Enhancement of Notch Receptor Maturation and Signaling Sensitivity by Cripto-1

Citation

Published Version
doi:10.1083/jcb.200905105

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4621598

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Enhancement of Notch receptor maturation and signaling sensitivity by Cripto-1

Kazuhide Watanabe,1 Tadahiro Nagaoka,1 Joseph M. Lee,1 Caterina Bianco,1 Monica Gonzales,1 Nadia P. Castro,1 Maria Cristina Rangel,1 Kei Sakamoto,2 Youping Sun,3 Robert Callahan,1 and David S. Salomon1

1Mammary Biology and Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
2Oral Pathology, Tokyo Medical and Dental University Graduate School, Bunkyo-ku, Tokyo 113-8549, Japan
3Department of Cell Biology, Harvard Medical School, Boston, MA 02115

Notch and Notch signaling pathways play essential roles in vertebrate development. Through a yeast two-hybrid screening, we identified Notch3 as a candidate binding partner of the Nodal coreceptor Cripto-1. Coimmunoprecipitation analysis confirmed the binding of Cripto-1 to all four mammalian Notch receptors. Deletion analyses revealed that the binding of Cripto-1 and Notch1 is mediated by the Cripto-1/FRL-1/Cryptic domain of Cripto-1 and the C-terminal region of epidermal growth factor–like repeats of Notch1. Binding of Cripto-1 to Notch1 occurred mainly in the endoplasmic reticulum–Golgi network. Cripto-1 expression resulted in the recruitment of Notch1 protein into lipid raft microdomains and enhancement of the furin-like protein convertase-mediated proteolytic maturation of Notch1 (S1 cleavage). Enhanced S1 cleavage resulted in the sensitization to ligand-induced activation of Notch signaling. In addition, knockdown of Cripto-1 expression in human and mouse embryonal carcinoma cells desensitized the ligand-induced Notch signaling activation. These results suggest a novel role of Cripto-1 in facilitating the post-translational maturation of Notch receptors.

Introduction

The Nodal and Notch signaling pathways perform crucial roles in regulating various stages of embryonic development (Bolós et al., 2007; Shen, 2007). Nodal is a member of the TGF-β family; its signaling activity is required to establish the anterior–posterior and the left–right body axes and to determine cell lineages for the initiation of gastrulation (Shen, 2007). Nodal utilizes a shared Smad2/3-dependent signaling pathway with other TGF-β family ligands such as activin or TGF-β. Unlike other TGF-β family ligands, Nodal requires glycosylphosphatidylinositol-anchored coreceptors, EGF–Cripto-1/FRL-1/Cryptic (CFC) family proteins which include human and mouse Cripto-1 (CR-1/Cr-1) and Cryptic (CFC1), for activation of Alk4/ActRIIB receptor signaling (Strizzi et al., 2005). Notch signaling regulates a variety of developmental processes, including asymmetric cell division, left–right asymmetry, somitogenesis, and development of various types of organ systems such as the central nervous and cardiovascular systems (Bolós et al., 2007). Mammals have four Notch receptors (Notch1–4) and five membrane-bound ligands (Dll1, -3, and -4 and Jagged-1 and -2). Mature Notch receptors are expressed as heteromeric single-pass transmembrane proteins after proteolytic maturation by furin-like protein convertase (S1 cleavage). Ligand binding induces sequential cleavage of Notch receptors at the extracellular domain (ECD) by ADAM (a disintegrin and metalloprotease) proteinase (S2 cleavage) and at the transmembrane domain by a γ-secretase enzyme complex (S3 cleavage), releasing an intracellular domain (ICD). The Notch ICD then translocates to the nucleus, where it associates with the DNA-binding protein CBF1 (CSL/RBPJ-κ) to regulate the transcription of multiple effector genes, including members of the HES/HEY family (Bolós et al., 2007).

In this study, we discovered an unexpected function of EGF-CFC proteins in the Notch signaling pathway. Our findings provide a new insight into Notch and Nodal/CR-1 signaling pathways.
Results and discussion

It has been suggested that EGF-CFC proteins function independently of Nodal in vertebrate development (Warga and Kane, 2003; D’Andrea et al., 2008). Therefore, we assumed that there may exist unknown binding partners of CR-1. To discover novel binding partners of CR-1, we used a yeast two-hybrid (Y2H) screening approach. A core peptide sequence of human CR-1 (aa 34–161) was used as a bait to screen a mouse embryo or human colon cDNA prey library for potential binding partners. A prey encoding mouse Notch3 (aa 1,290–1,478) was isolated from the screening after passage through two auxotrophic reporters. Five additional candidate genes were also isolated through this screening procedure (Table I). Two of six candidate proteins comprised secreted or cell-associated extracellular proteins, EFEMP2 and Notch3, both of which contain large EGF-like repeats. To confirm the interaction between CR-1 and Notch3 in a mammalian expression system, coimmunoprecipitation (co-IP) assays were performed using Flag-tagged CR-1 (CR-Flag) and HA-tagged full-length (FL) Notch3 (N3FL-HA) in transiently transfected COS-7 cells (Fig. 1 C). N3FL-HA was pulled down by anti-Flag antibody only in the presence of CR-Flag, and, vice versa, CR-Flag was pulled down by anti-HA antibody only in the presence of N3FL-HA. We also detected similar interactions of CR-1 with other Notch receptors (Notch1, -2, and -4; Fig. 1, A, B, and D, respectively). These interactions were observed with other cell lines such as CHO or 293T cells, suggesting that the binding of CR-1 to Notch is not cell type specific (unpublished data). CR-1 preferentially bound to the FL Notch precursors (~300 kD) but not to the cleaved forms (120 kD). To detect the interaction of endogenous proteins, we used NTERA2/D1 human embryonal carcinoma (EC) cells, which express high levels of CR-1 as well as Notch receptors (Fig. 1 E; Ciccodicola et al., 1989; Walsh and Andrews, 2003). We used two polyclonal antibodies, C20 and AF5317, which recognize the ICD and ECD of Notch1, respectively, for Notch IP. Both antibodies coimmunoprecipitated endogenous CR-1 protein (Fig. 1 F). Reciprocally, the ~300-kD forms of endogenous Notch1 and -2 were pulled down with the endogenous CR-1 protein (Fig. 1 G). We also confirmed the binding of endogenous mouse Cr-1 and Notch1 proteins in F9 mouse EC cells (Fig. S1 A). In addition to CR-1, the other member of the EGF-CFC family, CFC1, was also able to bind to the Notch1 protein (Fig. 1 H).

We then attempted to identify the binding domains within CR-1 and the Notch receptors using a series of deletion mutants (Fig. 2, A and B). Whereas a deletion of the EGF-like domain of CR-1 (∆EGF) still retained its binding affinity for Notch1, deletion of the CFC domain (∆CFC) diminished the ability of CR-1 to interact with Notch1 (Fig. 2 C). Deletion of both the EGF-like and CFC domains (∆E∆C) was required to completely abolish the interaction with Notch1 (Fig. 2 C). This suggested that the CFC domain of CR-1 is primarily responsible for mediating the binding to Notch1. We also performed deletion experiments with the Notch1 protein (Fig. 2, D–F). Deletion of all three Lin12 repeats (∆LNR) of Notch1 did not affect the Notch1–CR-1 interaction (Fig. 2 D), suggesting that the EGF-like repeats of Notch1 are responsible for the Notch1–CR-1 binding. To test whether binding of CR-1 is specific for the EGF-like repeats of Notch receptors, we replaced all of the EGF-like repeats with EGF-like repeats of a Notch ligandDll1 (DlEGF + N∆EGF and DlEGF + N∆ECD). DlEGF + N∆EGF and DlEGF + N∆ECD failed to interact with CR-1 (Fig. 2 D). CR-1 also did not bind to FL Dll1 (Fig. 2 E). These data suggest that CR-1 binding is specific to the EGF-like repeats of Notch1. Constructs containing up to the first six EGF-like repeats of Notch1 (2×, 4×, and 6× EGF) were not sufficient to efficiently bind CR-1 (Fig. 2 D). Similarly, the Notch1 ICD did not show any binding to CR-1 (Fig. 2 D), confirming that the interaction between CR-1 and Notch1 is mediated by the ECD of Notch1. To further identify the precise location of the CR-1–interacting EGF-like repeats in Notch1, we generated deletion constructs lacking EGF-like repeats 8–24 (ΔEGF8–24 and ΔMfeI), a region which is essential for ligand binding (Ge et al., 2008). These two constructs were able to bind to CR-1 with an affinity similar to FL Notch1, suggesting that the binding of Notch1 to CR-1 is independent of the ligand-binding domain of Notch1 (Fig. 2 E). To pinpoint the EGF-like repeats responsible for CR-1 binding, we generated artificial constructs containing seven of the C-terminal EGF-like repeats (N1EGF30–YFP), the last two EGF-like repeats (N1EGF35–YFP), or only the LNR (N1LNR-YFP). Co-IP assays revealed that the binding of N1EGF30– and N1EGF35–YFP to CR-1 was comparable with the positive control N2FL-Myc, but the binding to CR-1 was dramatically reduced with N1LNR-YFP (Fig. 2 F). This suggests that the last two EGF-like repeats are necessary and sufficient for CR-1 binding. This result is in agreement with the region in Notch3 that was detected by the Y2H screen because this prey fragment

Table I. Candidate binding partners of CR-1 from Y2H screening

<table>
<thead>
<tr>
<th>Bait</th>
<th>Bait aa coordinates</th>
<th>Prey</th>
<th>Gene ID</th>
<th>Prey aa coordinates</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human TDGF1</td>
<td>34–161</td>
<td>AHNAK</td>
<td>79026</td>
<td>5,648–5,891</td>
<td>Human colon</td>
</tr>
<tr>
<td>Human TDGF1</td>
<td>34–161</td>
<td>mCDH4*</td>
<td>107932</td>
<td>1,591–1,865</td>
<td>Mouse embryo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,591–1,903</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,590–1,720</td>
<td></td>
</tr>
<tr>
<td>Human TDGF1</td>
<td>34–161</td>
<td>mEFEMP2</td>
<td>58859</td>
<td>256–440</td>
<td>Mouse embryo</td>
</tr>
<tr>
<td>Human TDGF1</td>
<td>34–161</td>
<td>mHUWE1</td>
<td>59026</td>
<td>3,494–3,736</td>
<td>Mouse embryo</td>
</tr>
<tr>
<td>Human TDGF1</td>
<td>34–161</td>
<td>mPLSCR3</td>
<td>70310</td>
<td>19–297</td>
<td>Mouse embryo</td>
</tr>
<tr>
<td>Human TDGF1</td>
<td>34–161</td>
<td>mNotch3</td>
<td>18131</td>
<td>1,290–1,478</td>
<td>Mouse embryo</td>
</tr>
</tbody>
</table>

Gene identification (ID) numbers are from the Entrez Gene database.

*Three independent clones were identified.
Figure 1. CR-1 physically associates with all four Notch receptors. (A–D) Flag-tagged CR-1 (CR-Flag) was cotransfected with HA-tagged Notch1 (N1FL-HA; A), Myc-tagged Notch2 (N2FL-Myc; B), HA-tagged Notch3 (N3FL-HA; C), and V5-tagged Notch4 (N4FL-V5; D) in COS-7 cells. IP and immunoblotting (IB) were performed with the indicated antibodies. cl., cleaved Notch proteins; fl., FL Notch proteins. (E) Nonquantitative RT-PCR for Notch receptor expression in NTERA2/D1 cells. M, markers. (F and G) Interaction between endogenous CR-1 and Notch1/2 in NTERA2/D1 cells. (F) Notch1 IP was performed using anti-Notch1 polyclonal antibodies (C20 and AF5317). (G) CR-1 IP was performed with anti–CR-1 goat polyclonal antibody (α–CR-1). Normal goat or sheep IgGs were used as negative controls. Proteins were detected with the indicated antibodies. (H) Flag-tagged CFC1 (CFC-Flag) was cotransfected with N1FL-HA, and co-IP was performed as described in A–D.
mass (~300 kD). A 120-kD form of Notch was enriched in SA-precipitated samples as described previously (Bush et al., 2001). We did not observe any detectable cell surface binding of Notch1 to CR-1 in the sequentially immunoprecipitated sample. These data suggest that CR-1 binding to Notch1 occurs mainly within the cell, even though we cannot entirely exclude the possibility of any cell surface interaction between Notch1 and CR-1, which might be below the limit of detection by this assay method. In addition, the binding of CR-1 to Notch1 interaction was independent of glycosylation because treatment with tunicamycin did not affect this binding (Fig. 3 B). The mobility shift of CR-1 and of the FL form of Notch1 confirmed that both proteins underwent protein glycosylation. Confocal analysis of GFP-labeled CR-1 and HA-tagged Notch1 (N1FL-HA) revealed that both proteins showed a typical perinuclear vesicular pattern, suggesting an ER/Golgi localization (Fig. 3 C and Fig. S2, A and B). Analysis with higher magnification revealed that these two proteins can colocalize mainly in the same intracellular vesicles. Finally, brefeldin A (BFA) treatment, which interferes with Golgi to membrane trafficking and almost completely blocks cell surface expression of CR-1 (Fig. 3 D), did not

Figure 2. Deletion analysis of the CR-1–Notch interaction. (A) CR-1 deletions. (B) Notch1 deletions/chimeras. (C–F) Co-IP was performed using anti-Flag (C), anti-HA (D and E), or anti-Myc (F) affinity beads. Proteins were detected with the indicated antibodies. cl., cleaved Notch proteins; EV, empty vector; fl., FL Notch proteins; IB, immunoblot; S.S., signal sequence.
Interaction between Cripto-1 and Notch receptors

• Watanabe et al.

assay system (TP-1 reporter) after ligand stimulation in a coculture assay (Fig. 4A).

When CHO cells transfected with the TP-1 reporter were stimulated by co-culture with wild-type (WT) or ligand-expressing L cells (L-WT, L-Dll1, or L-Jagged-1), the signal enhancement by these ligands was subtle but detectable (Fig. 4A). However, when the FL Notch1 (N1FL) was

tagged CR-1 and Notch1. GFP-tagged CR-1 and N1FL-HA were visualized by a confocal microscope. (D) Cell surface expression of CR-1 after BFA treatment. Transiently transfected COS-7 cells were treated with the indicated concentrations of BFA for 16 h. Cells were stained with PE-conjugated anti-CR-1 mAb, and FACS analysis was performed. (E) Transiently transfected COS-7 cells were treated with vehicle or 2 µg/ml BFA for 16 h, and the co-IP experiment was performed using the indicated antibodies. cl., cleaved Notch proteins; fl., FL Notch proteins; IB, immunoblot.

Figure 3. Intracellular interaction of CR-1 and Notch1. (A) Cell surface biotinylation assay. Transiently transfected COS-7 cells were treated with N-hydroxsuccinimide–PEG4-biotin. Co-IP or sequential co-IP was performed with the indicated antibodies. Each indicated band corresponds as follows: 1, biotinylated CR-1; 2, unbiotinylated and glycosylated CR-1; 3, unbiotinylated and unglycosylated CR-1; 4, carryover of 3x Flag peptides used for Flag elution. (B) Effect of glycosylation on the CR-1–Notch1 interaction. COS-7 cells were treated with vehicle or 10 µg/ml tunicamycin for 16 h after transient transfection. Co-IP assays were performed reciprocally. (C) Intracellular localization of CR-1 and Notch1. GFP-tagged CR-1 and N1FL-HA were visualized by a confocal microscope. (D) Cell surface expression of CR-1 after BFA treatment. Transiently transfected COS-7 cells were treated with the indicated concentrations of BFA for 16 h. Cells were stained with PE-conjugated anti-CR-1 mAb, and FACS analysis was performed. (E) Transiently transfected COS-7 cells were treated with vehicle or 2 µg/ml BFA for 16 h, and the co-IP experiment was performed using the indicated antibodies. cl., cleaved Notch proteins; fl., FL Notch proteins; IB, immunoblot.

affect the binding of CR-1 to Notch1 (Fig. 3E). These results suggest that the binding between CR-1 and Notch1 may occur inside the cell and possibly before or during protein processing in the ER/Golgi complex.

To assess whether the binding of CR-1 to Notch1 may affect Notch signaling, we used a CBF1-dependent Notch reporter assay system (TP-1 reporter) after ligand stimulation in a coculture assay (Fig. 4A). When CHO cells transfected with the TP-1 reporter were stimulated by co-culture with wild-type (WT) or ligand-expressing L cells (L-WT, L-Dll1, or L-Jagged-1), the signal enhancement by these ligands was subtle but detectable (Fig. 4A). However, when the FL Notch1 (N1FL) was
coexpressed, the ligand-induced TP-1 reporter activity was strongly potentiated. Ectopic expression of CR-1 significantly enhanced this ligand-induced TP-1 reporter activation. This effect of CR-1 was not observed with exogenous soluble CR-1 protein (Fig. S2 C).

A recent study has shown that Cr-1 controls processing of the Nodal proprotein by recruiting proprotein convertases such as furin or PACE4 (Blanchet et al., 2008). Because processing by furin-like convertases (S1 cleavage) is also a prerequisite to generate mature heterodimerized Notch receptors (Logeat et al., 1998), we hypothesized that CR-1 may affect this processing step. Similar to the sequestration of the Nodal precursor protein into lipid rafts (Blanchet et al., 2008), forced expression of CR-1 in CR-1–deficient CHO cells enhanced the localization of the ligand-induced TP-1 reporter activity. Ectopic expression of CR-1 significantly enhanced this ligand-induced TP-1 reporter activation. This effect of CR-1 was not observed with exogenous soluble CR-1 protein (Fig. S2 C).

Figure 4. Sensitization of the Notch signaling pathway by CR-1. (A) TP-1 reporter assay of co-cultured CHO cells with L-WT, L-Dll1, or L-Jagged-1 cells. CHO cells were transiently transfected with empty vector (EV) or WT CR-1 expression vector before co-culture. Cotransfection of FL Notch1 (N1FL) was also performed. Mean ± SD is shown for three independent experiments. *, P < 0.05. (B) Sucrose gradient isolation of lipid rafts in transiently transfected CHO cells. Fractions 4–5 correspond to the lipid raft fractions. Transferrin receptor (TIR) or Cholera toxin B (CTxB) was used as a nonraft or lipid raft marker, respectively. IB, immunoblot. (C) S1 cleavage sites of Notch1. ANK, ankyrin domain; S.S., signal sequence; TM, transmembrane domain. (D and E) Enhancement of S1 cleavage of Notch1 by CR-1 expression. CHO cells transiently transfected with the indicated amount of expression vectors were incubated with 10 µM DAPT for 24 h and analyzed by Western blotting. Mean ± SD of densitometric quantification is shown for three independent transfections (E). (F) Blockade of CR-1–induced Notch processing by a furin inhibitor. Transiently transfected CHO cells were treated with the indicated concentrations of a furin inhibitor, Decanoyl-RVKR-chloromethylketone, for 24 h, and Notch processing was analyzed as described in D. (G) Enhanced cell surface expression of Notch1 by CR-1. CHO cells were transfected with the indicated expression vectors, and the cell surface expression level of Notch1 was assessed by FACS analysis. Arrows indicate the peaks of Notch1-transfected populations.
Interaction between Cripto-1 and Notch receptors

Watanabe et al.

but to a much lesser extent (Fig. 4, D and E). The enhanced cleavage of Notch1 by CR-1 is mediated by furin-like convertase because the treatment with a furin inhibitor (Decanoyl-RVKR-chloromethylketone) dose-dependently inhibited the cleavage of Notch1 protein (Fig. 4 F). In addition, we have demonstrated that coexpression of CR-1 increased the cell surface expression of endogenous Notch1 in F9 cells. Mean ± SD is shown for four independent cultures (E), *, P = 0.021 (F)

Figure 5. Functional interaction between endogenous CR-1 and Notch1 in EC cells. (A–C) Endogenous expression of CR-1 and Notch receptors in F9 WT and Cr−/− cells. (A) Non-quantitative RT-PCR. Samples treated with reverse transcription (RT−) were used as negative controls. (B) Quantitative RT-PCR. Mean ± SD is shown for four independent cultures. *, P < 0.05 compared with F9 WT. (C) Western blot analysis. Empty vector– and N1FL-transfected CHO cells (CHO EV and N1FL) were used as negative and positive controls, respectively. cl., cleaved Notch proteins; fl., FL Notch proteins. (D and E) FACS analysis for the cell surface expression of endogenous Notch1 in F9 cells. Mean ± SD is shown for three independent cultures (E). *, P < 0.05

of the FL Notch1 protein in the lipid raft fraction in which glycosylphosphatidylinositol-anchored proteins such as CR-1 are enriched (Fig. 4 B). Furthermore, we assessed the effect of CR-1 expression on S1 cleavage of Notch1 in the presence of the γ-secretase inhibitor DAPT to exclude the effect on ligand-induced S3 cleavage (Fig. 4, C and D). CR-1 expression caused a dose-dependent increase in enhancement of the cleaved form of Notch1. This cleavage enhancement could also be demonstrated with a Notch1 mutant (N1-ΔRQRR) in which one of the furin cleavage sites was deleted (Fig. 4 C; Logeat et al., 1998)
To address the biological significance of our findings in a physiological setting, we used mouse and human EC cells in which both Cr-1/CR-1 and Notch proteins are endogenously expressed (Figs. 1 E and 5, A–C and G). F9 mouse EC cells express Cr-1 and several Notch receptors, as detected by RT-PCR and Western blot analysis (Fig. 5, A–C). We obtained a Cr-1-null variant (Cr−/−) of F9 cells, which was generated by gene targetting. We confirmed that the endogenous expression of Cr-1 was absent in F9 Cr−/− cells (Fig. 5, A and C). Notch1,-2, and -3 receptors were equally expressed in F9 WT and Cr−/− cells (Fig. 5, A and B). F9 WT cells showed little expression of Notch4, which, in contrast, was detected in Cr−/− cells (Fig. 5, A and B). Western blotting for endogenous Notch1 revealed the expression of the 300-kD precursor form and the 120-kD mature form of Notch1 in F9 WT and Cr−/− cells (Fig. 5 C). However, there was a reduced expression of the 300-kD form in F9 WT cells, as compared with F9 Cr−/− cells, suggesting an enhancement of Notch1 processing by the presence of Cr-1. In fact, the cell surface expression level of Notch1 is higher in F9 WT cells compared with Cr−/− cells (Fig. 5, D and E). Ligand-induced activation of the TP-1 reporter was reduced in F9 Cr−/− cells, as compared with F9 WT cells, and the difference was enhanced when ectopic N1FL was expressed (Fig. 5 F). Like F9 WT cells, NTERA2/D1 human EC cells, from which human CR-1 was originally cloned (Ciccociola et al., 1989) expressed Notch1,-2, and -3 but not Notch4 (Fig. 1 E). We used siRNAs to knock down endogenous CR-1 expression in NTERA2/D1 cells. We designed two siRNAs, of which siCR-1-1 showed almost a complete knockdown and siCR-1-2 showed an ~70% knockdown efficiency of the CR-1 protein (Fig. 5, G and H). We performed a co-culture assay of siRNA-transfected NTERA2/D1 cells with L-WT, L-Dll1, or L–Jagged-1 cells to assess the effect of siRNA-mediated knockdown of CR-1 on ligand-induced Notch target gene expression using quantitative RT-PCR with human-specific primer sets that do not cross-react with mouse cDNAs from L cells (Fig. S3). As shown in Fig. 5 I, CR-1 knockdown in NTERA2/D1 cells significantly suppressed to varying degrees the induction of the Notch target genes (HES-1 and HEY-1 and -2) after Notch ligand stimulation.

In this study, we discovered a novel mechanism for sensitization of the Notch signaling pathway by CR-1 through the direct binding to the intracellular pro form of the Notch receptors. Finally, the mechanism by which CR-1 facilitates Notch receptor signaling is by the enhancement of S1 cleavage through a furin-like convertase. In fact, the CR-1-binding domain of Notch1 is proximal to the S1 cleavage sites (Fig. 4 C). This processing step is essential for the cell surface expression of Notch receptors and for ligand-induced activation of the Notch receptors, at least in mammals (Nichols et al., 2007). The enhanced proteolytic processing of Notch is initiated by CR-1 in intracellular ER/Golgi vesicles that are being exocytosed. This seems likely because binding of CR-1 to Notch could not be detected on the cell surface and because blockade of glycosylation or Golgi to membrane trafficking was unable to perturb binding. We also demonstrated a role of endogenous CR-1/Cr-1 in potentiating the Notch signaling pathway in EC cells.

Both Notch and Nodal/CR-1 signaling pathways are essential for maintenance of stem/progenitor cell populations and for controlling lineage specification (Strizzi et al., 2005; Bolós et al., 2007). In addition, these signaling pathways are involved in the progression of tumors in various types of cancer (Bianco et al., 2005; Bolós et al., 2009). Therefore, our findings have a potential impact on delineating the mechanism by which Notch and Nodal/CR-1 signaling pathways may regulate embryogenesis and carcinogenesis.

Materials and methods

Cell lines

COS-7, CHO, 293T, and NTERA2/D1 cells were purchased from American Type Culture Collection. F9 WT and Cr−/− cells were provided by M. Sanicola (Biogen Idec, Cambridge, MA). L-WT, L-Dll1, and L–Jagged-1 cells were provided by P. Stanley (Alpert Einstein College of Medicine, Bronx, NY). Transfections were performed using Lipofectamine 2000 (Invitrogen) for COS-7, CHO, 293T, and F9 cells or using Nucleofector (Lonza) for NTERA2/D1 cells according to the manufacturers’ instructions.

Y2H screening

Automated Y2H screening was performed at Myriad Genetics as previously described (Garrus et al., 2001). A bait plasmid coding human CR-1 (aa 34–161) fused to the C terminus of the Ga4 DNA–binding domain (aa 1–147) was transformed into yeast strain YPH200 (MATa ura3-52 ade2-101 trp1-901 his3-200 leu2-3,112 gal4::GAL80). Prey constructs were generated from double poly(A)-selected mRNA of mouse embryo or of human colon. The prey constructs were transformed into the yeast strain BY4741 (MATa ura3-52 ade2-101 trp1-901 his3-200 leu2-3,112 gal4::GAL80). Cells were selected on 5-FOA plates. Resulting diploid yeast cells were then selected in the presence of 3 mM 3-amino-1, 2, 4-triazole for the ability to synthesize tryptophan (bait), leucine (prey), histidine (bait–prey interaction), and adenine (bait–prey interaction).

Expression plasmids

All CR-1, CFC-1, and Notch2-derived constructs were based on human sequences, whereas all Notch1-, Notch3-, and Notch4-related vectors were based on mouse sequences. WT CR-1, CR-Flag, and CFC-Flag expression vectors were previously described (Watanabe et al., 2008). CR-1 deletions (ΔEGF; ΔFC, and ΔEGFΔSCF) were generated by PCR-based methods. GFP fusion CR-1 constructs were cloned into the pCMV6e expression vector (Promega). N1FL-HA, ΔINR, DIEGF + N1ΔECD, 2–6x EGF, N1ΔCD, and DlHA were previously described (Sakamoto et al., 2002, 2005). N1ΔEGF8–24 was generated by a PCR-based method with the N1-ΔRQRF mutant construct was generated by mutagenesis. N2FL-Myc, N3FL-HA, R1031C mutant Notch3 from a CADASIL patient (N3FLmt-HA), N3ICD-HA, and N3ΔEC-Myc, and TP-1 reporter were provided by S. Artavanis-Tsakonas (Harvard University, Cambridge, MA). N4FL-V5 was generated by introducing mouse Notch4 cDNA (gift from Y. Shirayoshi, Tottori University, Tottori, Japan) into the EcoRI–NotI site of the pE6F-V5/His TOPO TA expression vector (Invitrogen). This construct is C-terminally truncated at an intrinsic NotI site (truncation of aa 1,890–1,964). DiRed-Golgi and a mouse furin expression vector were purchased from Takara Bio Inc. and Thermo Fisher Scientific, respectively. All primer sequences used for vector construction are provided in Table II.

IP, sequential IP, and Western blot analysis

Whole cell lysates were prepared using IP buffer (2 mM Na orthovanadate, 50 mM NaF, 20 mM Hepes, 150 mM NaCl, 1.5 mM MgCl2, 5 mM Na pyrophosphate, 10% glycerol, and 0.1% Triton X-100). IP experiments were performed using anti–Flag M2, anti-HA, anti-V5, anti-Myc affinity gel (Sigma-Aldrich), or SA agarose (Invitrogen). Sequential IP was performed by eluting the product after MfeI digestion of the Flag-N1-HA vector. N1EGF30-, N1EGF35-, N1ICD-Myc, and TP-1 reporter were provided by S. Artavanis-Tsakonas (Harvard University, Cambridge, MA). N4FL-V5 was generated by introducing mouse Notch4 cDNA (gift from Y. Shirayoshi, Tottori University, Tottori, Japan) into the EcoRI–NotI site of the pE6F-V5/His TOPO TA expression vector (Invitrogen). This construct is C-terminally truncated at an intrinsic NotI site (truncation of aa 1,890–1,964). DiRed-Golgi and a mouse furin expression vector were purchased from Takara Bio Inc. and Thermo Fisher Scientific, respectively. All primer sequences used for vector construction are provided in Table II.

IP, sequential IP, and Western blot analysis

Whole cell lysates were prepared using IP buffer (2 mM Na orthovanadate, 50 mM NaF, 20 mM Hepes, 150 mM NaCl, 1.5 mM MgCl2, 5 mM Na pyrophosphate, 10% glycerol, and 0.1% Triton X-100). IP experiments were performed using anti–Flag M2, anti-HA, anti-V5, anti-Myc affinity gel (Sigma-Aldrich), or SA agarose (Invitrogen). Sequential IP was performed by eluting the Flag-precipitated proteins with 3x Flag peptide followed by a second IP. Proteins were separated on 4–20% SDS-PAGE gels (Invitrogen). Epitope tags were detected with peroxidase conjugates of anti–Flag M2, anti-HA, anti-V5, anti-Myc antibodies (Sigma-Aldrich), or anti-V5 (Invitrogen) antibodies. Endogenous human CR-1 and mouse Cr-1 were detected with B3F6 mAb.
Table II. Oligonucleotide DNA/RNAs used in this study

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
<th>Description</th>
<th>Product size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primers for CR-1 mutants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR1-F-NoF</td>
<td>5'-CGGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Forward</td>
<td>221 bp</td>
</tr>
<tr>
<td>CR1-15EgF</td>
<td>5'-CGCCGCCGCCGCGCTGCGCCATACGAA-3'</td>
<td>Deletion</td>
<td></td>
</tr>
<tr>
<td>CR1-15EgF</td>
<td>5'-CGCCGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Deletion</td>
<td></td>
</tr>
<tr>
<td>CR1-15EcF</td>
<td>5'-CGCCGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Deletion</td>
<td></td>
</tr>
<tr>
<td>CR1-15EcR</td>
<td>5'-CGCCGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Deletion</td>
<td></td>
</tr>
<tr>
<td>CR1-15EcR</td>
<td>5'-CGCCGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Deletion</td>
<td></td>
</tr>
<tr>
<td>CR1-15EcoR</td>
<td>5'-CGCCGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Deletion</td>
<td></td>
</tr>
<tr>
<td>Primers for Notch1 mutants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1-Mel-End</td>
<td>5'-CGCCGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Forward</td>
<td>221 bp</td>
</tr>
<tr>
<td>N1-EgF8-24-End</td>
<td>5'-CGCCGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Deletion</td>
<td></td>
</tr>
<tr>
<td>N1-EgF8-24-R</td>
<td>5'-CGCCGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Deletion</td>
<td></td>
</tr>
<tr>
<td>N1-EgF8-24-F</td>
<td>5'-CGCCGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Deletion</td>
<td></td>
</tr>
<tr>
<td>N1-EgF8-24-F</td>
<td>5'-CGCCGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Deletion</td>
<td></td>
</tr>
<tr>
<td>N1-EgF8-24-F</td>
<td>5'-CGCCGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Deletion</td>
<td></td>
</tr>
<tr>
<td>N1-siCR-1_1-As</td>
<td>5'-CGCCGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Deletion</td>
<td></td>
</tr>
<tr>
<td>PCR primers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mNotch1-F</td>
<td>5'-GAATTCACGCGGTAACGCAATCACTACGAA-3'</td>
<td>Mutagenesis</td>
<td>Mutagenesis</td>
</tr>
<tr>
<td>mNotch1-R</td>
<td>5'-GAATTCACGCGGTAACGCAATCACTACGAA-3'</td>
<td>Mutagenesis</td>
<td>Mutagenesis</td>
</tr>
<tr>
<td>siRNAs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>siCR-1_1-1-S</td>
<td>5'-CGCCGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Mutagenesis</td>
<td>Mutagenesis</td>
</tr>
<tr>
<td>siCR-1_1-AS</td>
<td>5'-CGCCGCCGCCGCTGCGCCATACGAA-3'</td>
<td>Mutagenesis</td>
<td>Mutagenesis</td>
</tr>
</tbody>
</table>

Blank cells indicate that the information is not applicable.

\(^a\)Used for both quantitative PCR and conventional RT-PCR; \(^b\)Human specific (no cross-reactivity with mouse cDNA); \(^c\)Mouse specific (no cross-reactivity with human cDNA).
analyses were performed between the genes of interest and the house
of 94°C (30 s), 55°C (30 s), and 72°C (30 s) using the PCR master mix.
All nonquantitative PCR described in this study was performed at 25 cycles
DNase treatment was performed for all RNA extractions. cDNA was pre-
transfection, L cells were plated onto the CHO or F9 cells (5 × 10
TK-renilla, and an N1FL and/or a CR-Flag expression vector. 16 h after
Dual luciferase assay using a co-culture system with ligand-expressing
Sucrose gradient isolation of lipid rafts
As described previously [Watanabe et al., 2007b], cells were washed with
cold PBS, scrapped into 2 ml MBS (2-[1-N-morpholino]ethanesulfonic acid-
buffered saline, 25 mM 2-[1-N-morpholino] ethanesulfonic acid, pH 6.5,
and 0.15 M NaCl) containing 1% Triton X-100 and solubilized for 20 min
4°C. After homogenization by 10 strokes with a tight-fitting homoge-
nizer [Dounce; Wheaton Science Products], samples were adjusted to 40% sucrose by the addition of 2 ml of 80% sucrose. Then, a 5–40% discontinu-
sous sucrose gradient was formed and centrifuged at 40,000 rpm for 20 h in an
4°C in SW40Ti rotor [Beckman Coulter]. 12 ml fractions were removed from the top of the tubes and analyzed by Western and dot blotting.
Dual luciferase assay
Dual luciferase assay using a co-culture system with ligand-expressing
L cells was performed as previously described with slight modifications
[Stahl et al., 2008]. CHO or F9 cells were plated in 24-well culture plates
(5 × 10² cells/well) and were transiently transfected with TP1-reporter,
TK-renilla, and an N1FL and/or a CR-Flag expression vector. 16 h after
transfection, L cells were plated onto the CHO or F9 cells (5 × 10² cells/
well) and incubated for 30 h. Dual luciferase assays (Promega) were
performed according to manufacturer’s instructions.
RNA extraction and RT-PCR
Total RNA was extracted using the RNA mini kit (QIAGEN). On-column
Dnase treatment was performed for all RNA extractions. cDNA was pre-
pared from 1 µg of total RNA using the RETROscript kit (Applied Biosystems).
All nonquantitative PCR described in this study was performed at 25 cycles
of 94°C (30 s), 55°C (30 s), and 72°C (30 s) using the PCR master mix
(QIAGEN). Quantitative PCR was performed using an MX3000P PCR and
Brilliant SYBR green QPCR master mix [Agilent Technologies]. Comparative
analyses were performed between the genes of interest and the house-
keeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
All forward and reverse PCR primer sequences are provided in Table II.

