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Preparation of many-body statesfor quantum simulation

Nicholas J. Ward, lvan Kassal, and Alan Aspuru-GBzik
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138

While quantum computers are capable of simulating many tguaisystems efficiently, the simulation al-
gorithms must begin with the preparation of an appropriaitai state. We present a method for generating
physically relevant quantum states on a lattice in realeplcparticular, the present algorithm is able to prepare
general pure and mixed many-particle states of any numbeantitles. It relies on a procedure for converting
from a second-quantized state to its first-quantized copate The algorithm is efficient in that it operates in
time that is polynomial in all the essential descriptorshef $ystem, such the number of particles, the resolution
of the lattice, and the inverse of the maximum final error. sTégaling holds under the assumption that the
wavefunction to be prepared is bounded or its indefinitegiratidknown and that the Fock operator of the system
is efficiently simulatable.

I. INTRODUCTION number of particles. Our approach is motivated by electroni
structure theory, in that we we choose particularly conseni

Simulating quantum systems on a conventional compute:?ingle'p"’IrtiCIe base_s in whic_h to (_expand more complicated
requires resources that generally scale exponentially thvi states. We use the smgle-partlcle eigenstates to fqrrersiat
size of the system. Feynman proposed to solve this problertr?rmInantS (configurations), superpositions of which e
using a quantum machine that would be able to mimic thd® €XPress general many-particle states.
properties of the quantum system [1]. Subsequently, it has
been demonstrated that quantum computers would be able to Our scheme is essentially a method for translating states in
simulate the time-dependent Schrodinger equation for manyecond quantization to the corresponding states in firgt-qua
systems of interest using resources that scale polyngmialltization. This has two advantages. First, many useful state
with the size of the system![2,13,14,15) 6/ | 8, 9]. However, allthat might be needed in first quantization are easily prepare
such simulations require the preparation of an appropriate in second quantization [14]. In particular, we can prepare
tial state, which must be preparable to within a chosen error eigenstates of operators if our scheme is combined with full

In this work, we focus on the preparation of states on a gatesonfiguration interaction (FCI) [15], an exact diagonaiza
model quantum computer. Our techniques can therefore confmethod. FCl is classically an exponentially hard problem
plement those developed for the preparation of states iroth due to the exponential growth of the number of configura-
models of quantum computation, such as adiabatic quantuiions with system size, but it can be computed on a quantum
computing|[6| 10]. computer in polynomial time [6]. The quantum FCI operates

In general, we will call a state on qubits “efficiently N second quantization, and can compute, for example, the
preparable” if it can be prepared, to within errgrusing  9round state wavefunction of a molecular system. The sec-
poly(n, =~1) elementary (one- and two-qubit) quantum gates 2nd benefit of our method is that it is often easier to simulate
Unfortunately, the efficiently preparable states form oaly time-evolution in real space than in Fock space. For ingtanc
small subset of all quantum states. This is because a gefYery simulation in second quantization would require & sep
eral state om qubits contain®€” amplitudes, and therefore arate set of basis-set-dependent operators and there meight
one needsD(2") gates to prepare il [L11]. Indeed, state- SOMe processes, such as ionization, which could not be ade-
preparation algorithms are known that almost reach thistow duately described using a small, localized basis set. I firs
bound [12] 13]. quantization, however, all problems of chemical interest ¢
(ﬂe efficiently simulated by direct simulation of the molexul

In this work, we show that if wavefunctions are represente Lo
amiltonian in real spacel[8].

on a grid in real space, then most quantum states of physl-
cal interest are efficiently preparable. This is of intetsst
cause efficient, grid-based simulation algorithms are know This paper is organized as follows. We first consider the
for physically realistic systems|[3, 4,5, 8]. preparation of many-particle states in which all the petic
Our work extends that of Zalka, who, in introducing real- are the same. There are three steps: the preparation oésing|

space quantum simulatiohl [4], also provided the first statéarticle eigenstates in a chosen basis, the preparatioamfm
preparation algorithm. However, his procedure is able tgoarticle configurations, and finally the preparation of sppe
prepare only states of single particles or uncorrelatedyman sitions of configurations. We discuss the preparation ofuahix
particle systems. We show how to use Zalka’s single-particl states, after which we turn to systems with many different
wavefunctions as building blocks, permitting the preparat types of particles. Again, we consider the preparation of co
of general superpositions and mixed states of an arbitrarfigurations, their superpositions, and mixed states. Wgeclo

by showing that the algorithm is efficient in that its runém

is polynomial in the size of the system, the number of qubits

used to encode the wavefunction, and the inverse of the maxi-
*Electronic address: aspuru@chemistry.harvard.edu mum allowed error.


http://arxiv.org/abs/0812.2681v2
mailto:aspuru@chemistry.harvard.edu

2

Il. ONE TYPE OF PARTICLE ing a grid of2! points, and a basis statéx) normalized over
alengthl, the algorithm first performs the transformation

Our algorithm translates from second to first quantization,

21
and therefore depends on the basis which is chosen for the 10) — [¢) = Z é x£ )
representation of the second-quantized states. We reguire = 21 ’
finite orthonormal basis of functiod, . . ., ¢as }, which are a

the eigenstates of a known operafoon anM-dimensional, Where each integer-valued stdi¢ is a position on the suit-
single-particle Hilbert space. In our analogy with elentes ~ ably scaled grid. This state is generated from the state
structure theory/" would be the Fock operator for a single [000...) by redistributing its amplitudé times across the
particle [15], and indeed we expect that the algorithm woulceigenstatesz). To perform the redistribution correctly, we
be at its most useful if" is chosen as the Fock operator of calculate the integrals

an actual system. Although the form &F can be arbitrary, (k+1) L& )

subject to a few restrictions below, we will take advantage o kL ¢(x)|dz

the analogy and refer t&' as theFock operator. We will also Lig = (k+2) & 0o @)

say, for example, that two eigenstatesﬁ‘)hredegenerate if kL |6(2)[*dz

their energies (the corresponding eigenvalues) are the same. _ _ )
To ensure that the overall state-preparation algorithesca or # = 0,...,2° — 2-andi = 1,...,1. The fraction/; j. is

efficiently, we require that?’ can be efficiently simulated S?”.‘p'y the. probability tha'_[ a particle in thi + 1)th Su.bdi'
' yision of sizeL/2" is also in its left half. If the denominator

on a quantum computer, i.e., that the simulation time scale ) . . o
polynomially with the size of the system. More precisely, if n I”“ IS zero, there IS no a_m_phtud(_a to red|str|bute,_so We can
' skip this step. The first split is realized by performing arot

there arem particles occupying thd/ orbitals and the sim- > ! . :
ulation is done on a grid o?' sites (see below), then, for :Ir?ol?lgfgrtrr;?a{ilcri qubit byirecos(y/11,0), corresponding to the

anyt and anys > 0, there exist a unitary/, composed of
poly(m, M, 1,t,e~1) elementary (one- and two-qubit) quan- 10,...) = /Ti0l0,...) + /T = T1o[1,...).

tum gates, such that/ — emift| <e. Intuitively, this means . . - .

. L ' This splits the norm of the initial state so that the apprateri
that given an initial state, the final state generated by the a proportion is present on each half of the grid. The subsequen
tion of F' for time ¢ can be calculated with reasonable effort fjer splits are carried out in superposition using corgall
and reasonable error. ~rotations on each qubit. For example, after the second iter-

Several classes of Hamiltonians are known to be efficientlytion, the correct proportion of the norm is present in each
simulatable, and together they ensure that most physiely quarter of the grid. Aftet iterations, one obtains the desired
evant Fock operators will also be efficiently simulatableryy  state. Note that adding a single qubit and the corresponding
generally, an operator can be efficiently simulated ifitdtRa  rotation doubles the precision of the grid. Consequertily, t
in a given basis is sparse [10./ 16, 17]. In particular, this in apsolute value of the wavefunction can be efficiently approx
cludes Hamiltonians that are sums of local operators, ehch Ggmated to any desired accuracy. Phases can be added where
which acts on only a few degrees of freedom [2, 11]. In addinecessary through phase-kickbalckl [20]. Given a procedure

tion, many physically realistic real-space Hamiltoniasisch  that can transformiz) — ¢?®2#(®)|z), we can complete the
as those for chemical systems) can be efficiently simulategireparation of¢) as

[3,4,5,8].
We finally note that the requirement that the basis be or- 2'-1 I 2-1 . I
thonormal may exclude certain commonly used basis sets.z 0] <x§) |x) — Z ciargo(zL/2') ‘qs (x§>

|z)

Many of the usually encountered bases are appropriate, such:=0 =0

as plane waves or molecular orbitals, which diagonalize 2l=1 I

the molecular Hartree-Fock Hamiltonian. However, non- = Z ® (x_l> |7) = |¢) .
orthogonal bases, such as Gaussian wavepackets or atemic or =0 2

bitals on more than one atomic center, are not suitabledite st

preparation using our procedure The same algorithm can be straightforwardly generalized

to a three-dimensional grid, where the position eigenstate
are in Cartesian coordinates and the corresponding three-
. S dimensional integrals are used. In addition, particle spim
A. Single-particleeigenstates be represented using additional qubits. A particle witm $pi
requires[log, (25 + 1)] qubits to store its:-projectionms.

A single-particle basis functiop can be prepared on a grid In particular, there is a natural mapping between the spin of
by the state preparation method first proposed by Zalka [4$pin—§ particles and the states of a single qubit. If the Fock
and rediscovered independently by both Grover and Rudolpbperator is spin-free, the eigenstates will have sepasyie
[18] and Kaye and Mosca [19]. The algorithm first preparedial and spin degrees of freedom, making the complete single
the absolute value of the function, followed by the additén particle statd¢)|mg). Preparing the spin part of this wave-
the phases. Specifically, given a register gfibits, represent- function is relatively easy, for it suffices to initializeglspin
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register in an integer state. If, however, the eigenstate ha Furthermore, it is known that quantum computers are able
correlation between the spatial and spin degrees of freedono offer a quadratic speed-up over conventional probaigilis
it can be prepared using the techniques in SEcs] Il DCahd Ilimethods of integral evaluation. Quantum integration tech-
That is, we treat the particle as if it were a composite system niques|[24, 25] rely on amplitude amplification [26] to ackge
composed of a spinless, spatial part and a spin—and prepasscomputational complexity (ﬂ)(s;l). This has been proven
its eigenstate using the techniques below. In what follaves, optimal by Nayak and Wu [27, 28]. These techniques have the
will assume that our particles are fermions and we will notesame general applicability as classical Monte Carlo, adid wi
where the algorithm would need to be modified for bosons. likewise succeed for any bounded function. Furthermome, th
state preparation scheme of Soklakov and Schack [29], which
relies on amplitude amplification, also succeedix; ")
B. Computational complexity of integration time.
The preceding assumes that the function that we seek to
The preceding method for preparing single-particle stategrepare does not depend substantially on the grid spaciag. W
requires the evaluation of integrdl$ (1). Since this mugtdse ~ would expect that of realistic wavefunctions, assuming tha
formed in superposition, the integrals must be computed othe grid spacing is smaller than the smallest wavelengtheof t
the quantum computer: precomputing them classically woulgystem. A useful exception are Kroneckefunctions, de-
require an exponentially large look-up table. Conseqyentl fined on a grid o' points asp(x) = 2!/24 «,, Wherex, is a
the computational complexity of the state preparation @roc constant vector. The variance &functions grows exponen-
dure will depend on the the cost of computing the integraldially in [, and therefore they cannot be integrated efficiently
[4,118]. by Monte Carlo or prepared efficiently using the method of
An integration procedure will, given a functian : V C Soklakov and Schack [29]. However, they can still be pre-
R? — R (whereV is a bounded region), supply an estimate pared efficiently using our techniques because their indefin
of the integrall = fv #(x)dx such thaﬂf —I| <erwitha integral, the Heaviside function, can be easily computed in
certain fixed probability (we'll call this condition the(s;, ) time independent df
absolute error). It remains to be shown that an error in the evaluated integral
Integrals can be evaluated either analytically or numeritranslates to a comparable error in the prepared functidine |

cally. If the indefinite integrals of the basis functions areintegrals[(1) have a maximum error, that s, | ; , — Ii.k‘ <
known, the definite integrals over any box on the Cartesian %&% R '
isep = 1—

grid can be computed. The values of the indefinite integrals:, and the error in the final prepared st
themselves can usually be computed efficiently (i.e., witrﬂ ~’ ‘ : < . .
polynomial cost in the desired accuracy) because they us —<¢ ¢>  we find thate, < le;/2. Inthe casé = 1, |¢) =
ally contain simple mathematical functions. In particutae /T (0) + /1 —1|1) and‘$> VI |0) + /1 —TI1). Then,
time it takes to retrieve: digits of any elementary function ) . Do -

is a polynomial inn [21], and likewise for compositions of assuming) < I < 1, which is necessary f0{f¢> to be an
elementary functions. acceptable state,

If the indefinite integrals are either unknown or impradtica
to compute, numerical techniques can be used. In partjcular 1-VIi— /(1 —D(1- f)

) ) ; A . Ep =
any classical numerical technique can, in principle, belénp ¢
mented on a quantum computer. For example, computing < 1-vl—g;
by Monte Carlo requires, in the worst case| [22], ~ L
2 )
-1 2 22
[(q) (1- 5/2)) g /éﬂ where we have assumed thgt < 1. For largerl, a sim-

samples of¢ for an (s7,d) absolute error, where? is llar analysis applies qubit-wise: one finds tl<a4b‘ ¢> 2

an estimate of the variance @f over V and ®(z) = (1-— 61)1/2 > 1 — ler/2 (the last inequality holds for ali;
(2m)~/2 [ exp(—u?/2)du is the standard normal cumu- if I > 2), whences,, < le;/2. That s to say, the error in the
lative distribution function. In particular, i is bounded so prepared state grows only polynomially with the error in the
thatg;, < ¢(x) < ¢y for all x € V, the number of required evaluated integral, a fact that we will use later on to egthbl
samples is limited [22] to the computational cost of the state preparation algorithm.

(@71 (1= 8/2)(0u — 61)/261)°).

That is, Monte Carlo integration of any finite-variance func

tion requires time that scales 62{5;2). Acceptable wave- The next step is to use Zalka's algorithm to prepare multi-
functions need not be continuous or even finite [23] (andparticle configurations. That is, we wish to prepare the
hence may have infinite variance), but such examples arposition-space representation of a second-quantizataia s
rather contrived and rarely encountered in practice (bat sejnins...na),,, (@ FOck eigenstate), wherg is the occu-
below ford-functions). pation number of the basis orbita} (1 < i < M). The

C. Many-particle eigenstates



position-space representation |@fins ... nar),,,, Will be a  Next we will transform this state into the superposition
Slater determinant of the occupied orbitals, and it will be a

eigenstate of the many-bodHartree-Fock Hamiltonian Z (1, m))s
R moo \/_UGS
=Y F, 2
im1 as follows. First letB’[1] = B[l]. Then assign to
. B'[i] the Blith natural number not present in the set
wherem is the total number of particles and is the Fock  {B’[1], B'[2],..., B'[i — 1]}. This leaves the quantum com-
operatorE’ acting on the particle [15]. puter in the state

We assume that the staiein...nar),,, has already
been prepared by some previous algorithm. Thdasis or- 1 e }
bitals are occupied by particles and we lety, . . . , j,, be the N (05152 Bim)a @ GZS o)) (4)
indices of the occupied orbitals. We therefore wish to penfo 7Eom

the transformation RegisterB now contains a symmetrized state and this sym-

metry can be transferred to registdrby sorting B while

Ining ... nar)ana ® |0 Do = performing the same swaps on the wavefunctiond.inrhis
ields the symmetrized state
[ning .. MM )2na ® ——= \/— Y sen(@)o(ds, by Gi )i Y y
TESH
= |n1n2...nM>2nd®|(I>)lst, (3) Z |G ¢J1¢J2"'¢jm)>A®|172""’m>B’ (5)

UESm

which takes the input state and prepares the appropriate firs
quantized Slater determinapdt), _,, a superposition of all the  which is what we would keep if we were interested in prepar-
permutations on the, occupied orbitalsy,, is the symmet- ing bosonic states. To instead obtain an antisymmetrizee,st
ric group onm elements and sgn denotes the signature). Heree need only count the number of exchanges made in the sort,
|0...)1s containsm registers for then first-quantized oc- and reverse the sign of the wavefunctioniif it is odd. If we now
cupied orbital§e;, ), ;- - - [¢5,.),.,- Note that[(B) is notin  eliminate the registeB, A contains the desired multi-particle
general a reversible operatlon as multiple input statesldvo  state|®) ;.
be mapped to the same antisymmetrized result. To ensure The original algorithm, introduced by Abrams and Lloyd,
the algorithm is reversible, we additionally require/[36&t included an additional auxilliary registét, which would then
Jj1 < ja < --- < jm. The procedure can be slightly modified be used as an intermediate for the sortingdoand B. We
if bosons are in question: thegn(o) is to be omitted, and eliminate this step by sorting and B together directly.
thej; must satisfyj; < jo < ... < jpm.

The transformatiori{3) is accomplished in two steps. First,
the occupied single-particle basis orbitals are each peejpa

. . D. Superpositions
a separate register, forming a Hartree product:

We now generalize the algorithm to the preparation of su-
perpositions of many-particle states. Given a superpositi
[nana . ..nar)2nd @ |95, Pjs - - - Bjv )15t of second-quantization stat@s;)s,q = |n1im2i - - - asi)2nds
with amplitudesy;, we wish to perform the transformation

|n1n2 .. .n]\,j>2nd [ |0 .. ->lst —

The procedure can be modified in the case of bosons by count-
ing the occupation of each orbital and preparing that many
copies in separate registers. . P

In the next step, the Hartree product is antisymmetrized, Zaz|nz>2"d>®|0' st = (0. )2na® (ZZ: azlq)7,>lst> :
which produces the desired Slater determinant. To complete
this step, we introduce an improved form of the antisym-The superposition on the left might come from a variety of
metrization algorithm developed by Abrams and Lloyd [30]. sources. For example, an easily-prepared equal supégposit
The algorithm begins with the: wavefunctiong¢;,) to be  of Fock states would result in an equal superposition of real
antisymmetrized in registet, andm [log, m] qubits in reg-  space wavefunctions. Wang et al. provide an algorithm for
ister B (where each grouping dfiog, m| qubits constitutes  preparing general superpositions of Fock states on a gemantu
a “quword”) initialized to|0). Using a series of controlled computer/[14]. Alternatively, a quantum electronic-strue

rotations,B is converted to the state algorithm could be used to efficiently produce a physically
. relevant superposition. For example, an FCI algorithmaoul
AN '« . specify the ground state of a chemical or other many-body
—— > s ® Y 1)pp @ @ [1) g,

system in terms of a superposition of Fock states [6].
As before, we begin by applying Zalka's state preparation
which is a superposition of! unique states consisting of  algorithm to the input state. Because this linear operason
quwords each, an®[i] denotes théth quword in registes. carried out in superposition, it accomplishes the tramséor
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tion values for each state in the superposition. These eigezwalu
can then be used (for example in conjunction with a look-

up table) to uniquely identify the wavefunction and subtrac
Zai|ni>2nd ®[0.. )1t — 1 from the corresponding occupation number vector of the
@ second-quantization state. Because this is done in superpo
Z i |0 2nd @ |DjriBji - - - Biryi)1st- sition for every single-particle wavefunction, the inptats is
2 converted td0)gy,4.

_ _ _ This accomplishes the total transformation
Note that the single-particle wavefunctions are now erlexhg
Zai|ni>2nd> ®0.. )15t —

with the input state. For a multi-particle eigenstate, tite s

uation was different because the resulting state was separa (

ble. Hence, to separate the first-quantized wavefunctions f i

the second-quantized ones, we must “uncompute” the second-

guantized states. This must be accomplished using only ma- [0... )ona ® <Z G| D4y iPini - - - qumi)lst) , (6)
nipulations on the register containing the first-quantizade- i

functions|¢;)14: if we can regenerate the input state from
the wavefunctions, the input register can be res€0}g,4

as desired. Given the one-to-one correspondence betwee
second quantization state and the corresponding first qua
tization wavefunctions, regenerating the input state arsu
to the problem of identifying the wavefunctiofs )1,: given
only the information contained in their first-quantizednep
sentation.

For non-degenerate eigenstates, each ${aje;: can be
uniquely identified using its energy, which can be obtained ) o ) ]
through the phase estimation procedlre [20/ 31, 32]. In gen- The procedure in SeE. TID assumes that it is possible to dis-
eral, given a unitary/ and its eigenstatg)), the phase es- tNguish eigenstates based on their energy. If there arertleg
timation algorithm finds the eigenvalue pf). Specifically, ~€rate states, additional operations are required to dish

. ~ . = - them. Degeneracies in quantum states usually arise asla resu
— 27l k __ 2mik6 _
sinceU|y) = e |¢)), we have W’? -° [). By con of symmetry—degeneracies that do not are called “acciden-

trolled appllcat|20qnsl of the powers 6f to 2|§p>1 conEroIIed 0N tal” and we treat them separately in SEC.]II F. For symmetry-
the states= >, ) [k), one getsyz >, [k) UM [v) = caused degeneracy, distinguishing degenerate stateisesqu
Sz Zz;l e2™k0 kY by, An efficient quantum Fourier an understanding of how they transform under the symmetry
transform on the control qubits will now yield the fikgdig- ~ operations of the system. All of the wavefunctioas):s:

its of the binary expansion df. If we choosel/ such that are eigenstates of each symmetry operation within the point
U|¢i>lst = e2miFi|g,),,, we can use phase estimation with 9"OUP; but degenerate wavefunctions will always have diffe

enough control qubits to obtain an approximation of the ener€Nt eigenvalues for at least one of the operations. Phase est
ies Z.. In particular. the natural choidg — e—ift where mation ca_n_stlll be_ us_ed to obtain a unique set o_f e_lgen_values
gles b P ' o . ' . but in addition to finding the energies, we can distinguish th
H is the Hartree-Fock Hamiltoniahl(2), supplies the appropri 4, efynctions by symmetry. By applying phase estimation
ate unitary for a suitable choice of the time Note thatU using an appropriate symmetry operation as the unitaryeper
can be simulated efficiently becauleis a sum of Fock op-  tor, we obtain additional eigenvalues to distinguish degate
erators which are efficiently simulatable by assumptione Th states.
energy eigenvalues are stored in an additional register con Because there are only a limited number of symmetries
taining enough qubits to provide precision that distinges  that are possible in physical systems, it will rarely be nec-
between nearby energies. . essary to use more than a few readout qubits to retrieve all
In the case that the spectrumkifis degenerate, properties the distinguishing eigenvalues. With the exception of sys-
other than the energy of the states need to be used to distifems with spherical, cubic, or icosahedral symmetry, which
guish them. If the degeneracy is caused by a symmetry of th@e treat below, all systems in three-dimensional space have
Hamiltonian, the elements of the symmetry group can be used symmetry point group all of whose irreducible representa-
for this discrimination, as we outline in Selc. 11 E. If the de- tions are one- or two-dimensional [33]. Wavefunctionssran
generacies are accidental, other techniques are reqained, forming as the one-dimensional irreducible represemntatio
we give some suggestions in Séc. ]Il F. In addition, the techare non-degenerate, while the ones transforming as the two-
niques in Sed_1IIF can be used for distinguishing eigengluedimensional irreducible representations come in degémera
that are exponentially close together and therefore cammot pairs. Distinguishing them, therefore, requires the deter
distinguished efficiently by phase estimation. nation of only one symmetry eigenvalue which is differemt fo
Phase estimation using bothto find energy eigenvalues the two wavefunctions.
and appropriate symmetry operations to distinguish degene This is most easily done in the case of point groaps,
ate states will provide us with a unique combination of eigen Co,, Dy, Dypn, Doon, and D,,4, all of which contain aCs

which is a separable state. The antisymmetrization step can
Agw proceed in superposition as usual, resulting in the final
ﬁgate|\11>1st = >, a;|®;) 15, as desired. This completes the
state-preparation algorithm for a given superposition oltim
particle states.

E. Resolving degeneracies caused by symmetry



axis or a reflection plane that has character zero in all of th@nplementing unitary representations of SU(2) [35].
two-dimensional irreducible representations. In thisscane

of the two degenerate wavefunctions is invariant underehe r

flection or C, rotation, while the other acquires a phase of F. Resolvingaccidental degeneracies and exponentially close

—1. To distinguish them, one would use the reflection or the elgenstates

C> rotation as the unitary of phase estimation with one read-

out qubit (note that these operations are easy to implement, In Sec. [I[E, we outlined a procedure for distinguishing
being simple linear transformations). The readout qubit, i states that are degenerate because of symmetry. Howewer, th
tialized in the staté|0) + |1)) /+/2, would, under the action eigenstates might also be accidentally degenerate or expon
of the symmetry operation, be converted(1o) + |1)) /v/2, tially close in energy so that they cannot be efficientlyidist
depending on the acquired phase. A Hadamard gate woulguished by phase estimation. In those cases, it is not gessib
then return|0) or |1), perfectly discriminating between the to distinguish between the (near-)degenerate states tiseng
two eigenfunctions. symmetry-based procedure.

Symmetry group€’,,, Cy,s, and S, have, strictly speak- Qne way around these problems is to transforrr_\ to another
ing, only one-dimensional irreducible representationswH ~ basis where the (near-)degeneracy does not arise. A way
ever, there are pairs of representations that are compiex co®f accomplishing this is to use a perturbed Fock operator
jugates of each other, meaning that the correspondinggnerd” = F + V, whereV is a small, efficiently simulatable
levels are degenerate due to time-reversal symmetry. Theggrturbation that breaks the (near-)degeneracies. Inta fini
pairs of conjugate representations are called “separably d basis,VV must also be small to ensure that the new basis can
generatel[34]," and the corresponding wavefunctions can badequately describe the target state. The new eigenfusctio
distinguished using the principal symmetry axis (or Sz, are obtained from the old using perturbation theory, astee t
in the S2,, groups). In each case, under the actio@pf one  new coefficients of the state that we wish to prepare. This
of the wavefunctions acquires a phaseand the otherw*,  change of basis can be done efficiently on a classical com-
wherew = €2™/" (there are also cases where the pairs acputer, before proceeding as normal with the state prejparati
quire phases such asv and—w*, w? and (wQ)*, and so on, algorithm. For the purposes of phase estimation, the new Foc
but these do not change the procedure outlined here). Phasperator can be efficiently simulated by operator splittieg
estimation can, as usual, measure this phase up to a certajause bot’ andV are efficiently simulatable.
precision. However, sincé/n usually does not have a finite A drawback of this procedure is that the perturbation may
binary expansion, there will be an associated error in tls@h  destroy certain desirable symmetries of the system. In some
estimation. This can be reduced below an arbitrary thresholcases, this can be avoided if we chodsec |6:) (¢i], where
by the addition of more readout qubits, as discussed in Se¢y,) is one of the (near-)degenerate eigenstates. In that case,
[V] This is especially true since real physical systems &imo 7 and £~ would have the same eigenstates and no change of

never have, axes withn > 8, meaning that only several i< \vould be needed. Of course, it is possible Ehat this

qubits will Pe reqPired for readout. form is not efficiently simulatable, in which case this scleem
The cubic and icosahedral groufd§, 1}, T4, O, On, I, and  \would not be efficient.

1y, all have three-dimensional irreducible representatjand

I and I}, also have four- and five-dimensional ones). Fortu-

nately, there are plenty of reflection planes ahdaxes which G. Mixed states
can be used for discrimination just as was done in the simpler

groups above. Distinguishing three or four degeneratestat 10 previous sections outline the procedure for preparing

requires two symmetry eigenvalue comparisons (and three iﬂeneral pure states, which in the chosen basis read
the case of five-fold degeneracy). Consequently, two retadou

qubits are required in these cases, one for each compadison ( |0),,, = Z | D)1t 7)
three qubits in the five-fold degenerate case). ° 7

Degenerate states of spherically symmetric systems, su? drop th bscribt for clarity. Wi
as atoms, can be distinguished by energy and by their angul fOom now on, we drop the su scriptt for clarity. We now
wish to prepare a mixed state with density operator

momentum quantum numbetandm,. The maximally sym-
metric case is thé/r potential, where the conservation of the A Z ) (W]

Laplace-Runge-Lenz vector implies that all states withagéqu p _ PilFa %

principal quantum number are degenerate. If our basis con- ’

tains states witlh < n.,.x, We would required(log, nmax) where|¥,;) are arbitrary pure states of the for[d (7) and the
qubits for the discrimination of the angular momentum state probabilitiesy; add up to 1. This scheme could be used for the
(that is,O(log, nmax) qubits each fo¥ andm,). While cir-  preparation of thermal states, in which case one would &oos
cumstances where one encounters states of extremely high d;) to be the Hamiltonian eigenstates and= ¢ %% /7,
gular momentum are rare, we can see that the discriminatiowheres = 1/kgT and Z is the partition function. Our ap-
can be performed efficiently. The phase estimation in trée ca proach to the thermalization problem is therefore différen
would use discrete rotations as its unitary operator. Alaimi from that of Terhal and DiVincenzo, who prepare thermal
approach was suggested by Zalka for the related problem aftates by simulating an external bathi [36].
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We assume that eattr;) can be efficiently specified using by preparing the appropriate state in separate registevass
some specification¢;) (for example,|¥;) is the¢;th eigen-  done in SecI[C. Creatinf) itself can be done in analogy
state of the Hamiltonian). We begin by preparing the stateo the preparation of superpositions in $eclllD. We start by
> +/Pil&). This can be done using the procedure in Secefficiently specifying©) using occupation number vectors of
[TAlif we order the¢;’s so that they may be thought of as the|® 4 ;) and the|® 5 ;), namely
a function on a one-dimensional grid. We then run the entire

state-preparation algorithm in superposition, prepatiegp- D aijnai)onane ;)and @ 104)1st08) 1t
propriate|¥;) conditional on the value of the;). This yields i.J
the state

We then complete the state preparation, in superposit®n, a
= _ e we did in Sec/[ID, treating each register separately. Doing
=)= Z VPpil&) [¥i) so producefd).

’ There are many circumstances in which the ability to pre-

the density operator of which is pare states such as these would be valuable. For instance, in
chemical dynamics it is necessary to treat the nuclei and the
p= = Z Voipi &) (Gir| @ |T5) (U] electrons separately. If we restricted our state preparat
il simple product states such g, ;) |®5 ;), we would get a

state in the Born-Oppenheimer approximation, which isrofte
Tracing out the specification register, we get the desired de 3 good approximation to the initial states of reactantsipart
Sity operator ipating in chemical reactions. However, as the procedure fo
preparing ©) shows, quantum computers could just as easily
prepare non—Born-Oppenheimer states in which there is cor-
> VP W) (| Tr &) (G| relation between electronic and nuclear degrees of freedom
i Many-particle mixed states can likewise be prepared by fol-

lowing the procedure in SeE_TIG separately for each type of
Zpi [W3) (W] particle.

Trep=

P

In practical terms, tracing out the specification register
amountsto doing nothing at all. Thatis, e&®h) is entangled
to a different|¢;), meaning that thé¥;)’s evolve separately
under time evolution, as they would if they were independent For the state preparation algorithm to be considered effi-
members of an ensemble. cient, the time it takes to execute it must scale as a polyno-
One can notice that density operators diagonal indhe ~ mial in the sizes of the input. More precisely, it should scal
basis can be prepared more directly. In the previous Se@s a polynomial iri, the number of qubits used to store the
D] we had to “disentangle” the first- and second-quantizedvavefunction andn, the number of occupied single-particle
states. If we had instead simply traced out the input registeorbitals, which is the best descriptor of the total size & th
we would have obtained a mixed state diagonal in|thg  System.
basis. In this section, we first show that pre-existing errors are am
plified at most linearly by subsequent steps of the algorithm
We then use this fact to obtain the total computational cbst o
1. MANY TYPESOF PARTICLES preparing an arbitrary quantum state.

1V. ERRORSAND THE COMPUTATIONAL COST

In Sec.[dl, we outlined an algorithm for the preparation of
arbitrary many-particle states (pure or mixed) of a systém o
identical particles. However, one often wants to consigief s
tems of more than one type of particle, or treat particles of Assuming that the quantum gates are executed perfectly—
the same kind, but separated in space, as different (trez lattor that the gate errors are corrected using efficient error co
approach might be useful, for example, in computing electro rection algorithms—there are five sources of error in theesta
transfer matrix elements for large moleculés) [37]. We con-Preparation algorithm:

A. Errors

sider the case of two types of particles, with the generadima 1. Preparation of single-particle eigenstates. Zalka’'s
to more types being clear. method that we adopt in SelC. 1] A requires evaluation of the
One wants to prepare an arbitrary two-particle state integrals [(1). We have addressed the computational cost of
integral evaluation in Se¢_TlB, where we show that the pro-
|©) = Z i |®ai)|®s,), cedure can be accomplished in time polynomiadjﬁ if the

wavefunction’s indefinite integral is known or, more gener-
ally, if the wavefunction is bounded. The resulting errothia
where|® 4 ;) is @ many-particle eigenstate of particles of typeprepared single-particle eigenstate js< ls;/2.

A, and|®p ;) is an eigenstate of particles of tyge Each 2. Assembly of many-particle eigenstates. Many-particle
element|® 4 ;) |Dp ;)of this superposition is easily created eigenstates{3) inherit the errors present in the singtéepe

.3
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eigenstatesy;) that are used to assemble them. Supposinglete. The second-quantized register, which should beranco
that the prepared stat(%&i> approximate the true statés;) puted du_ring the procedure, sh(_)uld_be m_easured at the end.
If |0...) is observed, phase estimation will have succeeded.
¢l>‘ then the prepared Hartree Otherwise, a misidentification will have occurred, and tree p
cedure ought to be repeated. This simple, classical errer co
rection introduces only a constant overhead and ensures tha
phase estimation does not contribute to the error in the final

with erroreg; = 1 — ‘<q§l

product‘i&j1 o q}jm> suffers an error

g = 1— ‘<¢~’j1 ---cf;jm‘ b ---¢jm>’ prepared state.
m 5. Assembly of mixed states. In the notation of Sed. 111G,
=1- H(l —€6.5;) if the prepared state%ﬂli> approximate the true stat¢¥;)

et . B} .
' with an erroreg; = 1 — ‘<\I/l \IJZ>‘ and assuming per-

< Z&zﬁ,ji <megy < mler/2, fect preparation of the stafge’, \/p; |&;), the final prepared
=1 mixed state will bes = 3™, p; \I/> <x1/
wheree, = maxey ;. Since the total error grows as a poly- , _ o N :
nomial in both the single-state error and the number of oc< v; ‘I’j> = 0fori # j, thenp suffers an error [11]
cupied states, the assembly of Hartree products amplifees th
pre-existing errors only linearly im. The remaining step, the \/; \/j 1/2
antisymmetrization of the Hartree product, does notinioed ¢» = 1=Tr PP\ P
) (¥

. If we assume that

additional errors.

3. Preparation of superpositions. The parallel state- 5
preparation that is used to perform the transformalibn ¢épsd = 1-Tr Zpi
not introduce any additional errors with the exception & th i

) (o

possible failures of phase estimation, discussed below- Ne =1- Zpi(l —€w,)
ertheless, we should see how pre-existing errors propagate i
through this step. If the prepared statefz\is> =Y, ’i)z> < ey <mleg/2,

we see that it suffers an error with respect to the target stat wheresy = maxey ;. That s, the assembly of mixed states

2|/ & does not magnify the pre-existing errors.
fv = 1= Z e ‘<<1>1 (I)l>‘ Overall, Wg sge thapt errors in?roduced in any stage of the
' state preparation algorithm are not amplified more than-poly
= 1= Z il *(1 - €a.i) nomially by subsequent stages. The final error in the prepare
i state iss = ¢, < mle;/2, meaning that the error scales lin-
< ep < mley/2, early with the size of the system and the error of the in-
where e — maxeq,; and where we have assumed thattseigégglon procedure, as well as logarithmically with th&gr

<<i>l‘ <I>j> = 0 fori # j. In other words, the error |+|\Il>

is limited by the error of its components.

4. Discrimination of statesin a super position. The prepa- B. Computational cost
ration of superpositions described in Sécs.J[TDHI F andeH
lies on phase estimation as a means of distinguishing states There are three time-consuming steps in the state prepa-
Since the eigenenergies will rarely have finite binary expanration algorithm. The first is the evaluation of the integral
sions, there will be errors introduced at this step. Iftwagds (1) and the resulting single-qubit rotations, the secorttiés
differ at thenth bit and we perform phase estimation with phase-estimation that is used to distinguish states inuhers
g = n + p qubits, the probability of an incorrect identifi- position (see Se€.1ID), and the final is the antisymmetiorat
cation is1/2(2? — 2), meaning that the success probability procedure described in Séc. 1l C. We characterize the cost of
will be 1 — epg provided we implement phase estimation with each step in turn.
p = [log(2+ 1/2epg)] additional qubits|[11]. The addi- In the previous section, we have seen that the total error of
tional overhead, logarithmic in;é, does not compromise the the prepared state will be< mle; /2. Therefore, if we want
efficiency. The same arguments apply to the phase estimatidn ensure a maximum errer we must choose; = 2¢/ml,
of eigenvalues o€”,, belonging to states in separably degen-implying thatO(mlz~!) time is required for each integration
erate irreducible representations of groaps C,,,, andSa, (see Sec[IIB). The integration procedure itself is catield
(see Sed_1ITE). The symmetry eigenvalues that are useful faimes: for each of the: occupied orbitalg, qubits have to be
states in the other point groups are always and can be per- rotated correctly. Therefore, the total time required fbthae
fectly resolved using phase estimation with a single readouqubit rotations isO(m?2i%c ).
qubit. The cost of the phase-estimation procedure that is used to

In addition, failures of state discrimination based on ghas distinguish the eigenstates cannot be given preciselyuseca
estimation can be detected after the state preparatiomis co we have not made any assumptions about the nature of the
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Fock operator¥ other than that it is efficiently simulatable, mpoly(m, M,1, A=')) = poly(m,M,l,e~*,A~1), an ex-
that is, running in timepoly(m, M,l, A=') (here,A is the  pression polynomialin all the basic descriptors of theeyst
precision at which the simulation needs to be run, i.e., it isThis allows us to conclude that the algorithm, as described
half the gap between the closest two eigenstates, which wabove, is efficient.
assumed is not exponentially small). Simulating the entire

Hartree-Fock Hamiltonian requires the simulation of thekFo

operator acting separately on each particle, meaning tleat t

total simulation requiresipoly(m, M,1, A=1) time. In ad-

dition to this, two quantum Fourier transforms (QFTS) are re . . .
quired on the readout register of the phase estimation, If We have outlined a quantum algorithm for the preparation

qubits are used for the readout (see SeC.1VA.4), the QFTQf physically realistic quantum states on a lattice. In ipa.rt.
requireO(¢?) time. It should be noted that the requirgd lar, we have gone beyond previous proposals by describing a

is determined only by needed precision in the phase estimdP€thod for preparing any pure or mixed state of any number of
tion, and that it does not depend strongly on I, or M. paruc;les. Th|s_|s achieved by using Zalkg;method f_or prep
Therefore, the cost of the QFTs can be treated as essentiaffjd Single-particle states and then combining those intoyna
a constant overhead. Furthermore, there is the cost of loolparticle states. The assembly of many-particle statesnesju
ing up the state’s energy in the look-up table; a simple lyinar that we be able to dIStIn.QUISh them on a quantum computer, a
search require®(log, M) time per register, for a total cost task that we address using phase estimation. We also prbvide
of O(mlog, M). But this, too, is a negligible cost in com- symmetry-based solutions for degenerate cases, where phas

V. CONCLUSION

parison tompoly(m, M, 1, A~1), which we conclude is the estimation using a single operator is insufficient to dggtiish
D i ' the states. Accidentally degenerate states can be dighegl

asymptotic cost of the eigenstate discrimination portibtme : : St
by adding a perturbation to the system Hamiltonian. Our-algo

state preparation algorithm.

: - ithm is effici i i 1 A1

The bottleneck of the antisymmetrization procedure used t§thm is efficient, with a run-time ofoly (m, M, 1, A7),
produce fermionic states (or the symmetrization for bosoni SUbject only to the requirements that the wavefunction be
ones) is the sort that takes stafé (4)[b (5). Sorting r(_:@istéaounded or that its indefinite integral be known and that the

B by a comparison sort requiréym logm) swaps. These

swaps must also be performed on each of the correspohding

qubits of register, for a total cost of2(im log m). For large

Fock operator be efficiently simulatable.
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