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The main obstacle for the evolution of cooperation is that natural

selection favors defection in most settings. In the repeated Pris-

oner’s Dilemma, two individuals interact several times and, in each

round, they have a choice between cooperation and defection. We

analyze the evolutionary dynamics of three simple strategies for the

repeated Prisoner’s Dilemma: always defect (ALLD), always coop-

erate (ALLC) and tit-for-tat (TFT). We study mutation-selection

dynamics in finite populations. Despite ALLD being the only strict

Nash equilibrium, we observe evolutionary oscillations among all

three strategies. The population cycles from ALLD to TFT to

ALLC and back to ALLD. Most surprisingly, the time average of

these oscillations can be entirely concentrated on TFT. In contrast

to the classical expectation, which is informed by deterministic

evolutionary game theory of infinitely large populations, stochas-

tic evolution of finite populations need not choose the strict Nash

equilibrium and can therefore favor cooperation over defection.

In the prisoner’s dilemma (PD), two players have the choice to cooperate or to

defect. Both obtain payoff R for mutual cooperation, but a lower payoff P for

mutual defection. If one individual defects, while the other cooperates, then

the defector receives the highest payoff T whereas the cooperator receives the

lowest payoff S. We have T > R > P > S. Defection dominates cooperation:

in any mixed population, defectors have a higher fitness than cooperators.

As is standard in repeated games, new strategies become possible when

the game is repeated, and these strategies can lead to a wider range of equi-
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librium outcomes (1-8). In particular, in the infinitely repeated prisoner’s

dilemma, cooperation becomes an equilibrium outcome, but defection re-

mains an equilibrium as well (9, 10). To select between these equilibria, (11 -

13) looked at the replicator dynamic on a continuum population, and (14, 15)

applied variants of evolutionary stability to repeated games with complexity

costs. These solution concepts do not have explicit dynamics and are based

on models with a continuum population.

Our goal is to study explicit evolutionary dynamics in a large but finite

population. In order to explicitly model evolutionary dynamics, the space of

possible strategies must be restricted. In this paper, we explore the evolution-

ary dynamics of three strategies, ALLD, ALLC and TFT. TFT cooperates

in the first move and then does whatever the opponent did in the previous

move. Ever since Axelrod’s celebrated computer tournaments (16), TFT is

a world-champion in the repeated PD, although it has some weaknesses and

has at times been defeated by other strategies (11, 12, 17). For our purpose

here, these weaknesses are not important. We conjecture that similar re-

sults hold for other reciprocal strategies, such as generous-tit-for-tat (11) or

win-stay, lose-shift (12, 18), which is also known as perfect-tit-for-tat (15).

We consider a finitely repeated game with an average number of rounds,

m. TFT is a conditional strategy, while the other two strategies are uncon-

ditional. Hence, it is natural to include a complexity cost for TFT (14): the

payoff for TFT is reduced by a small constant, c. The payoff matrix is given
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by


ALLC ALLD TFT

ALLC Rm Sm Rm

ALLD Tm Pm T + P (m− 1)

TFT Rm− c S + P (m− 1)− c Rm− c

 (1)

The pairwise comparison of the three strategies leads to the following conclu-

sions. (i) ALLC is dominated by ALLD, which means it is best to play ALLD

against both ALLC and ALLD. (ii) TFT is dominated by ALLC. These two

strategies cooperate in every single round, but the complexity cost of TFT

implies that ALLC has a higher payoff. (iii) If the average number of rounds

exceeds a minimum value, m > (T − P + c)/(R− P ), then TFT and ALLD

are bistable. This means choosing between ALLD and TFT, each strategy

is a best response to itself.

Let us now consider traditional evolutionary game dynamics of all three

strategies as given by the replicator equation (19-21). This approach de-

scribes deterministic selection in infinitely large populations. The frequency

of a strategy increases at a rate given by the difference between its fitness

and the average fitness of the population. The fitness of a strategy is the ex-

pected payoff from the game assuming many random encounters with other

individuals. In this framework, any mixed population of ALLC, TFT and

ALLD will converge to a pure ALLD population. The state where everybody

plays ALLD is the only stable equilibrium.

This outcome does not surprise us. From the payoff matrix (1) we

see that ALLD is the only evolutionarily stable strategy (ESS) and the only

strict Nash equilibrium (22-24). If everybody uses ALLD, then every other
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strategy has a lower fitness. Hence, no mutant strategy can invade an ALLD

population. In contrast, neither TFT nor ALLC nor any mixed population

have this property.

We can extend the replicator equation and consider selection and mu-

tation in a deterministic framework. In the resulting ‘replicator-mutator

equation’ (see Appendix), deterministic evolutionary dynamics remain es-

sentially the same for very small mutation rates: all trajectories starting

in the interior converge to a population that consists of almost only ALLD

players. We call this equilibrium ‘almost ALLD’. For small or zero mutation

rates, there is also an unstable mixed equilibrium containing all three strate-

gies. When there are no mutations, the proportion of ALLD players in this

equilibrium is c/[(m − 1)(P − S)] and thus can be made arbitrarily small

by increasing the number of rounds or by reducing the complexity cost. If

the mutation rate exceeds a critical value, a stable limit cycle forms around

this mixed equilibrium, so that there are two basins of attraction. Certain

initial conditions converge to ‘almost ALLD’, while others converge to the

limit cycle. For even larger mutation rates, ‘almost ALLD’ loses stability,

and the limit cycle becomes a global attractor. There is another critical mu-

tation rate, where the limit cycle disappears and all trajectories converge to a

stable mixed equilibrium containing all three strategies. Figure 1 illustrates

these deterministic dynamics.

Let us now move from deterministic evolution of infinite populations

to stochastic evolution of finite populations (25-31). We study a frequency

dependent Moran process (30-32) with mutation. In each time period, an

individual is chosen for reproduction with a probability proportional to its
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fitness. The offspring replaces a randomly chosen individual. The total

population size is constant. With a small mutation probability, the offspring

does not use the same strategy as the parent, but one of the two other

strategies. A precise description of the stochastic process is in the Appendix.

Reproduction can be interpreted genetically or culturally. In the latter case,

successful strategies spread by learning (or imitation) from one individual to

another.

The evolutionary dynamics of this stochastic process differ from the

deterministic approach. In the limiting case of very small mutation rates,

the stochastic process does not converge to ALLD, but instead there are

endless oscillations from ALLC to ALLD to TFT and back to ALLC. For a

long time, the population is almost homogeneous for one strategy, but then a

mutant is produced which generates a lineage that takes over the population.

The transition rate from one homogeneous population to the next is given by

the product of the population size, N , times the mutation rate u, times the

fixation probability of the mutant in the resident population. The oscillations

tend to revolve in one direction, because the transitions from ALLC to ALLD,

from ALLD to TFT, and from TFT to ALLC are much more likely than the

corresponding reverse transitions.

Surprisingly, the time average of these oscillations can be entirely dom-

inated by TFT. This means for most of the time the population is in a state

that consists of only TFT players. This observation is of interest, because

in the limit of very small mutation rates, an infinite population chooses de-

fection, but a finite population (of the right size) chooses reciprocity. This

is a remarkable result given that the payoff matrix (1) clearly indicates that
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ALLD is the only strict Nash solution and the only ESS. We observe that

neither concept implies evolutionary success in the stochastic setting of finite

populations.

The Appendix contains a theorem which states that the stochastic

process has a time average which is arbitrarily close to TFT. More precisely,

for a suitable range of population sizes, the population consists most of the

time of only TFT players, provided the average number of rounds m of the

repeated prisoner’s dilemma is large enough. Figure 2 shows the (stationary)

distribution of the stochastic process for numerical simulations.

The transition rate from an ALLD population to a TFT population is

Nuρ where ρ is the fixation probability of a single TFT player in an ALLD

population. The transition rate from a TFT to an ALLC population is of

order u, because ALLC and TFT are nearly neutral given a small complexity

cost of TFT. The transition rate from an ALLC to an ALLD population is

of order Nu, because ALLD has a strong selective advantage. Therefore, the

most rapid transition is from ALLC to ALLD. If Nρ > 1 then the transition

from ALLD to TFT is faster than the transition from TFT to ALLC. In this

case, the population consists most often of TFT players.

A natural extension of our work would be to accommodate the possi-

bility that players make mistakes, so that there is a small probability that a

realized action is different from the intended action (15). This seems to be

particularly relevant when the number of rounds is large. In a recent paper

(33), Brandt and Sigmund study the effects of errors in a deterministic model

for the evolution of an infinite population of ALLC, ALLD and TFT players.

Evolutionary game theory of the last two decades has largely focused
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on deterministic descriptions of infinitely large populations. Most of our

intuitions about evolutionary dynamics come from this important tradition

(20, 21). In this paper, we have shown that the intrinsic stochasticity of finite

populations can lead to surprising outcomes. Instead of convergence to the

only strict Nash solution, ALLD, we observe oscillations from ALLD to TFT

to ALLC and back to ALLD with a time average that is concentrated on

TFT. Stochastic evolution in finite populations leads to a natural selection

of reciprocity.

Appendix

Deterministic replicator dynamics. Deterministic evolutionary game

dynamics are given by the replicator equation (19-21)

ẋi = xi(fi − φ), i = 1, . . . , n.

Here xi denotes the frequency of strategy i. The payoff matrix is A = [aij].

The fitness of strategy i is fi =
∑

j xjaij. The average fitness of the popula-

tion is φ =
∑

i xifi. Note that
∑

i xi = 1.

Deterministic replicator dynamics with mutations. Frequency de-

pendent selection and mutation can be described by the replicator-mutator

equation

ẋi =
n∑

j=1

xjfjqji − xiφ, i = 1, . . . , n.

Here qij denotes the probability that strategy i generates an offspring using

strategy j. In Figure 1, qij = u for i 6= j, and qii = 1− 2u.

Stochastic dynamics in finite populations. Consider a population of

size N and let u ≥ 0 denote the mutation probability. Let A = (aij)
3
i,j=1 be
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a positive payoff matrix. We define a frequency dependent Moran process

X(t) = X(t; u, N, A), t = 0, 1, 2, . . . , on the state space

SN =
{
(x1, x2, x3) ∈ N3

0 : x1 + x2 + x3 = N
}

.

Here xi denotes the number of players using strategy i. If the population is

in state (x1, x2, x3) with xi ≥ 1, then the fitness of individuals using strategy

i is

f(i) = f(i, x1, x2, x3; N, A) =

∑3
j=1 aijxj − aii

N − 1
> 0.

We subtract aii because the individual does not interact with itself. In

each time step we choose one individual for reproduction and one for death.

The probability that an individual with strategy i reproduces is given by

xif(i)/
∑

j xjf(j). The probability that the offspring of this individual will

use strategy i is 1− 2u. With probability u the offspring will use one of the

two other strategies. The offspring is replacing a randomly chosen individ-

ual; an individual using strategy i is removed with probability xi/N . This

algorithm defines a Markov chain on SN . If u > 0, the stochastic process

has no absorbing states and the transition matrix is irreducible. Hence there

is a well defined unique stationary distribution π = π(s; u, N, A), s ∈ SN ,

determined by the left-hand eigenvector associated with the unique largest

eigenvalue 1.

Limit distribution for small mutations. Consider the homogeneous

states s1 = (N, 0, 0), s2 = (0, N, 0), s3 = (0, 0, N). Let ρij(N, A) be the

probability that the no-mutation process {X(t; 0, N,A)} gets absorbed in sj

if initially every individual but one plays i and one plays j. To determine

the limit of the stationary distribution as the mutation rate goes to zero, we
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consider an associated Markov chain on the reduced state space {s1, s2, s3}

with transition matrix Λ(N, A) = (Λij(N, A))3
i,j=1, where

Λij(N, A) =
1

2
ρij(N, A), j 6= i, Λii(N, A) = 1− 1

2

∑
j 6=i

ρij(N, A).

For every N and every positive payoff matrix A, the matrix Λ(N, A) is posi-

tive. Therefore there is a unique positive vector

λ(N, A) = (λ1(N, A), λ2(N, A), λ3(N, A))

such that

λ(N, A)Λ(N, A) = λ(N, A), λ1(N, A) + λ2(N, A) + λ3(N, A) = 1.

It can be shown that

lim
u→0

π(sj; u, N, A) = λj(N, A) for j = 1, 2, 3, (2)

and for every s ∈ SN \ {s1, s2, s3},

lim
u→0

π(s; u, N, A) = 0.

Note that f(i, x1, x2, x3; N, A), ρij(N, A), Λ(N, A) and λ(N, A) depend con-

tinuously on A.

Returning to the prisoner’s dilemma game, fix payoffs

T > R > P > S > 0.

Identify strategies 1:AllC, 2:AllD, 3:TFT. Let c ∈ [0, S) be the overall cost

of playing TFT. For every expected number of rounds m ≥ 1 let

A(m) =


R S R

T P 1
m

T + P
(
1− 1

m

)
R− c

m
1
m

S + P
(
1− 1

m

)
− c

m
R− c

m

 .
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The following theorem states that for a suitable range of population

sizes, the population consists most of the time of TFT players, provided the

average number of rounds is large enough.

Theorem. Given ε > 0, there exists a population size N0 such that the

following holds. For every N1 > N0 there exists m0 ∈ N such that for every

m ≥ m0 there is u0(m) > 0 such that

π(s3; u, N, A(m)) ≥ 1−ε for every N ∈ {N0, . . . , N1} and 0 < u ≤ u0(m).

A proof of the theorem is given in (34). Here we provide only a sketch

of the proof. In the first step, we consider the Moran process corresponding

to the prisoner’s dilemma game with infinitely many rounds. The payoff

matrix is given by

A = lim
m→∞

A(m) =


R S R

T P P

R P R

 .

We examine the asymptotic behavior of the fixation probabilities ρij(N, A)

for the no-mutation process as N → ∞. In the second step, we turn to

the associated Markov chain on the reduced state space {s1, s2, s3}. We use

the results from the first step to determine the behavior of the stationary

distribution λ(N, A) as N →∞. It turns out that

lim
N→∞

λ3(N, A) = 1. (3)

Thus in the infinitely repeated prisoner’s dilemma, the associated Markov

chain spends nearly all the time at TFT when N is large. On the other
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hand, it can be shown that for any finite number of rounds,

lim
N→∞

λ3(N, A(m)) = 0. (4)

In the third step, we deduce that λ3(N, A(m)) is close to 1 provided that (i)

m and N are large enough, see (3), and (ii) N is not too large, see (4). To

return from the associated Markov chain to the original chain on the whole

state space SN , we finally use the limit relation (2).

We thank the referees for their detailed suggestions which helped to

improve the presentation of our results.
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Figure Legends

Fig. 1. Deterministic replicator dynamics of an infinite population with dif-

ferent mutation rates u. Full circles represent stable stationary points, empty

circles represent unstable stationary points. In panels b) and c), the symbol

× indicates the time average of the limit cycle. The payoffs in the prisoner’s

dilemma game are T = 5, R = 3, P = 1, S = 0.1, the expected number of

rounds is m = 10, and the complexity cost for TFT is c = 0.8.

Fig. 2. Frequencies of visits of the Moran process for different population sizes

N and different mutation rates u. Dark points correspond to states that are

often visited. Most points in the interior of the state space are rarely visited,

transitions from AllC to AllD and from AllD to TFT are faster than those

from TFT to AllC. The process spends most of the time at or near the state

where everyone plays TFT. For the smaller mutation rate, the concentration

of the stationary density to the vertices is more strongly pronounced. The

payoffs are T = 5, R = 3, P = 1, S = 0.1, the expected number of rounds

is m = 10, and the complexity cost for TFT is c = 0.8. The arrows indicate

the direction of the stochastic oscillations.
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