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Abstract

The idea of evolutionary game theory is to relate the payoff of a game to reproductive suc-
cess (= fitness). An underlying assumption in most models is that fitness is a linear function
of the payoff. For stochastic evolutionary dynamics in finite populations, this leads to ana-
lytical results in the limit of weak selection, where the game has a small effect on overall
fitness. But this linear function makes the analysis of strong selection difficult. Here we
show that analytical results can be obtained for any intensity of selection, if fitness is de-
fined as an exponential function of payoff. This approach also works for group selection (=
multi-level selection). We discuss the difference between our approach and that of inclusive
fitness theory.

Key words: Evolutionary game theory, Stochastic effects, Strong selection, Group
selection

1 Introduction

Certain population structures allow selection to act on multiple levels. If a meta-
population is subdivided into groups, there can be selection between individuals in
a group and selection between groups. Many theoretical and empirical studies of
group selection have been performed. Until the 1960s, it was a routine assumption
that selection acts not only on the individual, but also on the group level (Wynne-
Edwards, 1962). This idea goes back to Charles Darwin (1871), who wrote “There
can be no doubt that a tribe including many members who [...] were always ready
to give aid to each other and to sacrifice themselves for the common good, would
be victorious over other tribes; and this would be natural selection.”.
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Williams (1966) pointed out some problems in this argumentation and subsequently,
many biologists dismissed the possibility of group selection. Mathematical mod-
els can show the limits of group selection (Maynard Smith, 1964; Wilson, 1975;
Levin and Kilmer, 1974; Matessi and Jayakar, 1976). Wilson (1987) has shown
that the failure of group selection in the Haystack model of Maynard Smith (May-
nard Smith, 1964) hinges on the assumption that groups stay intact until non-
cooperators have taken over all mixed groups. Fletcher and Zwick (2004) have
shown that in Hamilton’s group selection model (Hamilton, 1975) cooperation can
evolve if groups stay intact for several generations. In many other models of group
selection cooperation can evolve (Eshel, 1972; Uyenoyama, 1979; Slatkin, 1981;
Leigh, 1983; Wilson, 1983; Killingback et al., 2006; Traulsen and Nowak, 2006).
Experiments have shown that artificial group selection can be effective (Wade,
1976; Craig and Muir, 1996; Swenson et al., 2000).

Kerr and Godfrey-Smith (2002) have argued that a group selection perspective
can be helpful under many circumstances. Group selection arguments have been
invoked for the evolution of the first cell (Szathmáry and Demeter, 1987; May-
nard Smith and Szathmáry, 1995) and for optimizing the number of plasmids in
bacterial cells (Paulsson, 2002). Group selection might also have played an impor-
tant role in human evolution (Wilson and Sober, 1998; Boyd and Richerson, 2002;
Bowles, 2004; Bowles and Gintis, 2004; Weibull and Salomonsson, 2006; Traulsen
and Nowak, 2006; Bowles, 2006). A recent paper by Wilson and Hölldobler (2005)
argues that group selection is more important than kin selection for the evolution of
social insects, see also (Reeve and Hölldobler, 2007). Wilson (2007) further ques-
tions the importance of kin selection for eusociality.

For some authors group selection and kin selection are identical concepts (Lehmann
et al., 2007). While there could be some overlap between these two mechanisms,
we do not consider this to be a useful perspective, in general (Wild and Traulsen,
2007; Taylor and Nowak, 2007). We will return to this topic in the discussion.

Most models of multi-level selection are mathematically very complicated and can
only be studied by computer simulation. Here we consider a simple model that was
introduced by Traulsen et al. (2005) and Traulsen and Nowak (2006). We show that
this model leads to analytical results for any intensity of selection, if fitness is an
exponential function of payoff.

This paper is organized as follows: In Section 2, we recall the frequency dependent
Moran process describing a single, well mixed population and discuss the limit of
weak selection, where the payoff of the game has only a small effect on fitness. In
Section 3, we introduce an exponential mapping of payoffs to fitness and show that
this approach leads to exact results for any intensity of selection. In Section 4, we
turn to group selection and review the standard results obtained for a linear payoff
to fitness mapping. In Section 5, we study group selection using the exponential
mapping. In Section 6, we discuss the implications of our results.
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2 The Moran process

First, we consider frequency dependent selection in a Moran process which de-
scribes a single, well mixed population of n individuals (Nowak et al., 2004; Nowak,
2006a). There are two types of individuals, A and B. Individuals interact with oth-
ers in pairwise encounters in a well-mixed population. They receive a payoff as
defined by the matrix

(A B

A a b
B c d

)
. (1)

The expected payoff πA(j) of an A individual in a well-mixed population of j − 1
other A individuals and n− j B individuals is

πA(j) =
j − 1

n− 1
a+

n− j
n− 1

b. (2)

Similarly, the B individuals in such a population have the payoff

πB(j) =
j

n− 1
c+

n− j − 1

n− 1
d. (3)

As usual, we first assume that fitness, f , is a linear combination of a background
fitness (which is set to 1) and the payoff,

fA(j) = 1− w + wπA(j) and fB(j) = 1− w + wπB(j). (4)

The parameter w controls the intensity of selection. For w = 0, there is only neutral
drift. For w � 1, we have weak selection. For w = 1, fitness equals payoff and
selection is strong. But for strong selection, we have the restriction that fA(j) and
fB(j) must be non-negative for any j ∈ {0, 1, . . . , n}. Thus, there is an upper limit
for w if the payoff matrix has negative entries. This complication arises, because
the frequency dependent Moran process is in contrast to the replicator dynamics
not invariant under the addition of a constant to the payoff matrix.

At each time step, one individual is selected at random proportional to fitness and
produces an identical offspring, which replaces a randomly chosen individual. The
probabilities to change the number of A individuals from j to j ± 1 are given by

T+(j) =
jfA(j)

jfA(j) + (n− j)fB(j)

n− j
n

(5)

T−(j) =
(n− j)fB(j)

jfA(j) + (n− j)fB(j)

j

n
. (6)

With probability 1− T+(j)− T−(j), the number of j individuals does not change.
The fact that the remaining transition probabilities are zero (j changes at most by
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one) allows us to calculate the fixation probabilities analytically. In a stochastic
processes where j can change to any value as in the frequency dependent Wright
Fisher process (Imhof and Nowak, 2006), the fixation probabilities can only be
approximated.

For the ratio of the transition probabilities (5) and (6), we have

T−(j)

T+(j)
=
fB(j)

fA(j)
=

1− w + wπB(j)

1− w + wπA(j)
(7)

This ratio measures at each point in state space how likely it is that the process
continues in a certain direction: If the ratio is close to zero, then it is more likely
that the number of A individuals increases. If it is very large, the number of A
individuals will probably decrease. If it is one, then increase and decrease of the
number of A individuals are equally likely.

The fixation probability of a single A individual in a group of n− 1 B individuals
is given by (Karlin and Taylor, 1975)

φA =
1

1 +
∑n−1
k=1

∏k
j=1

T−(j)
T+(j)

=
1

1 +
∑n−1
k=1

∏k
j=1

fB(j)
fA(j)

. (8)

In contrast to the transition probabilities, fixation probabilities are non-local in state
space, i.e. all transition probabilities enter in the fixation properties.

The fixation probability of a single B individual in a group of n− 1 A individuals
can be calculated as (Nowak, 2006a)

φB =

∏n−1
j=1

fB(j)
fA(j)

1 +
∑n−1
k=1

∏k
j=1

fB(j)
fA(j)

. (9)

Because of the sums and products, the fixation probabilities (8) and (9) are difficult
to interpret. Taking only linear terms in the intensity of selection w into account,
we can derive a weak selection approximation (w � 1). We obtain

φA≈
1

n
+
w

6n
[−2a− b− c+ 4d+ n(a+ 2b− c− 2d)] (10)

φB ≈
1

n
+
w

6n
[4a− b− c− 2d+ n(−2a− b+ 2c+ d)] . (11)

The comparison of these fixation probabilities to neutral mutants, which have a
fixation probability of 1/n is straightforward from these equations. In this case,
the 1/3-rule is obtained (Nowak et al., 2004; Taylor et al., 2004; Traulsen et al.,
2006b; Ohtsuki and Nowak, 2007; Ohtsuki et al., 2007a). This rule is valid for weak
selection and large populations. It can be stated as follows: The fixation probability
of A is greater than 1/n, if the fitness of A is greater than the fitness of B at the
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point where the frequency of A is 1/3. This rule is valid for any process within the
domain of Kingman’s coalescence (Lessard and Ladret, 2007).

Comparing the fixation probabilities to each other, we have

φB
φA

=
n−1∏
j=1

fB(j)

fA(j)
≈ 1− w

[
n

2
(a+ b− c− d)− a+ d

]
. (12)

The approximation is valid for weak selection, w � 1. Note that every single tran-
sition probability enters into this ratio. For weak selection, φA > φB is equivalent
to

n

2
(a+ b− c− d)− a+ d > 0. (13)

For large n, this reduces to risk-dominance of A,

a+ b > c+ d. (14)

A risk dominant strategy can be defined as the Nash equilibrium with the larger
basin of attraction. If the amount of noise in the system increases, it is more likely
that the system is found in the risk dominant equilibrium. For larger w, the relation
between risk dominance and the fixation probabilities can be more complicated
(Nowak et al., 2004; Fudenberg et al., 2006).

Here, we restrict the discussion to games where coexistence of two strategies, as in
the snowdrift game or hawk-dove game (Hauert and Doebeli, 2004), is not possible.
In such cases, the fixation times can become extremely long (Antal and Scheuring,
2006; Traulsen et al., 2007).

3 A new mapping of payoff to fitness

While the frequency dependent Moran process (as introduced in Nowak et al.,
2004) has convenient properties for weak selection, it is less useful for analyz-
ing strong selection (Fudenberg et al., 2006). Now, we assume that (relative) fitness
is an exponential function of the payoff,

fA(j) = eβπA(j) (15)

and
fB(j) = eβπB(j). (16)

The parameter β measures the intensity of selection, similar to w above. As before,
the fitness increases with the payoff. But in contrast to w, the parameter β can take
any positive value. For β = 0, we obtain neutral drift. For small β, the exponen-
tial function can be approximated by a linear function. Therefore, we recover the
usual results for weak selection, Eqs. (10)-(12) (Nowak et al., 2004; Traulsen et al.,
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2006b). For large β, we can analyze the effect of strong selection. In this case, neg-
ative payoffs lead to a relative fitness close to zero and positive payoffs lead to very
large values for the relative fitness. Since the exponential function is positive for
any argument, negative and positive entries in the payoff matrix can be analyzed
without restrictions.

Usually, a linear relation between payoff and fitness is assumed with no further jus-
tification. In most cases, a different payoff to fitness mapping does not change the
qualitative outcome, only the speed of the process. An exponential mapping from
payoff to fitness has exactly the same properties as a linear mapping in most cases,
but it allows greater variation in the intensity of selection and is thus more general.
Exponential functions to calculate fitness from model parameters have been used
before (Aviles, 1999).

With the new mapping, the probabilities to change the number of A individuals
from j to j ± 1 are given by

T+(j) =
jeβπA(j)

jeβπA(j) + (n− j)eβπB(j)

n− j
n

(17)

T−(j) =
(n− j)eβπB(j)

jeβπA(j) + (n− j)eβπB(j)

j

n
. (18)

For the ratio of transition probabilities we obtain

T−(j)

T+(j)
=
fB(j)

fA(j)
= eβ(πB(j)−πA(j)). (19)

This is identical to the corresponding ratio of the pairwise comparison process dis-
cussed by Blume (1993), Szabó and Tőke (1998) and Traulsen et al. (2006a, 2007).
Thus, both processes have exactly the same fixation probabilities, despite the fact
that they are very different in general. For example, here only the fittest individuals
reproduce for strong selection, whereas in the pairwise comparison process both
types can reproduce. Since now the product in Eq. (8) can be solved exactly, the
fixation probability of a single A individual reduces to

φA =

(
n−1∑
k=0

exp

[
β

2
k(k + 1)

−a+ b+ c− d
n− 1

+ βk
a− bn+ dn− d

n− 1

])−1

, (20)

Equivalently, we find for the fixation probability of a single B individual in a pop-
ulation of N − 1 A individuals

φB =

(
n−1∑
k=0

exp

[
β

2
k(k + 1)

−a+ b+ c− d
n− 1

+ βk
an− a− cn+ d

n− 1

])−1

, (21)
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For a+ d = b+ c, the sums can be calculated exactly. In this case, we obtain

φA =
exp [β(a− bn+ dn− d)/(n− 1)]− 1

exp [β(a− bn+ dn− d)n/(n− 1)]− 1
. (22)

For a+d 6= b+c, we can replace the sum by an integral to obtain a closed expression
for the fixation probabilities

φA =
erf [ξ1]− erf [ξ0]

erf [ξn]− erf [ξ0]
. (23)

We have ξk =
√

β
u
(ku + v), 2u = a−b−c+d

n−1
6= 0 and 2v = −a+bn−dn+d

n−1
. The error

function is given by erf(x) = 2√
π

∫ x
0 dy e

−y2 . In (Traulsen et al., 2006a, 2007), it is
shown that this approximation works very well even in small populations. Similar
equations hold for φB. They can be obtained by exchanging a↔ d and b↔ c.

For the ratio of fixation probabilities, we find

φB
φA

=
n−1∏
j=1

T−(j)

T+(j)
= exp

[
−β

(
n

2
(a+ b− c− d)− a+ d

)]
. (24)

Again, φA > φB is equivalent to

n

2
(a+ b− c− d)− a+ d > 0. (25)

But now, this condition is valid for any intensity of selection. Thus, for the expo-
nential payoff to fitness mapping, we find that φA > φB and risk dominance of A
are equivalent for any intensity of selection in large populations.

4 Group selection

Group selection is a process where competition occurs between individuals and
between groups. It is a mechanism for the evolution of cooperation (Nowak, 2006b;
Taylor and Nowak, 2007).

Imagine a population of individuals that is subdivided into groups. The number
of groups is constant and given by m. Each group contains between one and n
individuals. The total population size, N , can fluctuate between the bounds m and
nm.

In each time step, a random individual from the entire population is chosen for re-
production proportional to fitness. The offspring is added to the same group. If the
new group size is less than or equal to n nothing else happens. If the group size
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exceeds n then with probability q the group splits into two. In this case, a random
group is eliminated in order to maintain a constant number of groups. With prob-
ability 1 − q, however, the group does not divide, but instead a random individual
from that group is eliminated (Traulsen and Nowak, 2006).

This minimalist model of multi-level selection has some interesting features. Note
that the evolutionary dynamics are entirely driven by individual properties. Only
individuals are assigned payoff values. Only individuals reproduce and group split-
ting is triggered by individual reproduction. Groups can stay together or split when
reaching a certain size. Groups that contain fitter individuals reach the critical size
faster and therefore split more often. This concept leads to selection among groups,
although only individuals reproduce. Higher level selection emerges from lower
level reproduction. The two levels of selection can oppose each other (Williams,
1966; Wilson, 1975; Hamilton, 1975; Traulsen et al., 2005). We note, in passing,
that the underlying population structure cannot be described by evolution on a fixed
graph (Nowak and May, 1992; Lieberman et al., 2005; Ohtsuki et al., 2006, 2007b;
Taylor et al., 2007).

While many group selection models consider group competition in terms of differ-
ential productivity of groups, here groups are eliminated and successful groups di-
vide. Similar mechanisms where whole groups are taken over have been described
before (Bowles et al., 2003; Chalub et al., 2006; Pacheco et al., 2006; Bowles,
2006).

We can compute the fixation probabilities. An analytic calculation is possible in
the limit q � 1 where a separation of time scales emerges, as individuals repro-
duce much more rapidly than groups divide. In this case, most of the groups are
at their maximum size and hence the total population size is almost constant and
given by N = nm. We have a hierarchy of two Moran processes. Fixation of a
mutant implies first fixation within the group and then fixation of the group’s strat-
egy in the population. On a fast time scale, we have a frequency dependent Moran
process within each of the groups. We have described this process in detail in Sec-
tion 2. On a slower time scale, we have a frequency independent Moran process
among pure groups. Once all groups are homogeneous, they stay homogeneous, as
no mixing between groups occurs (For a model with migration, see Traulsen and
Nowak, 2006).

The probability to change the number of all-A groups from l to l + 1 is given by

P+(l) =
lfA(n)

lfA(n) + (m− l)fB(0)

m− l
m

. (26)

At first, we use a linear payoff to fitness mapping, fA = 1 − w + wπA and fB =
1−w+wπB. The probability to change the number of all-A groups from l to l−1,
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P−(l), is given by

P−(l) =
(m− l)fB(0)

lfA(n) + (m− l)fB(0)

l

m
. (27)

The ratio of these probabilities reduces to

P−(l)

P+(l)
=
fB(0)

fA(n)
. (28)

In contrast to the equivalent expression for the dynamics within a single group, this
quantity is independent of l. The probability that a single all-A group takes over the
population is

ΦA =

[
1 +

m−1∑
k=1

k∏
l=1

fB(0)

fA(n)

]−1

. (29)

If we add a singleA individual to a population ofB, then theA individual must first
take over its group. Subsequently this group of A must take over the entire popula-
tion. Thus, the overall fixation probability of this process, ρA, is the product of the
fixation probability of an individual in a group, φA, and the fixation probability of
the group in the population, ΦA. We have ρA = φA · ΦA.

We find

ρA =

1 +
n−1∑
k=1

k∏
j=1

fB(j)

fA(j)

−1

×
[
1 +

m−1∑
k=1

k∏
l=1

fB(0)

fA(n)

]−1

. (30)

An equivalent expression holds for ρB. For weak selection, w � 1, we obtain

ρA ≈
1

nm
+

w

6nm
[−2a− b− c+ 4d+ n(a+ 2b− c− 2d) + 3(m− 1)(a− d)] .

(31)
For the fixation probability of a singleB individual in a group structured population
we find under weak selection

ρB ≈
1

nm
+

w

6nm
[4a− b− c− 2d+ n(−2a− b+ 2c+ d) + 3(m− 1)(−a+ d)] .

(32)
The comparison of the fixation probabilities to the result for neutral selection,
1/(nm), is straightforward under weak selection and follows directly from Eqs. (31)
and (32). We can also compare ρA to ρB. Then, ρA > ρB is equivalent to

2(m− 2)(a− d) + n(a+ b− c− d) > 0 (33)

This result has been derived before; see equation [22] in the supporting information
of (Traulsen and Nowak, 2006). For the special case of a two parameter Prisoner’s
Dilemma described by costs and benefits, Eq. (33) means that the benefit to cost ra-
tio of cooperation has to exceed 1+n/(m−2), see (Traulsen and Nowak, 2006). In
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this special case, the condition is under weak selection equivalent to ρA > 1/(nm)
and to ρB < 1/(nm).

If the number of groups becomes very large compared to the group size, m �
n, then A individuals have a higher probability of fixation than B individuals if
a > d. In this case, mixed groups do not influence the dynamics and the pareto
optimal equilibrium is favored. If the the number of groups is much smaller than
the group size,m� n, thenA individuals have a higher probability of fixation than
B individuals if A is risk dominant in a single, well mixed population a+ b > c+d
(Nowak et al., 2004; Nowak, 2006a; Fudenberg et al., 2006). In the general case of
finite n and finite m, the full condition (33) determines which fixation probability
is larger.

5 The new mapping in the case of group selection

We now use an exponential payoff to fitness mapping for group selection. The
probabilities to change the number of all-A groups from l to l ± 1 are given by

P+(l) =
leβπA(n)

leβπA(n) + (m− l)eβπB(0)

m− l
m

(34)

P−(l) =
(m− l)eβπB(0)

leβπA(n) + (m− l)eβπB(0)

l

m
. (35)

The ratio of these probabilities simplifies to

P−(l)

P+(l)
=
fB(0)

fA(n)
= eβ(πB(0)−πA(n)) (36)

We obtain for the fixation probability of a single all-A group

ΦA =
1− e−β(a−d)

1− e−β(a−d)m (37)

and for the fixation probability of a single all-B group

ΦB =
1− eβ(a−d)

1− eβ(a−d)m . (38)

Combining these expressions with Eqs. (20) and (21), we obtain the overall fixation
probabilities ρA = φAΦA and ρB = φBΦB again. For weak selection, β � 1, we
recover for ρA and ρB the approximations (31) and (32) with β ↔ w. Thus, under
weak selection both processes have the same fixation properties. In this limit, it
is reasonable to compare the fixation probability to a neutral mutant, which is the
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natural result for β → 0 (Nowak et al., 2004; Antal and Scheuring, 2006; Traulsen
and Nowak, 2006; Ohtsuki et al., 2006).

For strong selection, the comparison with the fixation probability of a neutral mu-
tant is no longer meaningful. For instance, consider the interactions of cooperators
and defectors. On the individual level, defectors perform better than cooperators,
but a group of cooperators is better off than a group of defectors For strong selec-
tion, a single cooperator will hardly ever reach fixation within a group, whereas a
single defector group will hardly ever reach fixation in a population of cooperator
groups. Thus, many attempts are necessary before either a cooperator or a defector
can take over the whole population. Consequently, both ρA and ρB become very
small as β → ∞. However, we can compare the fixation probabilities of the two
strategies directly to each other for any intensity of selection. For any finite β, such
a comparison is meaningful, but one has to keep in mind that for large β the fixa-
tion probabilities are small and many mutations are necessary before one of them
reaches fixation.

Our analytical calculation is valid for small group splitting probability, q � 1, only,
but simulations show that larger values of q favor cooperators. The reason for this
is that for larger q, groups tend to be smaller, as not all groups grow back to their
carrying capacity. In addition, in this case often mixed groups split, which allows
cooperators to take over groups without reaching fixation.

For the ratio of the two fixation probabilities, we obtain

ρB
ρA

= exp
[
−β

(
n

2
(a+ b− c− d) + (m− 2)(a− d)

)]
. (39)

The detailed calculation can be found in the Appendix. Hence, ρA > ρB if

2(m− 2)(a− d) + n(a+ b− c− d) > 0 (40)

In Section 4, we have derived an identical condition for weak selection, see. Eq. (33).
Due to our different choice of the payoff to fitness mapping, here the same condi-
tion is valid for any intensity of selection. For the special case of a+ d = b+ c, the
conditions ρA > ρB, ρA > 1/(nm) and ρB < 1/(nm) are equivalent under weak
selection. Under strong selection, this is no longer true, as we can have ρA > ρB
despite ρA � 1/(nm) and ρB � 1/(nm).

Our way to address arbitrary intensities of selection is very different from common
approaches taking higher order terms in the intensity of selection into account.
Higher order terms make the weak selection approximation more accurate, but the
reference point remains neutral selection. Because of the limited convergence ra-
dius of such expansions, higher-order approximations cannot provide reliable in-
formation on general intensities of selection.
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6 Discussion

We have introduced a Moran process where the fitness is an exponential function
of payoff. We have shown that the results of (Traulsen and Nowak, 2006) can be
extended to any intensity of selection if this mapping from payoff to fitness is ap-
plied.

It has been argued that the model described in (Traulsen and Nowak, 2006) de-
scribes kin-selection. Wild and Traulsen (2007) and Lehmann et al. (2007) have
shown that a special form of Eq. (40) can be derived using an inclusive fitness
approach. The inclusive fitness approach uses a within-group and between-group
relatedness. Although some of our results can be obtained using the mathematical
framework of kin selection, there are several conceptual differences.

Our model considers two distinct pure strategies, A and B. In such a system, any
selective scenario is possible on the individual level, see (Taylor and Nowak, 2007).
The two types could engage in a coordination game, leading to a bistable situation.
The two types could also form a stable polymorphism, leading to an internal equi-
librium. Finally, one type can dominate the other, which is the situation considered
in (Traulsen and Nowak, 2006). Weak selection is implemented in the sense that
the two types have similar fitness values despite their distinct phenotypes.

In contrast, kin selection methods determine whether cooperativeness increases in
a continuous phenotype space. Weak selection in such a system is usually imple-
mented by considering two types that are close to each other in phenotype space.
This concept leads to frequency independent selection if only the linear term in the
phenotypic distance is considered (Wild and Traulsen, 2007). When higher order
terms are considered, aspects of frequency dependence can be addressed (Ross-
Gillespie et al., 2007)

The approach of Rousset and Billiard (2000) for calculating fixation probabilities
in a kin selection framework hinges on the assumption of frequency independent
selection. Hence, it does not necessarily lead to the same fixation probabilities for
weak selection as in (Traulsen and Nowak, 2006). In fact, the same condition for
the ratio of the fixation probabilities is only obtained if the payoff matrix fulfills
a + d = b + c (Wild and Traulsen, 2007), which is a special situation that has
been termed “equal gains from switching” (Nowak and Sigmund, 1990). Thus, our
more general Eq. (40) cannot be obtained by current kin selection approaches, as
the different weak selection assumption changes the condition.

Furthermore, inclusive fitness arguments use weak selection to decouple related-
ness and fitness effects. Relatedness coefficients are calculated in a system without
selection. Thus, for inclusive fitness calculations, weak selection is a necessity to
avoid the intricacies of calculating relatedness in a system with strong selection,
which is usually an insurmountable task. In contrast, for the approach of (Traulsen
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and Nowak, 2006), there is no necessity to consider the weak selection limit. Weak
selection only serves to simplify the fixation probabilities and to obtain Eq. (33),
which is easier to interpret than Eq. (30). In the present paper, we derive results that
hold for any intensity of selection, see Eq. (40).

The mathematical methods of game theory in finite populations and inclusive fit-
ness are very different and lead to the same results only in special cases. Inclusive
fitness methods either use direct or indirect fitness evaluation, but this seems to
be rather a different way to do the accounting (Fletcher et al., 2006; Fletcher and
Zwick, 2006). The standard approach of evolutionary game theory is usually much
simpler and more direct than the approach of inclusive fitness theory. Often the
inclusive fitness approach leads only to a subset of the results and does not pro-
vide additional insights (An important exception, however, is the paper by Taylor
et al. (2007), which leads to correction terms for finite population size that could
not be reached by Ohtsuki et al., 2006.) Evolutionary game theory analyses the
frequency dependent selection between two strategies, A and B. Inclusive fitness
theory assumes a continuum of mixed strategies between A and B and then studies
the direction of selection in this continuous strategy space. This approach has two
problems: (i) for many games, mixed strategies are not meaningful; and (ii) such a
local analysis need not have any implication for the original question concerning
frequency dependent selection between the strategies A and B.

Finally, the biological concepts of group selection and kin selection should be kept
distinct. Group selection arises when there is competition between groups and does
not necessarily depend on genetic relatedness or genetic reproduction. The term kin
selection was originally defined by Maynard Smith (1964) as referring to situations
of genetic reproduction. Conditional strategies, such as different behavior towards
siblings and cousins, depend on kin recognition. The idea of kin selection has given
rise to a general method of analysis of structured populations (which can be useful,
see Taylor et al., 2007), but the mathematical method should not be confused with
the biological mechanism (West et al., 2007). Essentially, kin selection analysis
captures the effects of assortment, which is a consequence of any mechanism for
evolution of cooperation (Taylor and Nowak, 2007). The evolutionary dynamics
of group selection and graph selection (Ohtsuki et al., 2006) are very different,
although some aspects of both can be captured by inclusive fitness calculations.
Kin selection models that are independent of group selection and graph selection
should work in well mixed populations based on kin recognition.

The purpose of this paper was to show that an exponential payoff to fitness mapping
allows analytical results for any intensity of selection, both in settings of individual
and multi-level selection.
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A Ratio of the fixation probabilities

For the ratio of the fixation probabilities we obtain in our case

ρB
ρA

=
φB
φA

ΦB

ΦA

=

 n−1∏
j=1

T−(j)

T+(j)

m−1∏
l=1

P−(l)

P+(l)


=

 n−1∏
j=1

e−β[πA(j)−πB(j)]

m−1∏
l=1

e−β[πA(n)−πB(0)]


= exp

− β n−1∑
j=1

πA(j)− πB(j)

 exp

− β(m− 1)(πA(n)− πB(0))


= exp

−β n−1∑
j=1

(a− b− c+ d)j − a+ bn− dn+ d

n− 1
− β(m− 1)(a− d)


= exp

[
−β

2
(n(a+ b− c− d) + 2(m− 2)(a− d))

]
(A.1)

For ρB < ρA,A individuals have a higher probability of fixation thanB individuals,
which is equivalent to

n(a+ b− c− d) + 2(m− 2)(a− d) > 0 (A.2)
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