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Abstract

Comparative genomics of multiple related species is a powerful methodology for the discovery of functional genomic
elements, and its power should increase with the number of species compared. Here, we use 12 Drosophila genomes to
study the power of comparative genomics metrics to distinguish between protein-coding and non-coding regions. First, we
study the relative power of different comparative metrics and their relationship to single-species metrics. We find that even
relatively simple multi-species metrics robustly outperform advanced single-species metrics, especially for shorter exons
(#240 nt), which are common in animal genomes. Moreover, the two capture largely independent features of protein-
coding genes, with different sensitivity/specificity trade-offs, such that their combinations lead to even greater
discriminatory power. In addition, we study how discovery power scales with the number and phylogenetic distance of
the genomes compared. We find that species at a broad range of distances are comparably effective informants for pairwise
comparative gene identification, but that these are surpassed by multi-species comparisons at similar evolutionary
divergence. In particular, while pairwise discovery power plateaued at larger distances and never outperformed the most
advanced single-species metrics, multi-species comparisons continued to benefit even from the most distant species with
no apparent saturation. Last, we find that genes in functional categories typically considered fast-evolving can nonetheless
be recovered at very high rates using comparative methods. Our results have implications for comparative genomics
analyses in any species, including the human.
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Introduction

The recent availability of complete genome sequences from many

closely related species has enabled the use of comparative genomics

for systematic gene identification. In practice, the discovery power

of comparative genomics is intrinsically linked to specific methods

for extracting information from from multi-species alignments.

Numerous such methods have been developed for gene identifica-

tion, capturing diverse signals that distinguish protein-coding genes

from non-coding regions. These signals are found in the primary

sequence of the target genome (e.g. nucleotide frequencies and

codon usage biases) and also in the distinctive evolutionary

signatures of protein-coding regions (e.g. favoring synonymous vs.

non-synonymous substitutions) that only become apparent when

informant species are used for comparison.

In this paper, we study the discovery power of diverse

discriminative metrics that capture comparative genomics as well

as single-species evidence. Given a region of the genome and,

when available, its alignment across multiple species, discrimina-

tive metrics produce a score that indicates how likely the region is

to be protein-coding. Similar to previous studies of the

performance of single-sequence metrics [1–3], we measure

discovery power in a binary classification framework, based on

each metric’s ability to discriminate between known protein-

coding exons and random non-coding regions.

The goals of our study are twofold. First, we seek to determine

the relative power of different metrics, their independence, and the

power obtained by combining them. Such metrics can be applied

to assess and correct existing gene annotations [4,5], and to decide

whether experimentally derived cDNA sequences represent

protein-coding mRNAs or non-coding transcripts [6,7]. In

addition, our study is immediately applicable to the design of

discriminative features for comparative gene structure predictors

that can incorporate artibrary metrics to determine precise exon

boundaries, such as systems based on semi-Markov conditional

random fields (SMCRFs). While initial studies on such discrim-

inative gene prediction systems have successfully focused on their

training algorithms [8–10] and advantages over their generative

predecessors [11,12], here we focus on the discriminative features

they can use, which ultimately enable their increased power.

Second, we seek to understand how discovery power scales with

the phylogenetic distance and number of species compared. On one

hand, increasing either distance or number of species should, in

principle, provide more signal and therefore increased discovery
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power [13], as shown in several pilot studies in selected genomic

regions [14–18]. On the other hand, greater phylogenetic distance

and more informant species can also lead to conflicting evidence

arising from elements that have undergone evolutionary divergence.

Moreover, additional species may in practice result in increased noise

and systematic errors in the sequencing, assembly, and alignment of

complete genomes. In fact, initial studies using de novo gene structure

predictors with multiple informants led to mixed results [19,20].

Thus, empirical studies of the scalability of gene identification power

in multiple complete genomes are needed, to help address several

remaining questions surrounding comparative gene identification

that are still unresolved: is there an optimal pairwise distance for gene

identification, does multi-species discovery power saturate after a

small number of compared species, are some classes of genes

systematically missed by comparative methods, are synteny-

anchored alignments necessary for achieving high specificity?

To address these two goals, we have assembled a large benchmark

dataset consisting of tens of thousands of coding and non-coding

sequences aligned across twelve recently sequenced Drosophila

genomes [21,22]. We measure the discriminatory power of diverse

metrics and how it varies with sequence length, phylogenetic

distance, total number of informant sequences, and the genome

alignment strategy. We also study the redundancy and independence

of different metrics, and the discovery power of metric combinations.

Finally, we discuss the overall strategic implications of our results for

comparative approaches to gene identification.

Discriminative Metrics for Gene Identification
We evaluate both well-known methods for gene identification as

well as several metrics that we have developed. These metrics are

briefly summarized here and in Table 1, while we provide full

implementation details in the Methods section.

Pairwise comparative metrics
Most initial efforts at comparative gene identification used a

single informant genome to support the annotation of a target

genome [15,23–29]. We selected several metrics that capture the

essential properties of coding sequence evolution that they observe:

the KA/KS ratio [30,31] and the Codon Substitution Frequencies

Author Summary

Comparing the genomes of related species is a powerful
approach to the discovery of functional elements such as
protein-coding genes. Theoretically, using more species
should lead to more discovery power. Many questions
remain, however, surrounding the optimal choice of
species to compare and how to best use multi-species
alignments. It is even possible that practical limitations in
the sequencing, assembly, and alignment of genomes
could effectively negate the benefit of using more species.
Here, we used 12 complete fly genomes to study a variety
of metrics used to identify protein-coding genes, including
methods that analyze only the genome of interest and
comparative methods that examine evolutionary signa-
tures in genome alignments. We found that species over a
surprisingly broad range of phylogenetic distances were
effective in comparative analyses, and that discovery
power continued to scale with each additional species
without apparent saturation. We also examined whether
comparative methods systematically miss genes consid-
ered fast-evolving, and studied how performance is
influenced by genome alignment strategies. Our results
can help guide species selection for future comparative
studies and provide methodological guidance for a variety
of gene identification tasks, including the design of future
de novo gene predictors and the search for unusual gene
structures.

Table 1. Discriminative metrics for gene identification.

Metric Description References

Pairwise comparative KA/KS Ratio of non-synonymous to synonymous substitutions per site [30,31]

Codon Substitution Frequencies
(CSF)

Log-likelihood ratio of coding vs. non-coding based on empirical frequencies of
all codon substitutions

[5]

Reading Frame Conservation
(RFC)

Percent of nucleotides in same reading frame offset based on indel pattern [4,32]

TBLASTX Significance of protein sequence similarity (bit score), independent of genome
alignments

[33]

Seq. conservation (baseline) Percent identity -

Multi-species comparative dN/dS test Pr(dN/dS , 1), probability that synonymous substitution rate exceeds non-
synonymous substitution rate, based on maximum likelihood phylogenetic
models

[34,35,36]

Codon Substitution Frequencies
(CSF)

Pairwise CSF log-likelihood ratios combined by median in each column [5]

Reading Frame Conservation
(RFC)

Pairwise RFC scores for each informant combined by voting scheme [4,32]

Seq. conservation (baseline) Averaged identity in each column -

Single sequence Fourier transform Three-base periodicity in genetic code [37]

Codon bias Unequal usage of synonymous codons [38]

Interpolated context models
(ICMs)

Generative probabilistic models measuring k-mer frequency biases [39]

Z curve Linear discriminant analysis on k-mer frequencies [2]

Additional details are provided in Methods.
doi:10.1371/journal.pcbi.1000067.t001

Comparative Gene Identification in 12 Fly Genomes
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(CSF) score [5] observe biases towards synonymous and other

conservative codon substitutions; the Reading Frame Conserva-

tion (RFC) score observes the strong bias of indels within coding

regions to be multiples of three in length [4,32]; TBLASTX

measures the genome-wide significance of protein sequence

similarity [33]; finally, a baseline sequence conservation metric

simply measures the percent nucleotide identity between the target

and informant sequences.

Multi-species comparative metrics
We also selected several metrics that use multi-species

alignments: the dN/dS test observes biases towards synonymous

codon substitution using a statistical test based on maximum

likelihood phylogenetic algorithms [34–36]; the multi-species CSF

and RFC scores use ad hoc strategies to efficiently combine their

respective pairwise scores; lastly, a baseline multi-species sequence

conservation metric measures the largest fraction of species having

the same nucleotide in each column (plurality), averaged across the

alignment.

Single-sequence metrics
We also included several single-sequence metrics in our

benchmarks to compare them to the comparative methods. Since

previous studies have benchmarked many single-sequence metrics

extensively [1–3], we chose only a representative set here: the

Fourier transform measures the strength of the three-base

periodicity in coding sequences [37]; codon bias observes the

unequal usage of synonymous codons, resulting in part from how

different synonymous codons affect translation efficiency [38];

interpolated context models (ICMs) are generative probabilistic

models that observe reading frame-dependent biases in the

frequencies of k-mers in coding sequences, simultaneously for

several different k-mer sizes [39]; lastly, Z curve observes reading

frame-dependent biases in k-mer frequencies using a discrimina-

tive approach based on Fisher linear discriminant analysis [2].

Benchmarks for Gene Identification Metrics in 12 Fly
Genomes

To benchmark the discriminatory power of each of these

metrics, we assembled a test set consisting of 10,722 known

protein-coding exons (from 2,734 genes) in the fruit fly Drosophila

melanogaster, and 39,181 random intergenic regions with the same

length and strand distribution (see Methods). These provide an

ideal setting in which to evaluate genome-wide comparative

genomics methods given the high quality of the FlyBase gene

annotations [5] and the recent sequencing of ten Drosophila

genomes [21,22], in addition to D. melanogaster [40] and D.

pseudoobscura [41]. We extracted each of these regions from two

different sets of whole-genome sequence alignments of the twelve

fly genomes [22], one generated by MULTIZ [42], which uses

local alignments of high-similarity regions, and the second

generated by the Mercator orthology mapper (C. Dewey and L.

Pachter) and MAVID sequence aligner [43], based on the

identification of orthologous segments in each genome by

conserved gene order (synteny).

For each metric, we scored all the 49,903 regions in our test set

(10,722 exons and 39,181 non-coding regions) and then measured

its ability to correctly classify them as coding or non-coding. We

used four-fold cross-validation to train and apply the metrics that

require training data. We evaluated the performance of each

metric by examining receiver-operator characteristic (ROC)

curves showing its sensitivity and specificity at different score

cutoffs. (Here and throughout this paper, we use the term specificity

as it is defined in binary classification problems: the fraction of true

negatives that are correctly classified as negative. This differs from

the common usage of the term in the gene prediction field to refer

to the fraction of the examples classified as positive that are true

positives. Additionally, we use the term false positive rate to mean 1-

Specificity, or the fraction of true negatives incorrectly classified as

positive.)

Based on the ROC curve for each metric, we also computed

two different summary error measures, to facilitate comparing the

performance of different metrics and methodological choices:

N The minimum average error (MAE) is the average of the false
negative rate and the false positive rate at the cutoff where
this average is minimized; intuitively, this is the ‘‘elbow’’ of
the ROC curve. This represents the fraction of examples that
are incorrectly classified (if the positive and negative classes
are the same size), at a single point on the ROC curve.

N The area above the curve (AAC) is the area lying above the
ROC curve in the unit square. Although it lacks a simple
interpretation, the AAC summarizes more information
about classification performance over all sensitivity/speci-
ficity regimes, providing a measure complementary to MAE.

Results

Performance, Independence, and Combinations of the
Metrics

We first compared the overall performance of the metrics

(Figure 1). All of the metrics we evaluated demonstrated high

classification performance, but some general trends were apparent.

The comparative metrics (using the MULTIZ alignments of all

twelve fly genomes) generally outperformed the single-sequence

metrics (except for the baseline sequence conservation metric). For

example, the best comparative metric resulted in 24% lower error

than the best single-sequence metric (0.050 MAE for the dN/dS

test vs. 0.065 for Z curve). Different metrics were preferable at

different sensitivity/specificity tradeoffs. For example, the CSF

and dN/dS metrics achieved the highest specificity (99.9% for CSF)

even at fairly high sensitivities (85.2%). RFC tended towards

higher sensitivity and lower specificity than CSF and dN/dS.

We also compared the pairwise metrics, using the best pairwise

informant (D. ananassae; we investigate different pairwise infor-

mants below), and found similar trends (Figure S1). For example,

CSF and KA/KS performed comparably, showing the highest

specificity, while RFC tended towards higher sensitivity and lower

specificity. TBLASTX performed substantially worse than KA/KS,

CSF, and RFC, but it was still better than our baseline

conservation metric. Notably, none of the pairwise comparative

metrics outperformed the best single-sequence metric (Z curve)

according to MAE and AAC error, and they exhibited generally

lower sensitivity. CSF and KA/KS were, however, able to achieve

higher specificity at a moderate sensitivity tradeoff. For example,

at 80% sensitivity, CSF had a nearly ten-fold lower false positive

rate than Z curve (0.15% and 1.39%); the specificity of CSF

exceeded Z curve at less than 85% sensitivity, compared to 93%

sensitivity at Z curve’s MAE point.

Comparative methods are strongly preferred for short
exons

We next assessed each metric’s discriminatory power for

different sequence length categories (Figure 1C). All of the metrics

performed better on longer sequences than shorter sequences.

Single-sequence metrics performed comparably or slightly better

Comparative Gene Identification in 12 Fly Genomes
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than comparative methods for long sequences (.240 nt), but

comparative methods strongly outperformed single-sequence

metrics on shorter sequences. For example, in the length range

of 181–240 nt (which includes the median exon length) the best

comparative metric resulted in 51% lower error than the best

single-sequence metric (0.027 MAE for the dN/dS test and 0.056

MAE for Z curve). In the shorter length range of 121–180 nt, the

best comparative metric resulted in 60% lower error than the best

single-sequence metric (0.029 MAE for CSF and 0.073 MAE for Z

curve). Different comparative methods were also preferred at

different lengths. For example, CSF strongly outperformed the

dN/dS test on the shortest sequences (#60 nt), while they

performed comparably on longer sequences.

Independence of the metrics
While each of the metrics we studied exhibited unique

performance characteristics, some measure similar fundamental

lines of evidence, and thus may tend to err on the same examples.

We investigated the independence of the metrics, indicated by how

differently they rank the exons in our test set, using a

dimensionality reduction technique called multidimensional scal-

ing (MDS; see Methods). This analysis led to a two-dimensional

visualization shown in Figure 2A, in which each point represents

one of the metrics and the distance between the points

approximately represents their dissimilarity.

We found that the dN/dS test and CSF behaved very similarly,

while RFC was clearly distinct. The sequence conservation metric

was separate from each of these, while TBLASTX clustered with

CSF and dN/dS. The four single-sequence metrics formed two

additional clusters distinct from the comparative metrics. These

findings agree with intuition: CSF and the dN/dS test both observe

the distinctive biases in codon substitutions in protein-coding

sequences, while RFC observes patterns of insertions and deletions

that are essentially orthogonal to codon substitutions, and the

single-sequence metrics observe compositional biases and period-

icities that are ignored by the comparative metrics.

Combining metrics
The relative independence of several of the metrics suggests that

combining them could lead to higher performance. We selected

five metrics representing each of the MDS clusters (CSF, RFC,

sequence conservation, Z curve, and codon bias) and combined

them using cross-validated linear discriminant analysis (LDA). As

expected, the hybrid metric outperformed any of its inputs: by

MAE error, the LDA hybrid resulted in 27% lower error than its

best input metric (0.040 MAE for LDA vs. 0.055 for CSF). The

hybrid metric demonstrated much higher sensitivity than any of its

input metrics (Figure 2B), and higher specificity than all of the

input metrics except CSF. We obtained almost identical results

using a second hybrid metric based on a linear support vector

machine instead of LDA. Thus, although CSF and the dN/dS test

remain the methods of choice for the highest specificity, the hybrid

metrics achieved higher overall performance.

Dependence of Comparative Methods on Genome
Alignments

We next investigated how strongly the performance of the

comparative methods depends on genome sequence alignments.

We compared the above results, based on MULTIZ local

similarity-based alignments, with the corresponding results based

on the synteny-anchored Mercator/MAVID alignments. Overall,

the two alignments led to highly concordant results, with similar

trends in the performance of the metrics relative to each other and

across different sequence lengths. There were, however, some

notable differences in their absolute levels of performance.

We expected the local alignment approach to give higher

sensitivity than the synteny-anchored alignments, since it should be

better able to align exons that have undergone rearrangements [45].

Indeed, we found that MULTIZ tended to align more species for

each region (Figure S2) and led to higher sensitivity than the

Mercator/MAVID alignments (e.g. 90% vs. 87% for CSF at 99%

specificity, with 85% of exons detected in both alignments; Figure

S3). Conversely, we expected the synteny-anchoring approach used

by Mercator/MAVID to give higher specificity than the local

alignment approach of MULTIZ, since it may generate fewer

spurious non-orthologous alignments [45]. However, we found that

while the Mercator/MAVID alignment could lead to slightly higher

specificity, it did so only at disproportionate sensitivity tradeoffs. For

example, with the baseline sequence conservation metric, specificity

using the Mercator/MAVID alignments exceeded that of the

MULTIZ alignments only at lower than 58% sensitivity (compared

to 80% sensitivity at the MULTIZ-based MAE point). Similarly,

with RFC, specificity resulting from the Mercator/MAVID

alignments was greater only at lower than 63% sensitivity

(compared to 92% MAE sensitivity).

Overall, the Mercator/MAVID alignments led to somewhat

lower sensitivity without a clear specificity advantage, and this was

reflected in worse MAE and AAC error statistics (Figure S3). We

therefore focused on the MULTIZ alignments for the remainder

of our analysis. We note, however, that the Mercator/MAVID

alignments did allow detection of some exons not detected in the

MULTIZ alignments (,2% of all exons). More generally, these

empirical observations could be highly dependent on parameter

settings of the genome alignment programs, and further

investigation of these strategies is required.

A Wide Range of Phylogenetic Distances Is Effective in
Pairwise Analysis

To investigate which species are the most and least effective

informants for gene identification, we evaluated each pairwise

comparative metric using informant genomes at increasing

evolutionary distance from D. melanogaster. We applied each metric

to pairwise alignments of D. melanogaster with D. erecta, D. ananassae,

D. pseudoobscura, D. willistoni, and D. grimshawi, each representing

various clades within the genus Drosophila (Figure 3).

We found that D. ananassae was overall the most effective

informant, outperforming other species on most metrics. However,

Figure 1. Overall discovery power of discriminative metrics using 12 genomes. (A) ROC curves showing sensitivity and specificity of each
metric on classifying 10,722 known exons and 39,181 random non-coding regions. Comparative methods tended to outperform single-sequence
metrics, with the exception of a baseline sequence conservation metric. CSF and the dN/dS test achieved near-perfect specificity, while RFC achieved
high sensitivity. (B) Summary error statistics for each metric computed from the ROC curves. Minimum Average Error (MAE) is the minimum average
of the false negative rate and false positive rate. Area Above the Curve (AAC) is the area above the ROC curve in the unit square. (C) MAE and AAC
error statistics for each metric when the dataset is partitioned into several sequence length categories. All metrics tended to perform better on longer
sequences than on shorter sequences. Comparative methods strongly outperformed single-sequence metrics on short sequences (60–240 nt). Inset:
relative size of each sequence length category.
doi:10.1371/journal.pcbi.1000067.g001

Comparative Gene Identification in 12 Fly Genomes
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Figure 2. Independence of metrics and discovery power of metric combinations. (A) Multidimensional scaling (MDS) visualization in which
each point represents a metric and the distance between any two points approximately represents their dissimilarity, measured as 1-(rank correlation
of the scores of the known exons). Hybrid metrics appear closer to the center, suggesting that they successfully combine distinct information from
the individual metrics. (B) ROC curves showing the performance of two hybrid metrics created by combining five comparative and single-sequence
metrics using Linear Discriminant Analysis (LDA) or a Support Vector Machine (SVM). The hybrid metrics outperformed all of their input metrics.
doi:10.1371/journal.pcbi.1000067.g002
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inspection of the corresponding ROC curves often revealed a

more complex situation, with multiple species showing similar

performance, and sometimes higher for certain sensitivity/

specificity tradeoffs. For example, with KA/KS, D. ananassae and

D. willistoni performed comparably, with D. ananassae leading to

slightly higher sensitivity and D. willistoni leading to slightly higher

specificity (Figure 4A). Similarly, with RFC, closely related species

led to slightly higher sensitivities, and more distant species led to

slightly higher specificities (Figure S4). Hence, while D. ananassae

was overall the most effective informant, it did not robustly

outperform the other pairwise informants we studied. The only

exception was D. erecta, the most closely related to D. melanogaster of

the species we studied. D. erecta was consistently less informative

than the others, leading to the lowest overall classification

performance on most of the pairwise metrics.

To investigate more distant species for which we lacked whole-

genome alignments, we also applied TBLASTX to the genomes of

the mosquito [46] and honeybee [47]. We found that these species

led to much worse performance than the Drosophila species as

informants for D. melanogaster (Figure 4B).

We conclude that a broad range of species within the genus

Drosophila (outside of the melanogaster subgroup) make effective

pairwise informants for gene identification in D. melanogaster, while

the mosquito and honeybee, the next most closely related species

with fully sequenced genomes, are likely to be too distant for this

application. These findings are consistent with a previous smaller-

scale study of comparative gene identification power in flies [14],

and previous theoretical and simulation studies suggesting that,

while some mathematically optimal distance may exist, species at a

broad range of phylogenetic distances should be comparably

effective informants for identifying exons and other conserved

elements [13,15].

Multi-Species Comparisons Lead to Higher Performance
We next investigated the effectiveness of increasing numbers of

informant species on the metrics that can use multiple informants.

We evaluated each metric using subsets of the available species

corresponding to increasingly broad clades within the genus

Drosophila (see phylogeny in Figure 3): the melanogaster subgroup (5

species including D. melanogaster), the melanogaster group (6 species),

the melanogaster and obscura groups (8 species), the subgenus

Sophophora (9 species), and finally all 12 species of the genus

Drosophila.

We found that for each of the metrics we benchmarked in this

way, discriminatory power tended to increase as additional

informant species were used (Figure 5A). In contrast to our
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Figure 3. Evolutionary distances relating 12 Drosophila species. (A) Phylogenetic tree and estimated neutral branch lengths for the species.
Tree topology follows the accepted phylogeny of these species [21,22]. Neutral substitution rates estimated from 12,861 4-fold degenerate sites in
syntenic one-to-one orthologs (see Methods). (B) Pairwise distance of each of the 11 other Drosophila species from D. melanogaster, as compared to
similarly estimated distances for vertebrates. (C) Total independent branch length provided by several subsets of the Drosophila species used to
benchmark multi-species methods.
doi:10.1371/journal.pcbi.1000067.g003
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previous pairwise analysis, in which the most distant Drosophila

informants led to similar or slightly worse performance than closer

species, adding informants at increasing distances led to a clear

trend in higher classification performance. The dN/dS test, RFC,

and the sequence conservation metric each showed a smooth

progression of increasing performance with each successively

larger group of informant species. For example, starting from the

four informants within the melanogaster subgroup, the dN/dS test

achieved an MAE of 0.103. With the addition of each successive

group of informants, the MAE was reduced relatively by 35%,

43%, 48%, and finally by 52%. CSF showed a similar trend

through the subgenus Sophophora, but did not clearly benefit from

the subsequent addition of the final three informants of subgenus

Drosophila. In all cases, the improvement with multiple species was

most pronounced for short exons (Figure 5B).

With a sufficient number of informants, the multi-species

metrics surpassed single-sequence metrics according to MAE

(Figure 5C). This also stands in contrast to our pairwise analysis, in

which no informant enabled any comparative metric to outper-

form the best single-sequence metric (Z curve). CSF exceeded the

performance of Z curve once we used at least six species ($1.3

sub/site), dN/dS with at least eight species ($1.9 sub/site), and

RFC, using its simplistic vote-tallying scheme, with all twelve

species (4.1 sub/site). The baseline sequence conservation metric

never outperformed Z curve, although its performance also

increased with additional species. (We note that while these results

show that a certain number of informants is sufficient, they do not

imply that they are all necessary to achieve some level of

performance; removing informants that contribute very little

independent branch length might not substantially reduce

performance.)

In most cases, the four informants of the melanogaster subgroup

together yielded worse performance than pairwise analysis with

the best pairwise informant, D. ananassae. In contrast, all of the

informant clades that combined D. ananassae with more distant

species led to better performance than any pairwise analysis. This

affirms our earlier conclusion, based on a pairwise analysis with D.

erecta, that the species within the melanogaster subgroup are sub-

optimal informants for the metrics we studied, presumably because

they are too closely related to D. melanogaster. Indeed, the neutral

distance of D. ananassae from D. melanogaster is 1.0 substitutions per

neutral site, while the total independent branch length provided by

the four melanogaster subgroup informants is only 0.4 sub/site.

Characterizing Genes that Comparative Methods Fail to
Detect

It is well-known that genes in certain categories of biological

function tend to be faster-evolving [41,46–48]. We lastly

investigated whether comparative metrics therefore systematically

fail to distinguish such genes from non-coding regions. We

obtained Gene Ontology (GO) annotations [49,50] for each of the

2,734 genes comprising our test set. For each of the 192 GO terms

represented by at least thirty genes in our test set, we determined

the fraction of those genes with at least one exon scoring above a

stringent cutoff (‘‘detected genes’’).

We found that all of the functional categories we investigated

had very high detection rates (Table S1). For example, with a CSF

cutoff corresponding to 85% exon sensitivity and 99.9% specificity

using all twelve fly genomes, the overall fraction of detected genes

was 92%, and the detection rates surpassed 90% for all but two

functional categories: serine-type endopeptidase activity (89%

detected genes) and its superset, serine-type peptidase activity

(86%). Serine proteases play key roles in insect innate immunity,

and some likely evolve under positive selection [46,51,52]. Several

other categories that intuition suggests might relate to more

rapidly evolving genes, however, were not problematic, including

immune response (94%), gametogenesis (95%) and G-protein

coupled receptor activity (100%).

Figure 4. Pairwise discovery power using different informant species. (A) ROC curves for KA/KS using D. melanogaster with each of five
different informant species. Species at a wide range of evolutionary distances performed comparably, except for D. erecta, the most closely related to
D. melanogaster, which clearly underperformed the others. (B) MAE and AAC error statistics for each pairwise comparative metrics applied to the
same five informants. D. ananassae (blue) is overall the preferred informant, but not uniformly so. For TBLASTX, the performance is also shown using
mosquito (Anopheles gambiae) and honeybee (Apis mellifera), which led to worse performance than the Drosophila species. No pairwise comparison
outperformed the best single-sequence metric (Z curve).
doi:10.1371/journal.pcbi.1000067.g004
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Instead, comparative metrics had the most difficulty detec-

ting genes of unknown function. Three GO terms indicating

unknown function (unknown cellular component, molecular

function, and biological process) had only 67%, 61%, and 60%

detected genes. In fact, of the genes that were not detected at this

cutoff, 85% were of unknown function or lacked any GO term,

compared to 49% of all the genes in our dataset. These trends held

for all of the comparative metrics and cutoffs we investigated

(Table S1).

Overall, these results indicate that comparative methods using

the twelve fly genomes were able to detect the vast majority of

genes in all of the functional categories we investigated (which

were represented by at least 30 genes in our dataset; a larger

sample might reveal more specific functional categories that are, in

fact, very difficult for comparative methods to detect). They had

much greater difficulty detecting genes of unknown function,

which may be under less selective constraint overall [14,21] but

could also include a higher proportion of incorrect or spurious

annotations [5]. Interestingly, Z curve, a single-sequence metric,

also showed much lower sensitivity to genes of unknown function

(Table S1), suggesting that these genes, if they are correctly

annotated, tend to be unusual in several ways.

Discussion

In this paper, we investigated discriminative metrics for

distinguishing protein-coding sequences from non-coding sequenc-

es. We found that multi-species comparative methods outperform

single-sequence metrics, particularly on short sequences (#240 nt).

On the other hand, the pairwise comparative methods we studied

achieved higher specificity, but did not outperform advanced

single-sequence metrics overall. We showed that several compar-

ative and single-sequence metrics can be combined into a more

powerful hybrid metric. We found that a broad range of species

within the genus Drosophila are comparably effective pairwise

informants for D. melanogaster, in agreement with theoretical

predictions. We showed that adding more species to comparative

analysis progressively increased genome-wide discovery power, for

a variety of different methods. Contrary to expectation, we found

no evidence that synteny-anchored alignments lead to appreciably

Figure 5. Multi-species discovery power using increasing numbers of informant species. (A) ROC curves for the dN/dS test using subsets
of Drosophila species corresponding to increasingly broad phylogenetic clades from D. melanogaster (see Figure 1). Discriminatory power steadily
increased as more informants were used, leading to strictly better sensitivity and specificity. (B) Effect of additional species was most pronounced for
short exon lengths. (x-axis) mean length within a quantile of the sequence length distribution (y-axis) sensitivity of the dN/dS test within each quantile
at fixed specificity (99%). (C) MAE and AAC error statistics for each multi-species comparative metric using the same subsets of informants. Also
shown for comparison are the best pairwise analysis and the best single-sequence metric, both of which are outperformed by multi-species methods
with sufficient informants.
doi:10.1371/journal.pcbi.1000067.g005
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higher specificity, and no evidence that comparative methods

systematically fail to detect genes in functional categories typically

considered fast-evolving.

Among the three multi-species comparative metrics we studied

(CSF, the dN/dS test, and RFC; excluding the baseline sequence

conservation metric), none strictly outperformed the others. RFC

tended towards lower specificity but higher sensitivity than CSF

and the dN/dS test. CSF was more effective than the dN/dS test on

the shortest exons, but they performed comparably overall, and

both achieved near-perfect specificity at moderate sensitivity

tradeoffs. We developed CSF as a simpler alternative to the

computationally expensive phylogenetic algorithms upon which

the dN/dS test is based, and we consider it successful in this respect,

considering its comparable results and its much faster total

compute time (on our dataset, completed in several minutes for

CSF vs. a few weeks for the dN/dS test using PAML).

On the other hand, our tests with different numbers of

informant species suggest that the CSF method may benefit from

future improvements to take advantage of ever-larger numbers of

informants. Both CSF and RFC are discriminative methods that

use heuristic approaches to combine multi-species evidence,

making them less theoretically appealing than generative phylo-

genetic models such as those used in the dN/dS test. It is likely that

such principled statistical frameworks can lead to further

improvements for both CSF and RFC. Presently, however, the

fact that both of these relatively simple methods outperformed

advanced single-sequence metrics, and even competed with a

maximum-likelihood phylogenetic algorithm, speaks to the power

of the underlying comparative data. Lastly, we note that simple

methods such as RFC and KA/KS might be preferable in certain

ways when working with species for which high-accuracy training

data is not available. In our setting, the best performing metrics

tended to be highly parameterized approaches that require reliable

training data, and thus probably benefited from the excellent

FlyBase/BDGP annotation of the D. melanogaster genome.

Selection of Informants for Comparative Gene
Identification

Using a variety of different methods, we found that species

ranging from 1.0–1.4 substitutions per neutral site from D.

melanogaster are comparably effective informants for pairwise gene

identification, with slight preference given to the closer end of this

range. This ‘‘optimal’’ range might extend both towards closer

species (between D. erecta and D. ananassae) and towards more

distant species (between D. grimshawi and A. gambiae), but these

distances were not explored in the currently sequenced genomes.

This range is comparable to the distance from human of the

opossum (0.8 sub/site), chicken (1.1 sub/site), and lizard (1.3 sub/

site), suggesting that species more distant than the eutherian

mammals (the farthest of which are less than 0.5 sub/site; Figure 3)

may prove to be excellent informants for human gene identifica-

tion.

Moreover, our study showed that comparative genomics power

did not saturate with the number of species compared, as the

multi-species metrics tended to show continued improvement from

each progressively larger group of informants studied (Figure 5).

The overall improvement did become more incremental as the

number of informants grew, which could be interpreted either as

diminishing returns from additional genomes, or simply as the

expected asymptotic increase in performance towards an achiev-

able optimum. Importantly, the improvement from more

informants was far more pronounced among short exons than

long exons (Figure 5B); this suggests that, while long exons are easy

to discover even with few species, still more informants may

significantly improve the discovery of short coding exons, and

perhaps other classes of small elements. Thus, especially for small

elements, we apparently have not yet reached a saturation point

with twelve metazoan species spanning a total of 4.13 substitutions

per neutral site.

We chose to express discovery power as a function of the neutral

substitution rate estimated for the species compared (Figure 3).

While this rate provides a compelling measure of expected

discovery power [13], it is important to note that genetic distance

between species (whether measured by neutral substitution rate or

other metrics [21,53]) is far from the only consideration that

should guide comparative informant selection. For example,

population dynamics affect the strength of selection relative to

neutral drift, and thus may skew the relationship between neutral

divergence and the significance of observed conservation in some

lineages [54,55]. Additionally, the genome size and the density and

type of repetitive elements in an informant genome may affect the

ability to sequence, assemble, and align it to a target genome,

especially if low-coverage [18] or short-read [56,57] sequencing

strategies are used. Accurate alignment is further complicated by

variation in the rates of chromosomal rearrangement and

segmental duplication and loss, which are likely to affect the

proportion of the genome that can be accurately recognized as

orthologous, even for species that show similar nucleotide

divergence.

Much more fundamentally, distant species share less in common

biologically; indeed, the 12 Drosophila species were selected in part

to represent the diverse ecological niches they occupy [58] and the

neutral distance they span (approximately corresponding to the

distance between human and reptiles). Thus, while our results

suggest that such distant species may nonetheless be highly

informative given high-quality sequences and alignments, future

empirical studies should compare them to the use of many species

at closer distances, such as those represented by the eutherian

mammals, for gene identification.

Implications for Gene Prediction Strategies
One application of the metrics we have studied will be their

integration into de novo gene structure predictors based on semi-

Markov conditional random fields, which can combine multiple

discriminative metrics in a manner not unlike our LDA hybrid.

Our results suggest that these systems should be able to use

multiple informant species and multiple metrics to identify protein-

coding sequences with higher accuracy, especially on short exons.

Still, it is not obvious that these trends in the metrics’ performance

necessarily imply higher-accuracy prediction of complete gene

structures, since the latter also strongly depends on the detection of

splice sites and other sequence signals [12,59]. Additionally, like

the more advanced metrics we studied, such systems tend to be

highly parameterized and thus dependent on high-quality training

data, which may not be available in less well-studied species. More

fundamentally, the probabilistic models used in gene predictors

make simplifying assumptions about gene structures that lead to

many incorrect predictions, and that cannot be relaxed just by

using more powerful metrics. For example, they currently cannot

predict nested and interleaved genes, which are fairly common in

metazoan genomes [5,50,60–62], since these structures violate

Markov independence assumptions. A similar challenge is

presented by alternative splice isoforms with mutually exclusive

exons that do not splice to each other in-frame.

The methods we have studied also have other important

applications, such as assessing and refining existing annotations,

and searching the genome for coding regions that are systemat-

ically missed or erroneously modeled by other methods. In
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particular, the effectiveness of comparative methods for detecting

short coding regions may prove crucial in identifying short

proteins, which are known to serve important biological roles but

have probably been systematically under-represented in genome

annotations [63–66]. They also provide a promising way to search

for gene structures that violate traditional assumptions entirely,

such as stop codon readthrough, translational frameshifts and

polycistronic transcripts, which also might be more common in

animal genomes than currently appreciated [5].

Methods

Genomes, Alignments, Annotations, and Phylogeny
We used ‘‘Comparative Analysis Freeze 1’’ assemblies of the

twelve Drosophila genomes [21] available from the following web

site: http://rana.lbl.gov/drosophila/assemblies.html. We used two

different genome alignment sets [22]. One was derived from a

synteny map generated by Mercator (C. Dewey, http://www.

biostat.wisc.edu/,cdewey/mercator/) and sequence alignments

generated by MAVID [43]. The other genome alignments were

generated by MULTIZ [42]. These alignments are available from

the following web site: http://rana.lbl.gov/drosophila/wiki/index.

php/Alignment.

We obtained FlyBase release 4.3 annotations from the following

web site:

ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_

tr4.3_20060303/gff.

We estimated branch lengths in the phylogenetic tree for the

flies (shown in Figure 3) based on four-fold degenerate sites in

alignments of orthologous protein-coding genes. We identified

one-to-one orthologs based on FlyBase annotation release 4.3 for

D. melanogaster and community annotations for the 11 other species

[21], yielding 12,861 four-fold sites. Then, to estimate branch

lengths, we ran PHYML v2.4.4 [67] with an HKY model of

sequence evolution, a fixed tree topology (Figure 3A), and

remaining parameters at default values. For comparison with

vertebrates, we estimated the branch lengths for 28 vertebrates

using 10,340 four-fold sites, based on alignments of genes with

one-to-one orthologs in human, dog, and mouse [68]. We

obtained the MULTIZ vertebrate alignments from the UCSC

Genome Browser [69].

Dataset Preparation
We randomly sampled 2,734 of the 13,733 euchromatic genes

in FlyBase annotation release 4.3, and then selected all 10,722

non-overlapping exons of all transcripts of those genes. We chose

this strategy of randomly sampling genes and selecting all exons of

those genes, rather than directly sampling exons, to facilitate

studying how the power of each metric varies across different

functional categories of genes. Although not by design, the length

distribution of sequences in our test set (median = 224 nt,

mean = 404 nt, sd = 570 nt) is very similar to the length distribu-

tion of exons in the genome (median = 220 nt, mean = 408 nt,

sd = 568 nt). Each known exon was evaluated in its annotated

reading frame.

For each known exon in our dataset, we selected four non-

coding regions of the same length and strand. We selected each of

these regions by randomly choosing a start coordinate in the

BDGP Release 4 assembly of the D. melanogaster euchromatic

chromosome arms, and ensuring that the resulting region did not

overlap an annotated coding exon. We also chose only regions

consisting of at least 50% nucleotide characters (as opposed to Ns).

The codon reading frame for the non-coding regions was always

set arbitrarily to 0 (that is, they were always considered to begin

with a complete codon). We removed in-frame stop codons in D.

melanogaster from the non-coding regions (the length of each control

region matched the corresponding exon after removing stop

codons). All the regions in the dataset were selected without

regard to how well they were aligned in either genome alignment

set we used.

The coordinates, sequences, and alignments of our dataset are

available for download (Text S1).

Metric Training and Evaluation
CSF and the single-sequence metrics (except for Fourier

transform) require training to estimate parameters. To avoid

overfitting, we trained and applied them using four-fold cross

validation: we randomly partitioned the dataset into four subsets,

and then generated scores for each subset by training on the other

three subsets. We then combined the scores for the subsets to

obtain scores for the entire dataset. We applied the other metrics

directly to each sequence.

We computed ROC curves for each metric by choosing 250

cutoffs representing quantiles of the score distribution over the

entire dataset, and at each cutoff, evaluating sensitivity and

specificity when sequences scoring above the cutoff are considered

positively classified, and sequences scoring less than or equal to the

cutoff are negatively classified. Some metrics failed to produce a

score for some sequences; for example, comparative metrics

produced no score for sequences in which no alignment was

present. These sequences were regarded as negatively classified at

all cutoffs, reflecting a non-coding default hypothesis. Our ROC

curves may therefore underestimate the sensitivity or overestimate

the specificity that each comparative method would exhibit if

given perfect alignments of all orthologous elements.

We computed the MAE as the highest average sensitivity and

specificity among the 250 points on the ROC curve, and the AAC

by trapezoidal integration over these points.

Metric Implementation Details
KA/KS. To estimate KA/KS, we used the method of Nei and

Gojobori [30], which is simple and widely used although it is

known to have certain inherent biases [31]. We considered only

codons with ungapped alignments between D. melanogaster and the

informant.

TBLASTX. We used the blastall program in NCBI BLAST

2.2.15 [33] with the parameters -p tblastx -m 9 against the repeat-

masked genome assembly of the informant species. For each

sequence, we used the best ‘‘bit score’’ among the resulting hits as

the score for that sequence. We applied TBLASTX to the

mosquito and honeybee in addition to the Drosophila species. We

obtained these genome assemblies [46,47] from the UCSC

Genome Browser [69], assembly versions anoGam1 and apiMel2.

dN/dS test. We carried out the dN/dS test by using PAML

3.14 [34] to compute likelihoods of each sequence alignment

under the assumption of either dN/dS = 1 or dN/dS estimated by

maximum likelihood. Each multiple sequence alignment was pre-

processed to make it acceptable to PAML as follows: gaps in the D.

melanogaster sequence were removed, ends were trimmed so that the

sequence only contains complete codons, and in-frame stop

codons were changed to gaps in the informant sequences.

Additionally, rows (informant species) with more than 50%

gapped positions were removed, to reduce the computational

cost of marginalizing over such heavily gapped rows.

PAML was then run twice on each alignment, once with

fix_omega = 1 and once with fix_omega = 0. The other paramaters,

common to both runs, were runmode = 0, seqtype = 1, Codon-

Freq = 2, model = 0. The tree was specified as shown in Figure 3.
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The log-likelihood values computed by the two runs were subtracted

to obtain a log likelihood ratio used as the score for the region.

For practical reasons, PAML was not allowed to run for more

than one hour on any individual alignment. Cases in which PAML

exceeded this time limit, where no informant sequences remained

after preprocessing, or otherwise failed were regarded as negatively

classified at all cutoffs. This occurred in only 70 of 49,903 cases

with 12 flies and 242 of 49,903 cases with the melanogaster subgroup

informants.

CSF. The CSF metric is based on estimates of the frequencies

at which all pairs of codons are substituted between genes in the

target species and the informants [5]. First, let us consider

computing the score for a pairwise alignment only. Consider the

alignment of a putative ORF/exon as two sequences of codons A

and B, where Ak is the target codon that aligns to the informant

codon Bk at position k in the target codon sequence (position 3k in

the in-frame target nucleotide sequence). CSF assigns a score to

each codon position k where: (1) Ak and Bk are both un-gapped

triplets, (2) Ak is not a stop codon, and (3) Ak?Bk. CSF then sums

these scores to obtain an overall score for the sequence.

The score assigned to a codon substitution (a,b) is a log-

likelihood ratio indicating how much more frequently that

substitution occurs in coding regions than in non-coding regions.

Each likelihood compared in this ratio is derived from a Codon

Substitution Matrix (CSM), where

CSMa,b~P informant codon b target codon a, a=bjð Þ

The entries of the CSM are estimated for each target and

informant by counting aligned codon pairs in training data, and

then normalizing the rows to obtain the desired conditional

probabilities. We train two CSMs, one for which the training data

is alignments of known protein-coding genes (CSMC) and one for

which the training data is alignments of random non-coding

regions (CSMN). The score that CSF assigns a codon substitution

(a,b) is then

log
CSMC

a,b

CSMN
a,b

:

With multiple informants, CSF uses an ad hoc strategy to combine

evidence from the informants without double-counting multiple

apparent substitutions among extant species that result from fewer

evolutionary events in their ancestors. For each target codon

position k, CSF assigns a score to codon substitutions between the

target and each informant exactly as in the pairwise case, using the

appropriate CSMs for each informant. CSF then takes the median

of these scores to obtain a composite score for position k, and sums

these composite scores to obtain an overall score for the sequence.

Note that the median is usually taken on fewer than n pairwise

scores, since the pairwise scores are only assigned to ungapped

informant codons that differ from the target codon.

RFC. We applied the RFC metric exactly as previously

described [4,32]. Briefly, given an alignment of a region of the

target genome (D. melanogaster), a pairwise score between the target

and each informant wass computed as the percentage of target

nucleotides that aligned in the same reading frame in the

informant (taking the largest such percentage out of the three

possible reading frame offsets). With multiple informant species,

each species votes +1, 21, or 0 based on a species-specific cutoff

on the pairwise RFC score: +1 if the score is above, 21 if the score

is below, or 0 if there was no sequence aligned. These votes are

then summed to obtain an overall score for the region. The cutoff

for each species is chosen by examining the typically bimodal

distribution of the score between known coding and non-coding

regions, and usually ranges between 70% and 80%.

Sequence conservation metrics. The pairwise sequence

conservation metric is simply the percent identity between the target

and informant sequences (as a fraction of the target sequence

length). For multiple alignments, we assigned a score to each target

nucleotide column corresponding to the largest fraction of species

having the same nucleotide in that column (plurality), and averaged

these scores across the columns of the alignment.

Fourier transform. The Fourier transform metric is an

aggregate measure of the three-base periodicities of each

nucleotide character in coding sequences [37,70]. First, the

DNA sequence is converted into four binary indicator

sequences, one for each nucleotide, e.g.

uA nð Þ~
1 if nucleotide A occurs at position n

0 otherwise

�

For each nucleotide, a three-base periodicity is then calculated

by computing the magnitude of the discrete Fourier transform

(DFT) of its indicator sequence at 1/3 frequency, e.g.

UA
1=3ð Þ~

XN

n~1

uA nð Þe{
2
:
p
:
i
:

n{1ð Þ
3

�����
�����
2

The overall score of the sequence is then computed by summing

the contribution of each nucleotide periodicity normalized by the

length of the sequence,

S~
1

N
UA

1=3ð ÞzUG
1=3ð ÞzUC

1=3ð ÞzUT
1=3ð Þð Þ

We found that the discriminative performance of this metric is

identical to that obtained by computing the signal-to-noise ratio of

the 1/3 frequency component of the DFT [71]. We chose the

former because it has fewer free parameters.

Codon bias. Let ai be the amino acid translation of codon i.

The metric utilizes codon usage vectors C and N for coding and

non-coding sequences, where Ci is the likelihood of codon i

conditional on amino acid ai in coding regions, and Ni is the

corresponding likelihood for non-coding regions. Ci is estimated

from training data by determining the ratio of the number of times

codon i occurs in-frame to the total number of times amino acid ai

occurs in-frame; Ni is estimated similarly with an arbitrary frame.

To evaluate a given sequence, a total log-likelihood ratio LLR is

computed by summing log
Ci

Ni

for each putative in-frame codon i

in the sequence. LLR is positive if the codon bias in the given

sequence is more similar to the coding regions in the training set

than to the non-coding regions, and negative otherwise.

ICMs. We used Glimmer 3.02 [39] to build and evaluate the

ICMs. In the training step, we used the build-icm program to

estimate parameters for coding and non-coding ICMs. For both

models, we used the default depth = 6. We found a choice of

width = 6 improved discrimination over the default setting. The

coding ICM was trained with the default period = 3 while the non-

coding model was constrained to period = 1. In the testing step, the

coding and non-coding ICMs were used to score the sequences

using the glimmer3 program with the linear and multifasta options.
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The ICM metric score was computed as the log-ratio of the coding

and non-coding likelihoods.
Z curve. The Z curve score for a sequence of DNA is a linear

combination of 189 frame-specific mono-, di-, and tri-nucleotide

occurrence frequencies [2,72]. The weights assigned to these

frequencies are trained by Fisher linear discriminant analysis on

the frequency vectors computed from the coding and non-coding

sequences in the training set, which we carried out using

MATLAB with default settings.

Hybrid Metrics
We created hybrid metrics by combining the pre-computed

scores of the input metrics using linear discriminant analysis (LDA)

and a support vector machine (SVM). In both cases, prior to

combination, the scores of each input metric were normalized to

have zero mean and unit variance across the entire dataset. The

normalized scores from each input metric were then used as

feature vectors representing each sequence in the dataset.

We trained and applied the hybrid metrics using four-fold cross-

validation. We applied LDA with default settings in MATLAB.

For SVM, we used SVMlight 4.00 [73] with a linear kernel and

default cost parameters. We used the prediction confidence

computed by the svm_classify program as the SVM hybrid metric

score for each sequence.

Multidimensional Scaling
Multidimensional scaling (MDS) takes a high-dimensional matrix

of pairwise similarities between items (in our case, metrics), and

assigns each item to a point in a low-dimensional space (in our case,

two dimensions for visualization), such that the distance between

any two points approximately represents the dissimilarity of the

corresponding items. We applied MDS to generate the visualization

in Figure 2A using the R function cmdscale with default parameters.

We defined the similarity between two metrics as S(i, j) = cor(Ri, Rj),

where Ri is the vector of ranks of the known exons according to the

scores computed by metric i. For example, if the known exons are

ordered in some way E1, E2, E3, and metric i assigns them scores

Mi([E1, E2, E3]) = [0.2,1.0,20.5], then Ri = [3,1,2].

Supporting Information

Figure S1 Comparison of pairwise comparative metrics with D.

ananassae as the informant species. Pairwise comparisons using the

metrics we studied did not in general outperform the best single

sequence metric (Z curve), although CSF and KA/KS achieve

higher specificity.

Found at: doi:10.1371/journal.pcbi.1000067.s001 (0.17 MB PDF)

Figure S2 Comparison of alignment depth provided by

MULTIZ and Mercator/MAVID alignments. Shown on each

plot is the cumulative proportion of regions in our dataset that

have a certain number of species aligned (top) and the total branch

length of those species (bottom), in the MULTIZ (red) or

Mercator/MAVID (blue) alignments. For each region, an

informant species was considered to align if at least 50% of the

D. melanogaster nucleotides were aligned to an informant nucleotide

(as opposed to gaps). The total branch lengths for the species

aligning to each region were computed by taking the correspond-

ing subtree of the neutral tree shown in Figure 3. In all cases, the

MULTIZ alignments tend to align more species than the

Mercator/MAVID alignments, consistent with their somewhat

higher overall sensitivity (see Figure S3). (These results were

generated from static genome alignment sets, and may not be

representative of what is possible with the two approaches under

different parameter settings.)

Found at: doi:10.1371/journal.pcbi.1000067.s002 (0.23 MB PDF)

Figure S3 Comparison of discovery power provided by

MULTIZ and Mercator/MAVID alignments. (Top) The MUL-

TIZ alignments lead to higher sensitivity than the Mercator/

MAVID alignments. The Mercator/MAVID alignments can lead

to slightly higher specificity, but only at low sensitivities (,60%).

(Bottom) The two alignments overall lead to concordant sets of

detected exons, with .93% of exons detected in either alignment

detected in both alignments. Although the MULTIZ alignments

have higher overall sensitivity, the Mercator/MAVID alignments

do uniquely allow the detection of ,1.5% of exons. (These results

were generated from static genome alignment sets, and may not be

representative of what is possible with the two approaches under

different parameter settings.)

Found at: doi:10.1371/journal.pcbi.1000067.s003 (0.31 MB PDF)

Figure S4 Pairwise discovery power for RFC with different

informants. More closely related species tend to yield higher

sensitivity, while more distant species yield higher specificity.

Found at: doi:10.1371/journal.pcbi.1000067.s004 (0.15 MB PDF)

Table S1 Gene detection rates within Gene Ontology (GO)

categories. Each entry shows the percentage of genes with at least

one exon detected at a fixed exon sensitivity cutoff for each metric.

Found at: doi:10.1371/journal.pcbi.1000067.s005 (0.08 MB XLS)

Text S1 Information about access to test dataset coordinates,

sequences, and alignments, and metric score data.

Found at: doi:10.1371/journal.pcbi.1000067.s006 (0.03 MB

DOC)
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