Intrauterine Environment, Mammary Gland Mass and Breast Cancer Risk

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1186/bcr555</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:4591582</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Commentary

Intrauterine environment, mammary gland mass and breast cancer risk

Dimitrios Trichopoulos

Professor of Cancer Prevention and Professor of Epidemiology, Harvard School of Public Health, Boston, MA, USA and University of Athens Medical School, Greece

Corresponding author: Dimitrios Trichopoulos (e-mail: dtrichop@hsph.harvard.edu)

Received: 23 September 2002 Revisions received: 17 October 2002 Accepted: 18 October 2002 Published: 7 November 2002

© 2003 BioMed Central Ltd (Print ISSN 1465-5411; Online ISSN 1465-542X)

Abstract

Two intimately linked hypotheses on breast cancer etiology are described. The main postulate of the first hypothesis is that higher levels of pregnancy estrogens and other hormones favor the generation of a higher number of susceptible stem cells with compromised genomic stability. The second hypothesis postulates that the mammary gland mass, as a correlate of the number of cells susceptible to transformation, is an important determinant of breast cancer risk. A simple integrated etiological model for breast cancer is presented and it is indicated that the model accommodates most epidemiological aspects of breast cancer occurrence and natural history.

Keywords: breast cancer, estrogens, intrauterine environment, mammary gland mass

Introduction

In the early 1990s, I contributed to the development of two intimately linked hypotheses concerning breast cancer etiology in humans. The first postulated that the intrauterine environment may affect breast cancer risk in the offspring in ways over and beyond those attributed to major breast cancer genes [1]. In the second hypothesis, the argument was made that the mammary gland cells, particularly of those among them that are susceptible to transformation, is an important determinant of breast cancer risk [2]. In other words, intrauterine and early life events and conditions could affect the number of mammary gland cells at risk for transformation and, ultimately, breast cancer risk.

Neither of these hypotheses was developed in a vacuum. The earlier work of several authors was instrumental, and indeed critical. The striking protective effect on breast cancer risk of an early first full-term pregnancy led Cole and MacMahon to hypothesize that breast cancer risk is established, in part, early in life [3]. Loeb, as well as other investigators, argued that early phenomena, perhaps affecting mutator genes or other factors controlling genetic stability, are crucial in the process of carcinogenesis [4]. Moolgavkar et al. postulated that the magnitude of breast cancer risk depends on the transition rates of normal susceptible cells to intermediate cells and then to transformed cells [5]. Several authors in the late 1980s suggested that energy intake during early life may affect the number of mammary cells, mammary gland mass and, through them, breast cancer risk [6].

Intrauterine environment and breast cancer risk

The hypothesis that breast cancer may have intrauterine component causes is based on a number of generally accepted assumptions. Mammary gland cells in utero are not terminally differentiated. Factors that increase the risk of cancer during adult life, as do exogenous and endogenous estrogens for breast cancer, may have similar effects when they act in utero. Estrogens and other hormones with growth enhancing properties are abundant during pregnancy, and adult life exposures do not fully explain the substantial variability of breast cancer occurrence between and within populations.

Simple as it may sound, this hypothesis is very difficult to directly evaluate. The scientific team in Sweden lead by
Mammary gland mass and breast cancer risk

With respect to mammary gland mass, as distinct from breast size, the empirical evidence linking it to breast cancer risk is very strong. Mammographic density is a powerful predictor of breast cancer risk and this density is strongly associated with mammary gland mass, although the stromal component is also likely to play an important role [16–19]. Small-breasted women who were motivated to have augmentation mammoplasty, and whose mammary gland mass had to be small, were found to have reduced breast cancer risk [20,21], although no reduction was evident in a small cohort study that included eight breast cancer cases [22]. Moreover, women who had undergone surgical reduction of their breasts subsequently had reduced breast cancer risk [23–26].

Mammary gland mass, which reflects the total number of mammary cells and can be correlated with mammary cells at risk for transformation, can also explain several of the descriptive aspects of breast cancer epidemiology. One example is breast cancer risk being higher among Caucasian women than among Asian women and being positively associated with adult height [2,23]. Large breast size mostly reflects adipose tissue but, among thin women, breast size may be a better indicator of mammary gland mass and has been positively associated with breast cancer risk [27,28].

The number of mammary gland cells at risk for transformation, and thus breast cancer risk, is reduced through the process of terminal differentiation that takes place mostly after the occurrence of the first full-term pregnancy and, to some extent, after the occurrence of subsequent pregnancies and lactation [23,29,30]. Moreover, cells at risk or at intermediate stages of transformation may be more or less responsive to the growth enhancing influences of estrogens and other mammotropic hormones, depending on the density of the respective receptors in the nonmalignant tissue. In this context, it may be of relevance that expression of estrogen receptors α has been found to be less common among Japanese women than among Caucasian women [31].

Conclusion

We have tried to integrate the existing information on breast cancer epidemiology and apparent pathogenesis into an etiological model that incorporates the two presented hypotheses and the data that support them [23]. The model has four components. First, the likelihood of breast cancer occurrence depends on the number of cells at risk and, second, the number of target cells is partially determined early in life, probably even in utero. The third component is that, while a pregnancy stimulates the replication of already initiated cells, it conveys long-term protection through structural changes, including terminal cellular differentiation. Finally, in adult life, mammotropic hormones, in conjunction with their receptors, affect the likelihood of retention of spontaneous somatic mutations and the rate of expansion of initiated clones.

This composite, yet simple, model accommodates most, if not all, epidemiological aspects of breast cancer occurrence and natural history. These include the secular increase of breast cancer incidence during the early part of last century, the higher risk for this disease among higher socioeconomic class women in most countries of the world, as well as the gradual increase of breast cancer incidence among Asian migrants to Western countries. All these patterns reflect concomitant changes in birth size, adult birth height and breast cancer risk. The model also accommodates the effectiveness of prophylactic mastectomy among women at very
high risk on the basis of reduction of mammary gland mass [23,32].

Acknowledgements

It is too early for passing judgment on the validity of the hypotheses considered in this commentary, but it is not too early to express my gratitude to all the colleagues in Sweden, the USA, Greece and Australia with whom we have worked on these hypotheses over the last 15 years. I am particularly grateful to Prof. Adam and Prof. Ekborg for their continuous insight, input and support throughout these years.

References