
Swift: Primary Data Analysis for the Illumina
Solexa Sequencing Platform

Citation
Whiteford, Nava, Tom Skelly, Christina Curtis, Matt E. Ritchie, Andrea Löhr, Alexander Wait
Zaranek, Irina Abnizova, and Clive Brown. 2009. Swift: primary data analysis for the Illumina
Solexa sequencing platform. Bioinformatics 25(17): 2194-2199.

Published Version
doi:10.1093/bioinformatics/btp383

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4621712

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:4621712
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Swift:%20Primary%20Data%20Analysis%20for%20the%20Illumina%20Solexa%20Sequencing%20Platform&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=4bac13d40e8868df2e45524e4162eca1&department
https://dash.harvard.edu/pages/accessibility

[17:19 10/8/2009 Bioinformatics-btp383.tex] Page: 2194 2194–2199

BIOINFORMATICS ORIGINAL PAPER Vol. 25 no. 17 2009, pages 2194–2199
doi:10.1093/bioinformatics/btp383

Sequence analysis

Swift: primary data analysis for the Illumina Solexa sequencing
platform
Nava Whiteford1,∗,†, Tom Skelly1, Christina Curtis2, Matt E. Ritchie3, Andrea Löhr4,
Alexander Wait Zaranek5, Irina Abnizova1 and Clive Brown1,†
1Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA,
2Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka Shing Centre,
Robinson Way Cambridge CB2 0RE, UK, 3Bioinformatics Division, The Walter and Eliza Hall Institute of Medical
Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, 4Harvard-Smithsonian Center for Astrophysics,
60 Garden Street Cambridge, MA 02138 and 5Harvard Medical School, Genetics, 77 Avenue Louis Pasteur,
Boston, MA 02115, USA
Received on February 22, 2009; revised on May 4, 2009; accepted on June 18, 2009
Advance Access publication June 23, 2009
Associate Editor: Joaquin Dopazo

ABSTRACT

Motivation: Primary data analysis methods are of critical importance
in second generation DNA sequencing. Improved methods have
the potential to increase yield and reduce the error rates. Openly
documented analysis tools enable the user to understand the primary
data, this is important for the optimization and validity of their
scientific work.
Results: In this article, we describe Swift, a new tool for performing
primary data analysis on the Illumina Solexa Sequencing Platform.
Swift is the first tool, outside of the vendors own software, which
completes the full analysis process, from raw images through to base
calls. As such it provides an alternative to, and independent validation
of, the vendor supplied tool. Our results show that Swift is able to
increase yield by 13.8%, at comparable error rate.
Availability and Implementation: Swift is implemented in C++ and
supported under Linux. It is supplied under an open source license
(LGPL3), allowing researchers to build upon the platform. Swift is
available from http://swiftng.sourceforge.net.
Contact: new@sgenomics.org; nava.whiteford@nanoporetech.com
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Second generation sequencing technologies such as the Genome
Analyzer (Illumina, San Diego, USA), 454-FLX (Roche, Basel,
Switzerland) and SOLiD (Applied Biosystems, California, USA)
have increased the production of sequence data by several orders of
magnitude (Quail et al., 2008). Along with an increase in throughput
these technologies bring an increased primary data analysis problem,
both in terms of the complexity of the analysis and the volume of
data that needs to be processed. Second generation devices image
a surface to which clusters of DNA grown from a template or
beads have been attached. The data analysis problem, therefore,

∗To whom correspondence should be addressed.
†Present Address: Oxford Nanopore Technologies, Begbroke Science Park,
Sandy Lane, Kidlington, OX5 1PF, UK.

first presents itself as one of image analysis, the result of which
is a sequence of intensities which require further signal corrections
to produce base calls (Brown et al., 2006). A number of new base-
calling methods have been developed including Altacyclic (Erlich
et al., 2008) and Rolexa (Rougemont et al., 2008). However, to our
knowledge no image analysis methods have been developed aside
from the proprietary implementation provided by the vendor.

In this article, we present Swift, an open source primary data
analysis package for the Illumina Solexa sequencing platform
which performs image analysis and base calling. Swift is the first
freely available solution to the primary data analysis problem
‘from images to base calls’ and is available under the LGPL3
at http://swiftng.sourceforge.net. We perform validation against a
φX 174 dataset.

The use of benchmark datasets is well established for the
validation of analysis methods for gene expression (Cope et al.,
2004; Holloway et al., 2006) and genotyping (Lin et al., 2008)
microarrays. To facilitate algorithm development and comparison
for the Illumina Solexa platform, we have made the raw files from
a φX 174 dataset available from our web site. This dataset, which
provides a stable reference against which sequencing errors may be
determined, is used to assess the performance of our approach.

2 METHODS
In Illumina Solexa sequencing template, DNA sequences are attached to a
flowcell (shown in Fig. 1). ‘Clusters’of single-stranded DNA are grown from
these single molecules and the prepared flowcell is placed in the sequencing
device for imaging. Sequencing occurs as a cyclic process. A cycle of
chemistry is performed which synthesizes a single fluorescently labelled
complementary base to each DNA molecule (Bentley et al., 2008). The
clusters are then imaged four times per cycle using two different lasers
and two filters to detect the excitation of the four labelled nucleotides. The
primary data analysis problem is therefore to take sets of images from the
device and extract base calls from them. In an ideal scenario, a cluster would
fluoresce in a single channel and the sequence of the template could be
readily determined. However, the intensity vectors are not purely responsive
to one distinct base and there are several signal artefacts present which must
be corrected for in order to achieve accurate base calls.

© 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://swiftng.sourceforge.net
http://swiftng.sourceforge.net
http://creativecommons.org/licenses/

[17:19 10/8/2009 Bioinformatics-btp383.tex] Page: 2195 2194–2199

Swift

Fig. 1. AGenomeAnalyzer flowcell (left) and imaging region or ‘tile’(right),
with a magnified section showing a cluster. Images have been normalized,
to span the full grey-scale range, for illustration purposes.

2.1 Image analysis
In each cycle, the flowcell is imaged in a series of non-overlapping regions
(Fig. 1). The number of regions (known in Illumina terminology as ‘tiles’)
depends on the device configuration. The default configuration for a Genome
Analyzer 2 is 100 tiles per lane, where there are eight lanes per flowcell. Tiles
are separated by a margin to prevent clusters being imaged multiple times.
The flowcell is moved under the camera in order to image each tile in each
cycle. Therefore, during each cycle 800 tiles are imaged in four channels.
Runs are typically around 37 cycles producing a total of 118 400 images.
Each GA2 image is a 2048 × 1794 pixel 16 bit grey-scale TIFF (though
only 12 bits contain data). Each pixel covers ∼0.14 µ2 of the flowcell and
∼9 pixels comprise one cluster object.

In Swift, the unit of analysis is a set of images covering a single tile. These
undergo image analysis the result of which is an intensity vector, for each
cluster (a total of 148 intensity values, per cluster, for a 37 cycle run).

2.1.1 Background subtraction The removal of non-specific ‘background’
intensity is desirable in order to obtain a less-biased measure of the true
signal. For microarrays, it has been shown that subtracting a conservative
estimate of the local background performs well, and avoids negative
intensities (Ritchie et al., 2007), which are undesirable in downstream
analysis and, as described below, possible in the GAPipeline (Brown
et al., 2006). We therefore take the conservative approach of morphological
erosion (Serra, 1983) in Swift. In this method the minimal pixel value within
a window around each pixel is subtracted from the central pixel’s value. For
efficiency, we use a square structuring element and implement the process
using a FIFO queue.

2.1.2 Image correlation In each cycle, the stage supporting the flowcell
is moved to each tile position in turn. This repositioning is not entirely
accurate and between cycles images may be several pixels out of alignment.
We must therefore bring the images within each channel into alignment
to compensate for this. A reference cycle is selected (typically the first
cycle) to which subsequent images are aligned. Images are thresholded for
alignment, discarding noise, using the method described in the following
section. Alignment is performed by cross-correlating the images at the pixel
level. Registering images to subpixel resolution was found unnecessary.
This step may be performed efficiently using a Fast Fourier Transform
(FFT) (Castro and Morandi, 1987). Swift uses the FFTW library (Frigo and
Johnson, 1998) to implement this process.

To allow for a variation in offsets across the image (due perhaps to
incorrect focusing, or warping of the flowcell due to temperature variation),
we divide the image into regular regions and calculate and apply offsets in

each region independently. After this cross-cycle registration step, images
within each channel should be in alignment. In order to make this process
robust, the median channel offsets are used, as all imaging channels should
be subject to the same stage movement.

Though each channel is now in alignment from cycle to cycle, an
offset still exists between channels. This offset is due to the different dye
emission frequencies, and therefore differences in the optical path. In order to
compensate for this offset an aggregate image is constructed for each channel,
which simply sums the intensities from all cycles creating a reference image
which should contain all clusters. The reference image for each channel is
correlated against the other channels and from this cross-channel offsets are
determined. Once these offsets are applied all images should be in alignment
and we can begin to identify objects and extract their intensities.

2.1.3 Object identification and intensity extraction Images are
thresholded in order to identify foreground (cluster) pixels. In order to
threshold the image, we create a morphologically dilated (Serra, 1983)
image and threshold those pixels in the original image that are within a
given fraction of their dilated value. These parameters may be adjusted
by the user. The process is implemented efficiently using a FIFO queue
and square structuring element. This thresholding scheme is invariant to
the differences in illumination commonly seen in Genome Analyzer image
data. Reference contours are produced for each cluster, formed from groups
of four-connected foreground pixels. Reference contours are created from
non-overlapping objects in first cycle images by default.

Once we have a set of reference contours for each cluster, the maximum
pixel intensity within the contour is extracted from the background
subtracted, aligned images. This process is performed for each cluster across
cycle. The result is a sequence of four intensities per cycle across N cycles.

2.2 Base calling
If no artefacts were present in the signal, we could now simply ‘call’ the
maximum intensity as the base call. However, a number of artefacts are
present making the post-image analysis signal correction problem significant.
Several tools exist for solving this post-image analysis, or base-calling,
problem (Erlich et al., 2008; Rougemont et al., 2008). Swift is able to
output a GAPipeline-style intensity file, allowing it to be used with any
of these tools. However, Swift also provides its own base-calling algorithms
allowing complete end to end operation using a simple but efficient and robust
approach. In contrast to the existing tools, Swift does not employ machine
learning or statistical modelling but rather applies a series of corrections to
the signal a methodology similar to that employed in the GAPipeline.

2.2.1 Crosstalk correction The first artefact we must correct for is
crosstalk. This is caused by an overlap in the dye emission frequencies.
Simply put, the C channel illumination overlaps with the A, causing a C label
to produce a small amount of illumination in the A channel, and similarly the
G and T dye responses also overlap. Figure 2 shows crosstalk plots typical
of those produced by a Genome Analyzer 2. In order to correct for this we
use a method similar to (Li and Speed, 1998) with a few minor differences.
The basic method puts regression lines through the arms of the plots. The
arms are identified by placing bins along with X- andY -axis and detecting the
minimum values in these bins. Linear regression is performed on these values
and the slope is used to derive a correction matrix. This process is performed
iteratively until almost no slope remains. In Swift, we also perform some
basic outlier detection, by placing a number of bins across the crosstalk plot
and removing those containing few points.

Some Genome Analyzer datasets produce deviations in crosstalk, which
appear intensity dependent. This produces slightly ‘bowed’ plots as seen in
Figure 2. Placing a linear regression though the minimal values produces
poor results and we therefore adopt a second strategy in addition to the
method described to cope with this scenario. In this method, we identify a
set of clusters (using the chastity metric described below) where it is likely
that the correct base call can easily be determined, and then perform a linear

2195

[17:19 10/8/2009 Bioinformatics-btp383.tex] Page: 2196 2194–2199

N.Whiteford et al.

Fig. 2. Pairwise intensity plots from cycle 1 of a Genome Analyzer 2 run.
Unlike pairwise plots produced by capillary sequencing (Li and Speed, 1998)
many Genome Analyzer plots have a distinctive ‘bowed’ appearance.

Fig. 3. Pairwise intensity plots from cycle 1 of a Genome Analyzer 2 run
after crosstalk correction.

regression on these values and derive a correction matrix as before. Figure 3
shows the pairwise intensity plots after correction.

After crosstalk correction negative values, which represent an over-
correction, are removed. The resultant signal is re-expressed as a deviation
from the median intensity value in each channel. This normalization provides
a fixed reference point for signals. We believe this may help compensate
for any build up in background intensity, such as the common ‘sticky-T’
phenomenon, due to incomplete cleavage of the T-dye.

2.2.2 Phasing correction As previously stated each cluster contains
many identical copies of a template sequence. During each cycle, labelled
nucleotides are incorporated into these molecules. However, this is driven by
stochastic chemical processes, so some molecules may fail to incorporate a
labelled nucleotide, or may fail to block and incorporate >1 nt. This manifests
itself as a leakage in intensity between cycles. For example, if a G base is
present in cycle 2, we will see a small amount of G intensity leaking into
cycles 1 and 3. Figure 4 illustrates forward phasing.

To correct this, we rank clusters by ‘Chastity’ (described in the following
section) and use the top 400 clusters to estimate phasing. We correct each
cycle and channel independently. For each channel, we identify those clusters
which are brightest in the current channel, but whose maximal intensity is
not this channel in previous and subsequent cycles. From these we calculate
the fraction of the intensity that has leaked between cycles and use this as
our phasing estimate.

This phasing estimation is then applied as a correction where this fraction
of the current cycle’s intensity is subtracted from subsequent and previous
cycles and added to the current cycle. A limit is placed upon the phasing
estimation to ensure that unreasonable values are not used. The correction
is applied iteratively starting with the first cycle, then correcting for each
subsequent cycle’s phasing.

2.2.3 Chastity filtering In the ideal scenario discrete clusters are grown,
each from a single DNA template. However, mixed clusters can be grown

Fig. 4. Schematic representation of phasing in Illumina Solexa sequencing.
The figure shows intensities detected across cycle where the true sequence
reads CGTAC... Cross-cycle signal leakage can be seen, for example,
in cycle 2 which contains a significant fraction of the intensity present in
cycle 1. By the final cycle, the signals are almost fully convolved and it
becomes difficult to determine the true signal. Phasing is caused by the
non-incorporation of a labelled nucleotide in a given cycle. The reverse
phenomenon (data not shown) is caused by the multiple incorporation of
nucleotides and manifests itself as signal leakage between the current and
previous cycles.

Fig. 5. Processing steps required to process primary data from images to
base calls.

starting from more than one template, in which case the base calls of the
cluster cannot be accurately determined. Swift uses the same metric as the
GAPipeline to filter out these clusters. The metric is defined as follows:

chastity= max intensity

max intensity + second highest
(1)

In the GAPipeline, a limit is placed on the second lowest value of chastity
over the first 25 bases. By default this is set as 0.6. As this is a robust and
well-validated metric it is also used in Swift, with a user-selectable threshold.

2.2.4 Base calling After correction, the base with the maximum intensity
is chosen as the called base. Swift can also optionally produce a Fast4 file.
This file contains the raw probabilities for all four bases. This additional
information may prove useful in alignment. Base probabilities are simply
calculated as a fraction of the total intensity. Fastq files may also be created.
The value used is derived from the probability of the called base scaled over
the range Q6–Q30. As with all quality scores this value requires calibration
in order to provide a useful metric.

2.2.5 Comparison with the GAPipeline GAPipeline (the vendor-supplied
analysis tool) performs image analysis, base calling and alignment (optional)
and is composed of a number of independent programs. The UNIX ‘make’
utility is used to manage workflow and job control. Figure 5 shows the
processing steps common to Swift and the GAPipeline. In this section, we
briefly discuss our investigation of the GAPipeline’s methods, based on the
release prior to GAPipeline 1.0. A detailed description of our analysis is also
available (http://sgenomics.org/mediawiki/upload/8/80/Pipeline.pdf).

Processing begins with Firecrest, the GAPipeline image analysis tool.
Firecrest operates in two passes. In the first pass a full image analysis
is performed but only the offsets between imaging channels are retained.
The second pass then applies these offsets between channels. This differs
from Swift which aligns images within each channel and then performs
alignment on aggregate reference images in a single pass. Firecrest begins
by applying a Mexican hat filter to each image. This attenuation of high
and low frequencies smoothes the image and strengthens the edges. The
image is broken into an even number of regions >125 pixel square for
noise and background estimation. A smoothed, filtered histogram of the

2196

http://sgenomics.org/mediawiki/upload/8/80/Pipeline.pdf

[17:19 10/8/2009 Bioinformatics-btp383.tex] Page: 2197 2194–2199

Swift

Fig. 6. X and Y offsets per channel calculated by Swift on the first five
cycles of run 1851 lane 4, tile 1. Offsets were calculated independently in
400 subregions of each image. Many of these offset maps do not exhibit a
linear variation across the tile.

pixels in each region is created to which a Gaussian is fitted. The average
calculated from the Gaussian is used to populate a ‘background’ image,
the SD a ‘noise’ image, a single value is used for each 125 pixel square
region. The ‘background image’ is subtracted and then thresholded for object
identification. Thresholding retains pixels whose value is greater than four
times the value in the ‘noise image’. This differs significantly from Swift
where the background subtraction and thresholding varies smoothly across
the image, adapting for local intensity variation.

In Firecrest, objects >15 pixels but <115 pixels are split producing two
objects, one at the maximum pixel value, another at the second highest. In
contrast to this, Swift performs no deblending by default. In general, the
deblending of an object may be one source of ‘optical duplicates’ where
multiple clusters are identified where only one true cluster exists. This is
best avoided if possible.

In Firecrest, once objects have been identified local background is
compensated for. This takes a 10 × 10 window around the pixel of maximum
intensity in an object. The median of all pixels not within the object is taken
(some basic outlier removal is performed) and subtracted from the objects
maximal intensity value (this is designed to compensate for local background
noise). In contrast to Swift, this often produces non-integer and negative
values. Swift avoids this producing only positive integers as its output of
image analysis. This not only simplifies later processing, but also reduces
the cost of archival.

The pixel of maximum intensity in each object has a parabolic fit applied
to it and the values of adjacent pixels, which produces a position at subpixel
resolution. In order to bring the images into alignment, synthetic images
are constructed from the reference positions (a Gaussian distribution of
intensities is created, centred around this position). The synthetic images
are cross-correlated in 125 × 125 pixel regions, producing an X/Y offset in
each region. A linear regression is fitted to the X and Y offsets calculated in
order to determine a scaling factor (this assumes the offsets deviate linearly
across the tile). In contrast, Swift uses the object profiles identified after
thresholding on subregions of the image. Swift does not apply a linear fit
to the data, as our investigation shows that the offsets do not vary linearly
across the tile (Fig. 6).

Once in alignment, the pixels lying under the reference positions are
extracted, producing an intensity vector for each cluster. This intensity vector
is then passed on to a script which performs crosstalk correction using the
method of (Li and Speed, 1998). A phasing correction is then performed. We
have not examined the GAPipeline post-image analysis corrections in great
detail, though it is apparent that no explicit normalization is performed and
that other than this our methods are similarly motivated.

3 RESULTS
In this section, we discuss the validation of Swift against five tiles of
φ X174 control from a 37 cycle single-end Genome Analyzer 2 run.

Table 1. Comparison of Swift and GAPipeline 1.3.2 error rates for given
tiles on Sanger Institute run 1851 lane 4

Swift

Tile no. Total reads Dups. Rem. PF Err. (%)

1 333 345 192 103 100 697 1.20
21 288 498 158 540 96 923 0.97
41 286 302 150 220 88 374 1.05
61 276 433 146 407 92 247 1.00
81 280 069 155 752 98 872 1.00

GAPipeline 1.3.2 Swift yield

Tile no. Total reads PF Err. (%) Inc. (%)

1 112 353 79 548 1.10 26.6
21 108 588 85 330 1.04 13.6
41 101 574 79 453 1.13 11.2
61 104 237 84 658 1.16 8.9
81 112 546 90 996 1.04 8.6

This lane contained φX 174, a commonly used control genome. Sequences were aligned
using PhageAlign from the GAPipeline version 1.3.2. The GAPipeline performed its
own alignment. Default parameters we used for the GAPipeline. As can be seen Swift
provides an average increase in yield of 13.8% at comparable error rate.

Afull set of tile images, intensity files and base calls is available from
http://sgenomics.org/swift/paperdataset.html. A comparably small
dataset was chosen in order to allow us to make the full dataset
available. We identify clusters from the first three cycles. In doing so,
we run the risk of producing ‘optical duplicates’, that is, identifying
multiple clusters, and therefore reads, where there is only really one.
In order to mitigate this effect, we apply an optical duplicate filter.
This filter removes those duplicate reads within a 6 × 6 window
with similar sequence (allowing eight mismatches), and retains the
read with the highest ‘chastity’. No optical duplicate filtering was
performed for the GAPipeline. Settings may be tuned to reduce
the duplicate rate, however, this will result in a reduction in yield.
We compare the Swift output with version 1.3.2 of the Illumina
GAPipeline. Table 1 summarizes these results. Default parameters
were used for the GAPipeline. Swift produced an average increase
in yield of 13.8% while maintaining a similar error rate. The user
may tune Swift’s parameters to reduce the optical duplicate rate,
error rate or increase yield as desired.

In order to determine whether improvements come from image
analysis or base calling, we analysed intensity files from the
GAPipeline using Swift (Table 2). The results show a small increase
in yield over the GAPipeline in most cases, but no reduction in error
rate. This indicates that Swift’s improvements come for the most
part from the image analysis. We do however note that the number
of optical duplicates removed is lower.

In order to support our validation of Swift, a different and
larger genome was analysed. A lane of data from 3 Mb of exonic
regions in PGP2 (Zaranek,A. et al. (2009) Lessons from the initial
data release of the personal genome project, in preparation.) was
used for this purpose. This dataset is available online via Tranche
at http://openwetware.org/wiki/PGP_and_Tranche. Analysis was
performed in a virtual machine on the Free Factories compute
infrastructure (Zaranek et al., 2008).

2197

http://sgenomics.org/swift/paperdataset.html
http://openwetware.org/wiki/PGP_and_Tranche

[17:19 10/8/2009 Bioinformatics-btp383.tex] Page: 2198 2194–2199

N.Whiteford et al.

Table 2. Comparison of Swift and GAPipeline 1.3.2 Image analysis when
used in conjunction with the Swift basecaller, as for Table 1

GAPipeline 1.3.2 + Swift Swift yield

Tile no. Total reads Dups. Rem. PF Err. (%) Inc. (%)

1 112 925 112 503 92 345 1.12 9.05
21 108 588 108 190 91 022 1.12 6.48
41 101 574 101 171 85 281 1.15 3.63
61 104 237 103 782 87 455 1.24 5.48
81 112 546 112 122 82 588 1.36 19.72

Table 3. Comparison of Swift and the GAPipeline 1.3.2 for a lane of data
from 3 Mb of exonic regions in PGP2 (Zaranek,A. et al. (2009) Lessons from
the initial data release of the personal genome project, in preparation.)

Tool Total reads PF reads

Swift 8 164 716 4 665 259
GAPipeline 1.3.2 6 903 576 5 168 131
GAPipeline 1.3.2 + Swift 6 694 377 4 954 683

For Swift, ‘total reads’ indicates the number of reads after duplicate filtering.

Table 3 summaries our results. Swift produced significantly more
reads than the GAPipeline (∼ 106 additional reads). However,
fewer of these passed purity filtering, resulting in a smaller total
dataset (GAPipeline 502 872 additional reads). The error rate was
comparable (GAPipeline 0.3766%, Swift 0.6524%). In order to
determine if the GAPipelines increased read count can be attributed
to optical duplicates, we ran processed the GAPipeline intensity files
against the Swift basecaller and optical duplicate filter. This removed
209 199 duplicate reads accounting for a significant portion of the
difference.

We have validated Swift for use with genomic data. However, the
application of Solexa sequencing to RNA-Seq, Chip-Seq and other
sequencing applications are of significant importance. The ability to
tune Swift’s parameters to lower the optical duplicate rate may be
attractive here. Swift supports paired end runs, this does not change
the analysis but simply splits reads after they have been generated.

3.1 An assessment of quality scores
As previously described, Swift generates a set of four probabilities
at each position. This is calculated as a fraction of the base intensity
over the sum of all intensities. For example, probability of an A call
would be:

Aprb = Aintensity

Aintensity +Cintensity +Gintensity +Tintensity
(2)

In order to generate a single quality score, Swift extracts the base
with the highest probability. This value is scaled over the range of
Q6–Q30, such that Q30 represents a probability of one and Q6 zero.
Figure 7a shows the observed versus predicted quality scores for one
tile of our dataset. As can be seen, the dependence of the observed
quality is not linear to those predicted, and they do not reflect the

 0
 5

 10
 15
 20
 25
 30
 35

 5 10 15 20 25 30 35

O
bs

er
ve

d
Q

Predicted Q

(a)

 0
 5

 10
 15
 20
 25
 30
 35

 0 5 10 15 20 25 30 35

O
bs

er
ve

d
Q

Predicted Q

(b)

Fig. 7. (a) Predicted versus observed quality for run 1851 lane 4 tile 1. In
calculating this plot reads with more than seven mismatches were discarded
in order to remove sample contamination. (b) The data shown in (a) were used
to generate a calibration table. This table was then applied to the remaining
tiles (21, 41, 61 and 81). The result is that quality scores now largely reflect
true quality.

true quality, as to be expected from an uncalibrated quality score.
In order to correct for this, we apply a simple calibration (Ewing
and Green, 1998) scheme. To generate a calibration table, reads
from a training tile are aligned to a reference, those reads with more
than seven mismatches are discarded as being most likely generated
from contamination. Once the observed quality scores have been
calculated, they are used to construct a mapping from predicted
to observed values. This mapping may then be applied to another
dataset where the true reference may not be known, using a simple
lookup table. Figure 7b shows the results of applying this mapping
onto a different tile from the same run, the quality scores now largely
reflect the true base quality (showing that the method is somewhat
transferable). The highest quality assigned is Q32, with 53% of
bases being calibrated to Q30 or above. This result shows that the
calibration table generated is transferable between tiles. This robust
and simple calibration scheme is therefore a reasonable placeholder
until more precise methods are developed.

3.2 Computational requirements
Processing a single GA2 tile across 37 cycles requires ∼1 GB
of main memory. When compiled using the Intel C++ compiler
version 11, processing took 25 min. The GAPipeline uses GNU
C++ and modifying this is non-trivial. The GAPipeline took 23 min
to process this tile and 657 MB of memory on our dataset (gcc
version 4.2.3 installed). Using this compiler Swift took 30 min. Swift
however operates on the tile level; a user may therefore submit
800 jobs and gain maximum utilization of their cluster (as opposed
to eight jobs which may be submitted for the GAPipeline). Our
benchmarks were performed on a single core of a Intel Core2Duo
T8100 at 2.10 GHz.

4 DISCUSSION
We have described a new open source pipeline for the analysis
of primary data from the Illumina Solexa sequencing platform.
Our analysis provides validation of the vendor-provided analysis
tools and is the first openly documented technique for extracting
sequence data from images on this platform. We have provided
a pipeline which other researchers may use as a platform for
further development and which allows them to freely distribute their
modifications.

Swift protects the user from potentially undesirable changes to
the vendor-supplied analysis tools. It gives users an alternative to

2198

[17:19 10/8/2009 Bioinformatics-btp383.tex] Page: 2199 2194–2199

Swift

bundled analysis platforms and allows them to manage their own IT
infrastructure. It also provides an openly documented analysis tool
enabling the user to understand the primary data, and to investigate
frequent device changes which can cause unexpected side effects.
For example, the original version of the Genome Analyzer did not
image the flowcell wall, current revisions do resulting in artificial
poly A sequences. Understanding the primary data is critical to the
operation of a high-throughput sequencing facility.

We have also shown that there is significant room for improvement
in the vendor-supplied analysis showing an increased yield of 13.6%
(at the same error rate). We believe that the image analysis methods
presented should prove to be transferable to other next-generation
sequencing platforms, such as the Applied Biosciences SOLiD™
Sequencer and Roche 454 FLX, though in the latter case, the image
analysis problem should be simplified due to the regular arraying of
beads. Potentially, this allows a user to maintain a single primary
data analysis platform for all second generation systems.

ACKNOWLEDGEMENTS
We thank the following individuals from the Wellcome Trust Sanger
Institute: James Bonfield for many illuminating discussions, Andy
Brown and Roger Pettett for their suggestions relating to Swift’s
reporting module and Tony Cox for his continued support. We also
thank Klaus Maisinger of Illumina for discussions relating to the
Illumina primary data analysis methods and Tony Cox of Illumina
for answering our queries relating to PhageAlign.

Conflict of Interest: Since the inception of this work Nava Whiteford
and Clive Brown have moved to 3rd Generation sequencing
company, Oxford Nanopore Technologies. The other authors have
declared none.

REFERENCES
Bentley,D. et al. (2008) Accurate whole human genome sequencing using reversible

terminator chemistry. Nature, 456, 53–59.
Brown,C.G. et al. (2006) Solexa/Illumina GAPipeline product and product

documentation, Illumina Inc.
Castro,E.D. and Morandi,C. (1987) Registration of translated and rotated images using

finite fourier transforms. IEEE Trans. Pattern Anal. Mach. Intell., 9, 700–703.
Cope,L.M. et al. (2004) A benchmark for Affymetrix genechip expression measures.

Bioinformatics, 20, 323–331.
Erlich,Y. et al. (2008) Alta-cyclic: a self-optimizing base caller for next-generation

sequencing. Nat. Methods, 5, 679–682.
Ewing,B. and Green,P. (1998) Base-calling of automated sequencer traces using Phred.

ii. Error probabilities. Genome Res., 8, 186–194.
Frigo,M. and Johnson,S.G. (1998) FFTW: An Adaptive Software Architecture for

the FFT. In Frigo,M. and Johnson,S.G. (eds) Proceedings of ICASSP 3, IEEE,
pp. 1381–1384.

Holloway,A. et al. (2006) Statistical analysis of an rna titration series evaluates
microarray precision and sensitivity on a whole-array basis. BMC Bioinformatics,
7, 511.

Li,L. and Speed,T. (1998) An estimate of the crosstalk matrix in four-dye fluorescence-
based DNA sequencing. Electrophoresis, 20, 1433–1442.

Lin,S. et al. (2008) Validation and extension of an empirical Bayes method for SNP
calling on Affymetrix microarrays. Genome Biol., 9, R63.

Quail,M. et al. (2008) Alarge genome center’s improvements to the Illumina sequencing
system. Nat. Methods, 5, 1005–1010.

Ritchie,M.E. et al. (2007) A comparison of background correction methods for two-
colour microarrays. Bioinformatics, 23, 2700–2707.

Rougemont,J. et al. (2008) Probabilistic base calling of Solexa sequencing data. BMC
Bioinformatics, 9, 431.

Serra,J. (1983) Image Analysis and Mathematical Morphology. Academic Press, Inc.,
Orlando, FL.

Zaranek,A.W. et al. (2008) Free factories: unified infrastructure for data intensive
web services. In ATC’08: USENIX 2008 Annual Technical Conference on Annual
Technical Conference. USENIX Association, Berkeley, CA, pp. 391–404.

2199

