), the lower ex- 
treme set for xi; 

xiu upper boundary point of M(xi), the middle set for xi; 

Xi- lower boundary point of M(xi). 

Second, for each such xi the piecewise quadratic generalization replaces 
the xi xi xi* relation by the decision rule 

(xi - XJU) if Xi E U(xi) 

xi (Xi 
x- 

Xu) or (xi, - xi) if xi E M(xi) (4) 

L (xi'- xi) if Xi e L(xi), 
where xiu, xi', U(xi), M(xi), and L(xi) are defined as for decision rule (3). 
The option in (4) for x1 in the middle set is arbitrary, since aii - 0 for 
these values. 

Decision rules (3) and (4), taken together, yield a piecewise quadratic 
loss function element I- ax12. Rules specifying values for yiu, yil, b au and 
bii yield analogous functions I bj 3a2. Figure 1, which plots a sample 
1 2 2 au2x term on the vertical axis against xi on the horizontal axis, il- 
lustrates the asymmetrical (nonstrictly) convex properties of the basic 
functional form.6 

6 Figure 1 shows a function 2 aux2 which may be "typical" in some sense but 
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w(xL)I 

\ l{X-Xj)2 

II X xl xu 

FIG. 1.-Prototypical piecewise quadratic function 

The quadratic function is the special case of the piecewise quadratic in 
which both symmetry and strict convexity maintain. Symmetry requires 
aiju a)il. Strict convexity requires x = xi', that is, the collapse of the 
zero loss set M(xi) to a single point. Hence, for the quadratic function, 
constant ai - aitu _ii1 replaces decision rule (3) and constant xi* 
x8u = xil replaces decision rule (4). 

In addition to its generality and flexibility, which permit a more re- 
alistic representation of economic policy preferences, the piecewise quad- 
ratic criterion function has at least two computational advantages. One 
concerns its interaction with the extension to the Tinbergen-Theil ap- 
proach developed in Section II below; Section III discusses this inter- 
action explicitly. 

The second computational advantage arises in the context of the dis- 
tinction between equality and inequality constraints. The Theil model 
optimizes the function (1) subject to a set of linear equality constraints 
(2); this model, unlike linear programming or general mathematical pro- 
gramming techniques, does not admit inequality constraints. The piece- 
wise quadratic function facilitates incorporating inequality constraints 
while at the same time staying within the operationally convenient Theil 
framework. This inequality constraint capability is a further aspect of the 
piecewise quadratic function's more realistic representation of policy pref- 
erences.7 

which does not utilize the full flexibility of the piecewise quadratic form. Defining 
xix = X or xil =- o, for example, specifies a function which assigns a loss to de- 
viations of xi on one side only of a given value. The discussion below treats the analo- 
gous case for ai = ?? or aii = o or both. 

7 It is possible to argue that, since piecewise quadratic criteria involve more indi- 
vidual parameters than do standard quadratics, the information required would be 
more difficult to extract from policy makers. Such an argument seems not to be the 
case. Precisely because the piecewise quadratic function is capable of representing 
policy preferences more realistically, the required information should be easier to ex- 
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FIG. 2.-Functions 6 (a) and 7 (b) 

Setting ad u oc imposes upon the optimization the constraint xi < 
xiu; setting ajil - oc imposes the corresponding constraint xi > xi'. In 
computational practice, infinite values are not manageable for aiju and 
air. Nevertheless, approximating infinity by values of aidu or a,,l larger than 
the other elements aij, bij, and cij by several orders of magnitude is an 
effective way to approximate the relevant inequality constraint in the 
solution to the piecewise quadratic optimization.8 

Figures 2 and 3 show how individual piecewise quadratic terms com- 
bine to form the piecewise quadratic function for a given problem. For 
purposes of illustration, they treat a problem in which x and y are scalars. 
The preference function contains no term in the cross-product of x and y 
and so is separable: 

W (X, Y) e W1x) + W2 (Y), (5 ) 

where w1(x) is a straightforward quadratic, while w2(y) is a piecewise 
quadratic function: 

tract; it is no longer necessary to force preferences to fit into such an artificially 
limiting framework as the standard quadratic function. 

8 This technique is the "penalty method" of nonlinear programming with constraints 
in Zangwill (1969), chap. 12. The basic idea is to approximate the feasible region 
from the outside. 
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w1(x) a1x2 + a2x + a3, (6) 

bu (y yu)2 if YE U(y) {yY > yu} 

W2 (Y) 0 if yEM(y) {yly' < y < yu} (7) 

_bl(yl- y)2 if yE eL(y) {yly < y1}. 

Figure 2 plots functions (6) and (7). The former is strictly convex for 
a, > 0 and has a minimum at x* - -a2j2ai, where w1(x*) - a - a3 
(a2) 2/4a1. The latter is convex for bu, bl > 0, having a flat zero range for 
yE M(y). The curves as drawn imply bl > a, > bu. 

Since convexity (even when not strict) is preserved in the addition opera- 
tion (Managasarian 1969, chap. 9), w(x,y) in equation (5) is itself convex. 
Using a linear relation y Rx + s, for scalar R and s, permits plotting 
equation (5) for values of x. Three cases emerge, depending upon which 
of the three sets of values of y contains (Rx* + s). Figure 3 plots w(x,y) 
against x for the three possible cases for R > 0. In panel (a), x1 < x* 
< x2, where x1 - (y' - s)/R and x2 - (yu - s)/R; hence, the minimand 
is x x*. In panel (b), x* < x1, and the minimand x satisfies x* < x < 
x1. The opposite case is that of panel (c), in which x* > x2; here the 
minimand x satisfies x2 K x < x*. 

w(x,y) if Rx*+ sCM(y) 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __I _ __X _ _ 2 

w(x,y) if Rx* + sC L(y) 

w(xy) if Rx + siU(y) 

I I Il I 

1 Cl~ ~~I 
I ! '~~~I I 

__ __ _ __ _ __ L , __ _ __- __ 11 

xi X2 cae frfc 

FIG. 3.-Three cases for function 5 
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II. The Endogenous Time Horizon 

A major shortcoming of the Tinbergen-Theil approach to optimization is 
that "the choice of T, the length of the horizon, is in many cases some- 
what arbitrary."9 Applications to economic stabilization policy are ex- 
amples of such cases. A related gap in the Tinbergen-Theil approach is the 
omission of terminal conditions to apply at the close of the optimization 
time span in period t - T. Terminal conditions are more familiar in the 
control literature and that of dynamic programming they are difficult 
to devise and to apply in a Theil solution. A single extension of the Tin- 
bergen-Theil framework, based on a particular conception of the optimiza- 
tion problem in a stabilization context, facilitates avoiding both of these 
difficulties by a method which determines the appropriate time horizon 
endogenously within the optimization procedure. 

The fundamental dynamic concept of the endogenous time horizon ap- 
proach to optimization is the "policy interval," defined as that period of 
time during which specific stabilization policy is in effect. 

This concept rests upon the notion of a stable economy, which in the 
short run strays from its "normal" path. Given such a deviation, the 
goal of the policy authorities is to return the economy to this path while 
minimizing specified costs associated with being away from the path. The 
discussion of zero loss ranges in Section I leads easily to the idea of 
identifying this long-run path as a set of ranges of acceptable values of 
key variables, rather than as a single set of required point values for each 
period in time. 

The policy-interval concept also assumes the existence of some "normal" 
economic policy which pertains as long as the economy stays within the 
acceptable bounds of the long-run path. In cases of deviation, the policy 
authorities pursue objectives associated with returning to this path by 
implementing specific stabilization policy actions-hence the name "policy 
interval." When the economy has in fact returned to the long-run path, 
the stabilization element of economic policy terminates and the policy 
reverts to the appropriate long-run norm. 

This intuitive and descriptive definition of the policy interval raises at 
least three questions. What determines whether the economy has deviated 
sufficiently from the long-run norm to identify the deviation as a policy 
interval? Once a policy interval has begun, what determines whether the 
economy has returned sufficiently to the long-run norm to end the policy 

9Theil (1964), p. 154. Theil offers the alternative approach of an infinite horizon, 
solved using infinite band matrices (chap. 5), as well as a moving horizon, which is 
the truncated case of an infinite horizon (pp. 154-61). The concept of the endogenous 
time horizon developed here is more closely related to Theil's finite horizon base, but, 
as the discussion indicates, it has more flexibility. 

10See, for example, the discussion of two-point boundary value problems in Bell- 
man and Dreyfus (1962). 
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interval? What goals do the particular stabilization policy actions within 
the policy interval pursue? 

In response to these questions, these three properties more precisely 
identify a given policy interval: initial conditions, terminal conditions, 
and criterion function. These three elements of the optimization enter the 
analysis in the following manner. 

The initial conditions specify the conditions which the economy must 
satisfy for a policy interval to begin. According to these initial conditions, 
the policy interval itself begins at that point in time when a particular 
economic variable (or set of variables) strays outside the given limits of 
the long-run acceptable range. Examples may be the unemployment rate 
or the rate of price increase rising too high, or the growth rate of real 
output falling too low. Beginning in the period which first satisfies the 
initial conditions for a policy interval, the authorities undertake specific 
stabilization policy actions. 

If the time period used in the analysis is short, or if the relevant data- 
reporting machinery entails long delays, problems may arise with the 
role of the initial conditions as specified above. Specifically, although the 
value of a variable in a given period may satisfy the appropriate initial 
conditions for a policy interval, this fact may not become apparent until 
some time later. Such cases require a reformulation of the role of the 
initial conditions to incorporate either a forecasting procedure or a lagged 
policy response. 

The terminal conditions specify the conditions which the economy must 
satisfy for a policy interval in progress to come to an end, that is, for the 
authorities to revert to the long-run policy actions which pertain in the 
absence of specific stabilization efforts. The policy interval itself ends, 
that is, specific stabilization policy terminates, at that point in time when 
all relevant economic variables first satisfy the applicable terminal con- 
ditions. That particular period marks the time horizon of the optimization 
procedure which determines the optimal stabilization policy during the 
policy interval." 

A necessary part of the terminal conditions is the return to acceptability 
of the particular variable or variables which initiated the policy interval 
via the initial conditions, but the terminal conditions may involve other 
variables as well. In a policy interval initiated by an excessive unemploy- 
ment rate, for example, typical terminal conditions may permit the policy 
interval to end only when both the unemployment rate and the rate of 
price inflation are within acceptable bounds; hence, a policy which returns 

11 In the cases noted above, for' which delays in data observation raise problems 
for the interpretation of the initial conditions, it is also necessary to reformulate the 
role of the terminal conditions to incorporate either a forecasting procedure or a de- 
layed end of the policy interval. 
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unemployment to its normal level, but only at the expense of inducing a 
price inflation, is not sufficient. 

More generally formulated terminal conditions are also possible. In 
the example above of terminal conditions based on values of the unem- 
ployment rate and the rate of price inflation, satisfaction of specified con- 
ditions in one period only may for some applications be insufficient. In 
such cases, the terminal conditions may require values of the former vari- 
able in a given range for K consecutive periods and values of the latter 
in a given range for L consecutive periods, where in general K 7 L. An 
even more general extension of the terminal conditions is the requirement 
that the specific stabilization policies undertaken during the policy interval 
not induce particular undesirable effects after the policy interval's con- 
clusion.'2 

The criterion function sets forth in a mathematical framework those 
economic goals which the authorities pursue during the policy interval. 
These goals may be, but are not necessarily, related to long-run goals as- 
sociated with the long-run normal path of the economy. Just as it is neces- 
sary for the specific variable or variables in the initial conditions to appear 
in the terminal conditions, all variables in the terminal conditions must nec- 
essarily appear in the criterion function. The criterion function may, 
analogously, have additional arguments. It may be desirable, for example, 
to optimize some function of the balance-of-payments surplus during the 
policy interval, without necessarily making such a surplus a specific con- 
straint by including it in the terminal conditions. 

As one simple illustration of the mechanics of the policy-interval con- 
cept and the associated endogenous time horizon optimization, assume that 
the normal long-run growth rate of real output, dXldt, is sufficiently in 
excess of r to warrant identifying r as the "minimum acceptable rate" of 
growth. The initial condition for a "recessionary" policy interval is then 
that dXldt falls below r. This initial condition means that an observed 
dXldt < r calls for stabilization policy actions; for dXldt > r, policy 
maintains its long-run course which is independent of any immediate 
stabilization needs. 

Once a policy interval has begun, it is possible to define a "minimum 
acceptable level" of real output by projecting forward, at the "minimum 
acceptable rate" r, the last observation of real output before the beginning 
of the policy interval. One possible terminal condition for this policy 
interval may then be that real output attains or exceeds this "minimum 
desired level."'3 

12 Since all such effects of these policy actions are easily computable within the 
optimization procedure by using the R matrix, this extended form of terminal condi- 
tion is in practice not difficult to apply. 

13 The exercise in Section IV below uses a terminal condition constructed in this 
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Figure 4 shows paths for actual and minimum desired real output as 
functions of time. Through period t - 0, real output grows at dX/dt > r, 
and so the minimum desired path is unnecessary. In period t - 1, how- 
ever, dX/dt < r, which satisfies the initial condition. The minimum de- 
sired path is then an extrapolation at growth rate r of the value of real 
output in period t 0. The effect of the specific stabilization policy ac- 
tions, together with the inherent long-run stability of the economy, returns 
actual output in figure 4 to a value above the minimum desired level in 
period t - T thereby satisfying the terminal condition. T is then the time 
horizon of the policy-interval optimization problem. 

Using the policy-interval concept in this way makes the time horizon 
an endogenous, simultaneously determined element of the optimization 
procedure. The addition of terminal conditions makes the optimization 
problem similar in nature to the two-point boundary value problem, as 
noted above. Viewed in this context, endogenous time-horizon optimiza- 
tion is a form of two-point boundary value problem with the terminal 
point not fixed. 

Specifying intervals of stabilization policy in this way, as well as using 
the associated terminal condition and endogenous time-horizon techniques, 
is not a universally applicable procedure. It is, however, suitable for the 
application of optimization analysis to short-term stabilization, defined, 
as above, as the restoration of the economy to its "normal, long-run ac- 
ceptable" path after a deviation from that path. 

In this context, it is important to distinguish the problem of stabilizing 
the economy, during deviations from a long-run path, from the problem of 
directing the economy from one long-run path to a different one.'4 Methods 
designed for the former problem may not suffice for the latter. In par- 
ticular, in the long-run case the time horizon chosen becomes the domi- 
nant element in the solution; and the policy interval itself emerges as an 
artificially contrived deviation from the original long-run path,15 perhaps 
unmaintainable without an infinite time horizon to policy. 

This distinction serves to emphasize the importance of the identification 
of the "normal, long-run acceptable" path or state of the economy and 

fashion; it is important to note that this terminal condition is only one of many 
possible formulations. 

14 The long-run problem is that of Ramsey (1928) and the subsequent literature of 
optimal growth. 

15 An example of the confusion of stabilizing the economy with directing it to a 
new long-run path is in Pack (1964). Pack tested Phillips's proportional, integral, and 
derivative policy rules for their potential ability to stabilize the 1953-54, 1957-58, and 
1960-61 recessions. Because he used a gross national product target extrapolated at 
3V2 percent from the peak of the 1953 recession, the actual 1960-61 experience was 
far enough from the target to render stabilization policy as such inadequate in his 
tests. His 1960-61 experiments in fact aimed to move the economy to a long-run path 
which it had left nearly a decade earlier, not to stabilize a specific short-term de- 
viation. For this reason, his 1960-61 experiments failed to produce the interesting 
results which his 1953-54 and 1957-58 experiments showed. 
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X(t), X*(t) 

~~~~~~~ til~~~~~~~~~~~~~~~~~~~~~~~i t=O t=1 t=T 

FIG. 4.-Recessionary policy interval based on variable X 

the long-run policy which accompanies it. Such a path must be maintain- 
able on an effectively permanent basis, that is, for the foreseeable future. 
Only in this context of short-run deviations about a self-maintaining'6 
long-run path does the policy-interval concept provide a workable ap- 
proach to the formulation of stabilization policy. The techniques devel- 
oped here, therefore, are suitable not for general application but only for 
a more restricted set of situations requiring the mitigation of short-term 
fluctuations.'7 

III. The Solution Algorithm 

The algorithm that includes both the piecewise quadratic and the en- 
dogenous time-horizon extensions to the dynamic optimization model has 
a three-tiered structure which relies upon the technique, familiar in math- 
ematical programming, of solving a complicated problem by breaking it 
down into a series of simpler problems. Level I is the classical Theil 
optimization with neither extension. Level II, which operates through 

16 The long-run normal path, discussed in relation to the policy-interval concept, 
is self-maintaining in two senses. First, a long-run policy exists to move the economy 
along this path. Second, the inherent stability of the economy can contribute to cor- 
recting, in time, such deviations from the long-run path as do occur. The implied role 
for stabilization policy within a policy interval is, therefore, to correct these deviations 
more quickly and with less loss as measured by the given preference function. 

17 Without holding categorically that the policy-interval approach is unsuitable for 
longer-run optimal growth exercises in the Ramsey tradition, one may argue that 
applying the approach developed here to such problems raises difficulties which the 
discussion here does not resolve. 
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repeated solution of Level I problems in an iterative procedure, imposes 
upon the optimization the piecewise quadratic criterion function but uses 
an arbitrarily fixed time horizon. Level III, which operates through re- 
peated solution of Level II problems in a similar iterative procedure, makes 
the time horizon endogenous and thereby completes the optimization. 

The Level I problem, worked out in a readily computed form by Theil 
(1964, chap. 2), takes the following form: 

Substituting (2) into (1) yields 

W(x) ko + k'x + -x'Kx, (8) 
2 

where 

-o = b's + -s'Bs, 
2 

k-a + R'b + (C + R'B)s, (9) 

K A + R'BR + CR + R'C'. 

Minimizing W(x) with respect to x yields the optimal solution 

x Kk (10) 

This solution ratifies the first-order condition 

dW(x) (11) 

dx 

The necessity that K be nonsingular, an important point below, follows 
from the second-order minimum condition that K be positive definite. The 
optimal y follows from substituting x into (2). Hence, the Level I problem 
yields an optimal solution (,9y) and associated'8 optimal x and y. 

It is important to note the dimensions of the vectors and matrices in 
this solution. The vector x is a stacked vector; hence, for the case of m 
instrument variables, the vector x has mT elements, where T is the fixed 
time horizon for the Level I problem. Similarly, for the case of n target 
variables, vectors y and s have mT elements. All other vectors and ma- 
trices are conformable. 

The Level II problem solves a series of Level I problems, each with dif- 
ferent A and/or B matrices and a different s vector. 

On the first subiteration,19 the diagonal elements aii assume, for those xi 

18 In Theil's standard quadratic case, the optimal x and y follow from the definitions 
x = x - x* and y - y - y*. For a piecewise quadratic criterion function with non- 
trivial zero loss sets, the optimal Z follow from decision rule (4), and similarly for the 
optimal 'Y. 

19 The repeated solutions of the Level I problem within a given Level II problem 
are called "subiterations"; "iterations" are the repeated solutions of the Level II 
problem within a given Level III problem. 
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which have piecewise quadratic treatment, either the a..u or the ail values; 
any number of arbitrary decision rules may suffice. The xi*, to be used in 
calculating x - xi-* on this subiteration, assume the values xqu to 
correspond to aiiu or xi to correspond to aiiI. For those xi which do not 
bear piecewise quadratic treatment, the aii and xi* values are straight- 
forward. 

The bii and yi* values for the first subiteration follow from the same 
arbitrary decision rule; and the yi* and xi* vectors, together with the other 
information necessary for the Level I problem, suffice to derive the s 
vector 20 for the first subiteration. Using these A and B matrices and this 
s vector, the algorithm solves the Level I problem, yielding a set of optimal 
xi and Yi. 

For any subiteration other than the first, the algorithm adjusts the (aij, 
X*) and the (bi, yi*) according to decision rules (3) and (4), using the 
set of optimal (xi, 9i) from the previous subiteration. Having applied 
these decision rules, the algorithm uses the adjusted A and B matrices 
and the adjusted s vector to resolve the Level I problem. 

The Level II problem terminates on the first subiteration for which de- 
cision rules (3) and (4) call for no adjustment to be made in any (a*,, 
xi*) or (bie, yi*). Any further subiterations would simply reproduce the 
final solution. 

The Level III problem solves a series of Level II problems, each with a 
different trial time horizon. 

On the first iteration, the trial time horizon T is arbitrary. The al- 
gorithm then solves the Level II problem for fixed time horizon T. After 
solving the Level II problem, the algorithm checks the optimal (x, y) for 
satisfaction of the terminal conditions. There are three possibilities: 

If (xy ) first satisfies the terminal conditions in T - T the Level III 
problem terminates. This (x, y, T) is the final solution for the policy in- 
terval. 

If (x, y) first satisfies the terminal conditions in T < T, the algorithm 
resets T - T for the next iteration and again solves the Level II problem. 

If (x, y) fails to satisfy the terminal conditions in any period up to and 
including T, the algorithm resets T -T + 1 for the next iteration and 
again solves the Level II problem. 

At this point, several observations are in order about the interaction 
among the three levels of the algorithm: 

First, a qualification to the flexibility of the piecewise quadratic criterion 
function arises as a "nonredundancy" restriction on the number of the 

20 The s vector varies from one subiteration to the next, because it effectively nor- 
malizes constraints (2) about the particular xi or x u being used for xi* and the 
particular yil or yiu being used for yi*. To be explicit, the algorithm involves rewrit- 
ing constraints (2) as - R= ' Rx+' and using this "s" for s. Since 'x and y vary (for 
given x and y) according to decision rules (4), this G"s varies also. 
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xi and yi which can simultaneously bear the full piecewise quadratic treat- 
ment. Any number may have asymmetrical terms with aiu 74 aii' or biju 74 
biji so this restriction applies only to those terms with nontrivial sets 
M(x;) or M(y;), that is, with xi" 74 xi' or yiU 74 ybl. The source of this re- 
striction is the requirement that matrix K, as defined in (9), be nonsingular 
for the solution of the Level I problem in (10). If a sufficient number of 
xi and ye bear piecewise quadratic treatment with nontrivial M(xi) and 
M(yi), and if a particular relationship among these variables maintains 
via equation (2), then, in the event that certain xi fall in M(xi) and cer- 
tain y, fall in M(yi) simultaneously, matrix K will have one or more rows 
and columns consisting of zero vectors. More specifically, each column of 
matrix K corresponds to one xi, the value of a particular instrument vari- 
able in a particular time period. If the optimal xi falls in M(xi), then that 
xi depends only upon the effect of movements in xi on the target variables 
in the problem. If, in addition, however, all y, affected by xi via equation 
(2) fall in their respective M (vy), then the K matrix will apply only 
zero elements to values of xi. Hence, the value of Xi under such circum- 
stances is indeterminate, as illustrated operationally by the singularity of 
K. The nonsingularity or "nonredundancy" restriction in the Level II 
problem is a prohibition barring any pattern of piecewise quadratic terms 
which could yield such a result in an associated Level I problem.2' 

A second restriction is that any variable which is a part of the terminal 
conditions in the Level III problem must be treated in the piecewise 
quadratic mode in the Level II problem. Suppose, for example, that in the 
example of Section II, the only terminal condition is the restoration of 
real output to the minimum desired level. In the absence of piecewise 
quadratic treatment, those elements yi* which correspond to successive 
periods' values of real output assume, as fixed values, the successive mini- 
mum desired levels. Then a problem arises in that the Level I problem 
penalizes not only values of real income below the minimum desired level, 
but any value above this level as well; this effect retards satisfaction of 
the terminal condition, with distorting effects for the Level III problem. 
In general, piecewise quadratic treatment of the terminal-condition values 
is necessary to provide a zero-penalty region on the appropriate side of 
the relevant (xi*, yi*). Hence, piecewise quadratic optimization, although 
it is an entirely independent generalization of the Tinbergen-Theil ap- 
proach, is a necessary precursor to the application of endogenous time 
horizon optimization to economic stabilization policy. 

A third major problem, left unanswered in the exposition of the Level 

21 In practice, this restriction does not seem cumbersome. Any piecewise quadratic 
function which sets xi * - xiu = xil for all xi satisfies the restriction regardless of the 
presence of nontrivial M(yi). In cases for which a nontrivial M(xi) is essential for 
one or more xi, reference to the R matrix indicates the implied restrictions for the 
associated M (yi). 
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III problem above, is the possibility that the optimal (x, y) may satisfy 
the terminal conditions for no reasonable value of T.22 A terminal condition 
involving 2 percent unemployment and zero price inflation, for example, 
is unlikely to be satisfied in the context of any reasonable model of the 
economy. It is this problem which effectively restricts the applicability 
of the policy interval concept and the associated algorithm to short-term 
stabilization policy, as the discussion of Section II indicates. 

IV. A Computational Example 

The 1957-58 recession in the United States may serve as a good example 
of a policy interval to illustrate the application of the methods developed 
above. The model of the economy used is the Wharton model (Evans and 
Klein 1968), linearized so as to reflect the behavior of the economy in the 
1957-58 period.23 

The 1957-58 recession has been, to date, the most severe in the postwar 
period. Real output fell from a peak of $455.2 billion24 in 1957:III (third 
quarter of 1957) to $437.5 billion in 1958:1, for a decline of nearly 4 per- 
cent. Not until 1958:IV did real output regain its prerecession peak value. 
At the same time, the total unemployment rate rose from 4.0 percent in 
1957:I to over 7.4 percent, the highest value observed in the postwar 
period, in 1958:III. To date 1958:II and 1958:III have been the only 
quarters in the postwar period to register a total unemployment rate above 
7 percent. 

In the terminology of Section II, the 1957-58 experience constitutes an 
easily recognizable recessionary policy interval. Nevertheless, it is diffi- 
cult, especially in the context of the purely expository aim of this section, 
to arrive at clearly satisfactory initial and terminal conditions for this 
policy interval. The unemployment rate first began to rise in 1957:1I, but 
the increase was not pronounced until 1957: IV, and the unemployment rate 
did not go above 5 percent until 1958:I. Real output reached a clear peak in 
1957:111, but this peak represented a growth of less than 2 percent at an 
annual rate since the previous quarter, and the level of real output was 
lower in 1957:1I than in 1957:1. Hence, in the absence of a clear definition 
of the policy of the period-as seems always the case in historical exercises 
-no straightforward initial condition for the policy interval is obvious.25 

22 This point concerns the convergence properties of the Level III problem. For a 
discussion of these convergence properties, as well as those of the Level II problem, 
see Friedman (1971), chaps. 6 and 7. 

23 The motivation and technique of the linearization are discussed in Friedman 
(1971), chaps. 2 and 3. 

24 Values for output and government purchases, stated in this section, are seasonally 
adjusted quarterly values at annual rates. Price and unemployment values are also 
seasonally adjusted. Data are from Survey of Current Business; The National Income 
and Product Accounts of the United States, 1929-1965; and Federal Reserve Bulletin. 

25 The discussion in Section II of the function of initial conditions in the policy- 
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TAB LE 1 

NONCONSTANT X-X AND y* VALUES 

G X 

QUARTER Gt1 Gt it Xt Xti 

1957:III ................... 84.1 89.1 456.6 466.6 
1957: IV .................... 84.9 89.9 459.9 470.1 
1958:I ..................... 86.8 91.8 463.4 473.6 
1958: II .................... 88.6 93.6 466.8 477.1 
1958: III .................... 89.8 94.8 470.3 480.6 
1958:IV .................... 91.5 96.5 473.7 484.2 

NOTE.-G = federal government purchases, $1958 billion; X - gross output, $1958 billion. 

A compromise solution to this problem is to select real output as the 
primary indicator of a recessionary policy interval. A subjective view of 
the historical period suggests 1957:111 as an arbitrary initial quarter of 
the policy interval, and a terminal condition which requires that real 
output (X) equal or exceed its minimum acceptable level, specified as a 
3 percent per annum projection of the level of real output in 1957:JI. 
Table 1 shows the quarterly values of this path. 

The criterion function assigns a loss to any value of real output below 
the relevant minimum acceptable level. There is no reason to assign losses 
to all values above this level, however, and so it is necessary to treat real 
output in a piecewise quadratic function. Hence, table 1 labels the pro- 
jection from the observed $453.2 billion in 1957:1I as Xt', because these 
values divide the sets L(Xt) and M(Xt). 

Choosing the corresponding Xt(, to divide the sets M(Xt) and U(Xt), 
is an entirely arbitrary matter. Table 1 shows Xt"' values which are a 
projection, at the same 3 percent annual rate used for the Xt1, from a base 
level $10 billion above the actual value of real output in 1957:11. Since 
the sample exercise presented here treats a recessionary policy interval, 
the Xt" values would be relevant only in the case of extreme overshooting. 
This situation does not in fact arise, so the Xt" values are largely super- 
fluous; the sets M(Xt) could just as well be unbounded above. 

To summarize, the policy interval in this exercise begins in 1957:III and 
terminates when the optimal value of real output Xt in any period satisfies 
Xt e M(Xt) {XtIXt' < Xt < Xtu}. The exercise focuses on five vari- 
ables: three target variables-real output, the gross national product price 
deflator, and the total unemployment rate; and two instrument variables 
-total government purchases and the central bank discount rate.26 Table 

interval approach suggests both the difficulty and thie nonnecessity of specifying such 
conditions precisely in historical exercises. 

26 It is possible to argue that the central bank discount rate is not an exogenous 
tool of monetary policy but, rather, an endogenous variable which follows market 
rates. Even under this view, there remain two related rationales for using the discount 
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TABLE 2 

ACTUAL X AND Y VALUES 

Quarter G ID X P UN 

1957:III ................ 89.1 3.19 455.2 0.980 4.20 
1957:IV ................ 89.9 3.25 448.2 0.985 4.97 
1958:1 .................. 91.8 2.68 437.5 0.993 6.27 
1958: II ................. 93.6 1.84 439.5 0.997 7.30 
1958:III ................ 94.8 1.80 450.7 1.001 7.43 
1958:IV ................ 96.5 2.29 461.6 1.006 6.43 

NOTE.-G =federal government purchases, $1958 billion; ID - discount rate, percentage; X = 
gross output, $1958 billion; P = GNP price deflator index, 1958 = 1.00; UN = total unemployment 
rate, percentage. 

2 actually observed values of these variables. The description of the policy 
interval itself outlines the treatment of real output in this exercise. The 
treatment of the other four variables is as follows. 

The desired path for the price deflator for gross national product (P) 
is a constant vector with each element equal to 0.971, the actual level in 
195 7:II. 

The desired path for unemployment (UN) is a constant 4.0 percent 
level. 

The government purchases of goods and services variable (G) bears 
piecewise quadratic treatment. The actual values, given in table 2, form 
the Gtu path.27 The Gt' path is a set of values, each of which is lower than 
the corresponding actual, or Gt", value by $5 billion. Table 1 shows the 
Gt1 and Gtu paths. 

The central bank discount rate (ID) also bears piecewise quadratic 
treatment, with IDt* IDth - IDt1 constant at 3.0 percent. Hence, the 
zero loss ranges M(IDt) exist only trivially as points. The piecewise quad- 
ratic treatment arises in the differential criterion function weighting pat- 
tern for sets L(IDt) and U(ID&). 

The criterion function in this exercise assigns loss values only to squared 
deviations of the target and instrument variables and not to cross-products 
of deviations; that is, the criterion function vectors a and b are null 
vectors, matrices A and B are diagonal matrices, and matrix C is a null 
matrix, as in the simplified exposition of Section I. The weighting patterns 
for all five variables are as follows.28 

rate as an instrument variable. First, even though it follows market rates, it bears an 
announcement effect which influences expectations by confirming Federal Reserve ap- 
proval of financial market trends and intentions of maintaining them. Second, it may 
at times serve as a more general proxy for shifting monetary policy stances which are 
otherwise difficult to quantify. 

27 Any such use of actual values implies some assumption that expenditure policy 
at the time corresponded to social needs evaluated independently of any need for 
antirecessionary fiscal policy. 

-2 This paper presents no arguments to defend the particular criterion function 
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TABLE 3 

OPTIMAL X AND Y VALUES 

Quarter G ID X P UN 

1957:111 ............... 89.7 2.95 456.5 0.980 3.99 
1957:IV ............... 95.4 2.98 459.8 0.986 3.10 
1958:1 ................. 102.8 2.99 463.1 0.996 2.22 
1958:11 ................ 104.0 3.00 466.6 1.002 3.18 
1958:111 ............... 101.9 3.00 470.2 1.007 4.72 
1958:IV ............... 102.1 3.00 475.0 1.012 4.81 

NOTE.--See note to table 2 for explanation of terms. 

The piecewise quadratic weights for X assign bjjl 50 for Xt f L(Xt) 
and bj" - 5 for Xt e U(Xt), reflecting the priority of the recessionary 
policy interval. The quadratic weight29 for P is ba- 3.0 X 106. The 
quadratic weight for UN is bit 25. The piecewise quadratic weights for 
G assign aiil - 1.5 for Gt e L(Gt) and aiu 1 for Gt eU(Gt). The piece- 
wise quadratic weights for ID assign air' 200 for IDt e L(IDt), reflecting 
the effective imposition of the constraint ID > 3.0, and aciu 20 for IDt 

U(IDt). 
The algorithm converges to T- 6 regardless of the initial arbitrary T. 

On the final iteration, three subiterations are required for the piecewise 
quadratic convergence. The criterion function, evaluated for the actually 
observed x and y over the interval, has value 5.34 X 104; evaluated for 
the optimal x and 9 over the interval, its value is 9.83 X 102. Table 3 
shows the optimal x and y. 

It is clear from a comparison of tables 2 and 3 that the main effect of 
the optimization is to raise government purchases and, in so doing, to raise 
real output. The optimal ?t are consistently above the actual Xt; the 
difference exceeds $25 billion in 1958:I, the trough quarter of the actual 

AA 

recession. In 1958:IV, Xt > Xtf to yield time horizon T - 6 for the policy 
interval. 

The increase in X in the optimal solution is possible only at the cost of 
additional price inflation, however, and the optimal Pt are somewhat above 
the actual Pt, with the difference growing to 0.006 by the end of the policy 
interval. The narrowness of this margin indicates the unresponsiveness of 
prices in the Wharton model. The performance of the optimal UNt is 
superior to that of the actual UNt. 

The force moving the economy from the historical base to the optimal 
path is fiscal policy, operating through massive government purchases. The 

weights chosen, and none is intended. The object of this exercise is simply to illustrate 
the operation of the piecewise quadratic and endogenous time-horizon optimization 
methods. 

29 Because of the different units of measurement of the various x and y, the a and 
b values may be deceptive; bii = 3.0 X 106 for the price index does not represent a 
very large weight. 
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optimal Gt are greater than the actual Gt by more than $10 billion in the 
two quarters of and immediately following the trough of the actual reces- 
sion. The large a'il placed on the discount rate effectively prevents that 
variable from falling significantly below its IDt1 boundary, thereby provid- 
ing a good example of the use of the piecewise quadratic criterion function 
to impose an inequality constraint on the optimization. 

V. Summary 

The piecewise quadratic criterion function generalizes the standard quad- 
ratic so as to facilitate a much more reasonable representation of economic 
policy preferences; its asymmetrical property also provides a ready 
method for imposing inequality constraints upon the optimization. Endo- 
genous time-horizon optimization averts the arbitrariness of the selection 
of the time horizon in previous optimization methods, thereby permitting 
the optimization to deal with questions involving the desired speed of 
economic recovery; it also facilitates dealing with terminal conditions in 
the sense of dynamic programming. These two methods are independent in 
motivation but not in operation, in that the solution algorithm presented 
makes the piecewise quadratic criterion function a necessary precursor to 
endogenous time-horizon optimization. The combined effect of these two 
extensions to the Tinbergen-Theil model is to provide a framework which 
is not only sufficiently broad and flexible to treat many of the basic 
problems of formulating quantitative economic stabilization policy, but 
is also sufficiently straightforward in its operational and computational 
aspects to render such a treatment easily accessible for applied policy work. 
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