
The Maternal and Early Embryonic Transcriptome 
of the Milkweed Bug Oncopeltus fasciatus

Citation
Ewen-Campen, Ben, Nathan Shaner, Kristen A. Panfilio, Yuichiro Suzuki, Siegfried Roth, 
Cassandra G. Extavour. 2011. The maternal and early embryonic transcriptome of the milkweed 
bug Oncopeltus fasciatus. BMC Genomics 12:61.

Published Version
doi:10.1186/1471-2164-12-61

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4688065

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:4688065
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=The%20Maternal%20and%20Early%20Embryonic%20Transcriptome%20of%20the%20Milkweed%20Bug%20Oncopeltus%20fasciatus&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=0dd36c6250ef8aafdcf6afb6d738e1a5&departmentOrganismic%20and%20Evolutionary%20Biology
https://dash.harvard.edu/pages/accessibility


This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

The maternal and early embryonic transcriptome of the milkweed bug
Oncopeltus fasciatus

BMC Genomics 2011, 12:61 doi:10.1186/1471-2164-12-61

Ben Ewen-Campen (bewencampen@oeb.harvard.edu)
Nathan Shaner (nshaner@mbari.org)

Kristen A Panfilio (kpanfili@uni-koeln.de)
Yuichiro Suzuki (ysuzuki@wellesley.edu)

Siegfried Roth (Siegfried.Roth@uni-koeln.de)
Cassandra G Extavour (extavour@oeb.harvard.edu)

ISSN 1471-2164

Article type Research article

Submission date 7 October 2010

Acceptance date 25 January 2011

Publication date 25 January 2011

Article URL http://www.biomedcentral.com/1471-2164/12/61

Like all articles in BMC journals, this peer-reviewed article was published immediately upon
acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright

notice below).

Articles in BMC journals are listed in PubMed and archived at PubMed Central.

For information about publishing your research in BMC journals or any BioMed Central journal, go to

http://www.biomedcentral.com/info/authors/

BMC Genomics

© 2011 Ewen-Campen et al. ; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:bewencampen@oeb.harvard.edu
mailto:nshaner@mbari.org
mailto:kpanfili@uni-koeln.de
mailto:ysuzuki@wellesley.edu
mailto:Siegfried.Roth@uni-koeln.de
mailto:extavour@oeb.harvard.edu
http://www.biomedcentral.com/1471-2164/12/61
http://www.biomedcentral.com/info/authors/
http://creativecommons.org/licenses/by/2.0


 Page 1 of 52 

The maternal and early embryonic transcriptome of the milkweed bug Oncopeltus 

fasciatus  

 

Ben Ewen-Campen
1
, Nathan Shaner

2
, Kristen A. Panfilio

3
, Yuichiro Suzuki

4
, Siegfried 

Roth
3
, Cassandra G. Extavour

1* 

 

1. Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity 

Avenue, Cambridge, MA 02138, USA.  

2. Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 

95039, USA.  

3. Institute for Developmental Biology, University of Cologne, Cologne Biocenter, 

Zülpicher Straße 47b, 50674, Cologne, Germany.  

4. Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley 

MA 02481, USA.  

 

* Corresponding author: Email extavour@oeb.harvard.edu; Fax (617) 496-9507 

 

Author Email Addresses: 

Ben Ewen-Campen: bewencampen@oeb.harvard.edu 

Cassandra Extavour: extavour@oeb.harvard.edu  

Nathan Shaner: nshaner@mbari.org 

Kristen A. Panfilio: kpanfili@uni-koeln.de 

Siegfried Roth: Siegfried.Roth@uni-koeln.de 

Yuichiro Suzuki
: 
ysuzuki@wellesley.edu 



 Page 2 of 52 

Abstract 

 

Background: Most evolutionary developmental biology (“evo-devo”) studies of 

emerging model organisms focus on small numbers of candidate genes cloned 

individually using degenerate PCR. However, newly available sequencing technologies 

such as 454 pyrosequencing have recently begun to allow for massive gene discovery in 

animals without sequenced genomes. Within insects, although large volumes of sequence 

data are available for holometabolous insects, developmental studies of basally branching 

hemimetabolous insects typically suffer from low rates of gene discovery.  

Results: We used 454 pyrosequencing to sequence over 500 million bases of cDNA from 

the ovaries and embryos of the milkweed bug Oncopeltus fasciatus, which lacks a 

sequenced genome. This indirectly developing insect occupies an important phylogenetic 

position, branching basal to Diptera (including fruit flies) and Hymenoptera (including 

honeybees), and is an experimentally tractable model for short-germ development. 

2,087,410 reads from both normalized and non-normalized cDNA assembled into 21,097 

sequences (isotigs) and 112,531 singletons. The assembled sequences fell into 16,617 

unique gene models, and included predictions of splicing isoforms, which we examined 

experimentally. Discovery of new genes plateaued after assembly of ~1.5 million reads, 

suggesting that we have sequenced nearly all transcripts present in the cDNA sampled. 

Many transcripts have been assembled at close to full length, and there is a net gain of 

sequence data for over half of the pre-existing O. fasciatus accessions for developmental 

genes in GenBank. We identified 10,775 unique genes, including members of all major 

conserved metazoan signaling pathways and genes involved in several major categories 
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of early developmental processes. We also specifically address the effects of cDNA 

normalization on gene discovery in de novo transcriptome analyses.  

Conclusions: Our sequencing, assembly and annotation framework provide a simple and 

effective way to achieve high-throughput gene discovery for organisms lacking a 

sequenced genome. These data will have applications to the study of the evolution of 

arthropod genes and genetic pathways, and to the wider evolution, development and 

genomics communities working with emerging model organisms. 

 

[The sequence data from this study have been submitted to GenBank under study 

accession number SRP002610.1. Custom scripts generated are available at 

http://www.extavourlab.com/protocols/index.html. Seven Additional files are available.] 
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Background 

 

New and emerging model organisms occupy an increasingly important part of the 

developmental biology and developmental genetics research landscape. While studying a 

huge diversity of animals has long been the norm in the classical fields of experimental 

embryology and functional morphology [see for example 1, 2, 3], the molecular biology 

revolution and the advent of the “model system” concept [4] created demand for a small 

number of highly genetically manipulable organisms that could be intensively studied [5]. 

Research on these “big six” [sensu 6] genetic model organisms has led to enormous 

advances in our understanding of general principles of embryogenesis. However, placing 

these general principles in an evolutionary context requires broader taxonomic sampling. 

Many researchers have highlighted the need for developing new model organisms for 

specific comparative, evolutionary and ecological questions [6-8]. It has also been 

suggested, however, that the single gene expression approach of the last several decades 

of evolutionary developmental biology (“evo-devo”) has outlived its usefulness, and that 

what are needed are not more model organisms, but rather a smaller number of groups 

chosen for the ability to functionally manipulate genes [9, 10]. Sophisticated gene 

expression techniques and even stable germline transgenesis have been developed in a 

large array of models outside of the “big six” [see for example 11, 12]. The ancient 

history of the small RNA processing machinery [13, 14] means that gene knockdown is a 

feasible goal for most organisms, as long as the sequences of genes of interest are 

available. 
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While whole genome sequencing is an increasingly viable option for some 

organisms, many new models, particularly within the arthropods, lack the large 

community resources necessary to finance and maintain annotation of a genome. For 

these reasons, many researchers studying non-traditional model organisms have turned to 

Sanger-sequenced EST libraries [see for example 15, 16]. In principle this method of 

gene discovery can lead to high-throughput expression and functional genetic analyses of 

multiple genes [see for example 17]. In practice, however, most non-traditional organism 

studies are still subject to a gene discovery bottleneck. This is largely because at the scale 

needed to uncover rare developmental transcripts, Sanger-based EST sequencing quickly 

becomes technically and financially prohibitive for many labs working on organisms with 

smaller research communities. In addition, those smaller-scale EST projects that have 

been carried out are often not publically available in easily searchable formats, and their 

potential contribution to the developmental and evolutionary biology fields is thus 

limited. 

 Next-generation sequencing (NGS) offers comparative and evolutionary 

developmental biologists a way to obtain orders of magnitude more developmental gene 

data than ever before, at a fraction of its former cost. Several studies have demonstrated 

the feasibility of NGS for identifying SNPs for population studies and gene sequences for 

use as phylogenetic markers [18-35]. Unfortunately, the lack of suitable protocols for 

cDNA preparation, and of established pipelines for analysis have left this tool under-

utilized by many evo-devo researchers. Furthermore, according to some estimates [35], 

few of these studies have been carried out at a scale large enough to provide significant 

recovery of rare transcripts, and therefore of developmental genes. Here we present an 
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optimized protocol for synthesizing cDNA for 454 Titanium pyrosequencing, as well as a 

simple workflow for de novo assembly of the data without a reference genome, 

annotation and analysis of the dataset, and a demonstration of its utility for comparative 

developmental genetics. 

A large body of literature is dedicated to the development and genomics of 

holometabolous insects (insects undergoing complete metamorphosis between embryonic 

and adult stages). Tens of holometabolous insect genomes are now available, thanks 

largely to work on Drosophila melanogaster, other drosophilids, and dipteran disease 

vectors [36, 37]. In contrast, relatively little is known about the development of 

hemimetabolous insects, which undergo incomplete metamorphosis. Although several of 

these insects are amenable to laboratory culture and a variety of experimental 

manipulations, molecular developmental studies are scarce, and gene discovery rates 

remain low. Notable exceptions among the Hemiptera are the aphid Acyrthosiphon pisum 

and the Chagas’ disease vector Rhodnius prolixus, whose genomes are completed and in 

progress respectively [38, 39]. However, the aphid genome has undergone extensive 

duplications and gene loss, possibly due to its unusual reproductive and ecological 

characteristics [38]. The mammalian blood feeding needs of R. prolixus make it a sub-

optimal organism for developmental studies. 

 The milkweed bug Oncopeltus fasciatus (Fig. 1A-D) has emerged as a promising 

hemipteran system for studying the molecular development of hemimetabolous insects 

[40-42]. It can be reared easily and cheaply in the laboratory, and has a long history as a 

laboratory animal for classical embryology and pattern formation studies [43-45]. More 

recently, robust protocols for in situ hybridization, live imaging of embryogenesis, and 
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RNAi-mediated gene knockdown have been developed and successfully applied to the 

study of the evolution of development [see for example 46, 47].  

Here we present the results of the sequencing and de novo assembly of the 

Oncopeltus ovarian and early embryonic transcriptome. We outline an assembly and 

analysis framework using a combination of existing tools and freely available custom-

made command line computational tools, which we hope will make this approach to gene 

discovery accessible to comparative developmental biologists. We identify homologues 

of genes involved in all major signaling pathways and developmental processes, 

including biologically verified splicing isoforms for some genes. We also address the 

need for library normalization in these studies, and show that at large enough scales of 

NGS, large numbers of developmental genes can be discovered even with omission of a 

normalization step. 

 

 

Results and Discussion 

 

Assembling the ovarian and embryonic transcriptome of O. fasciatus 

We prepared cDNA from ovaries and early to mid-staged embryos of O. fasciatus, 

covering oogenesis and all major stages of embryonic patterning (Fig. 1B-D). These 

cDNA samples were prepared using a protocol optimized for preparation of small or 

limiting samples for 454 pyrosequencing (see Materials and Methods). From these 

libraries, we generated a total of 2,087,410 sequence reads (Table 1). This includes reads 

generated using GS-FLX technology as well as both normalized (N) and non-normalized 
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(NN) cDNA sequenced using the GS-FLX Titanium platform. As expected, the reads 

generated using GS-FLX Titanium technology were substantially longer than those 

generated using GS-FLX technology (Table 1, Fig. 2A). However, the N sample gave an 

unexpectedly low number of reads, which were on average shorter than those generated 

by the NN sample (Table 1; Fig. 2A). Given that a pilot run of one lane (1/8 plate) of this 

same normalized cDNA sample generated roughly equal number and size-distribution as 

a NN pilot study (Additional file 1), we suspect that a technical error reduced the 

sequencing efficiency of this plate. Despite the comparatively low yield of this 

normalized cDNA, it still generated more than 600,000 high quality reads that we 

therefore included in subsequent analyses.  

 We used the cDNA assembly algorithm of Newbler v2.3 (Roche) to screen the 

reads for adaptor sequence and then assemble the cleaned reads (see Note Added in Proof 

for a comparison with Newbler v2.5). After quality trimming and adapter screening, 

2,041,966 reads (97.8%) were used in the assembly. Of these, 1,773,450 (86.9%) 

assembled either wholly or partially into contigs, and 178,770 (8.8%) remained as 

singletons. The remaining reads were excluded as either originating from repeat regions 

(9,875 reads; 0.05%), outliers (26,943 reads; 1.3%), or too short (<50 base pairs: 52,928 

reads; 2.6%).  

To our knowledge, Newbler v2.3 and higher are the only assembly programs that 

address alternative splicing and can output multiple isoforms per gene. Newbler v2.3 

explicitly accounts for alternative splicing by creating a hierarchical assembly composed 

of three elements: contigs, isotigs, and isogroups. For consistency, we follow their 

terminology. Contigs are stretches of assembled reads that are free of branching conflicts. 
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In other words, contigs can be thought of as exons or sets of exons that are always co-

transcribed. Isotigs represent a particular continuous path through a set of contigs, i.e. a 

transcript. An isogroup is the set of isotigs arising from the same set of contigs, i.e. a 

gene. Different isotigs within an isogroup are thought to represent alternative isoforms of 

the same gene. Note that it is possible for an isogroup to contain only one isotig, and it is 

also possible for an isotig to be composed of only one contig.  

After the initial Newbler assembly, we noticed substantial redundancy among the 

singletons. We therefore subjected the 178,770 unassembled singletons to a secondary 

assembly with CAP3 [48]. This secondary assembly reduced the number of singletons 

from 178,770 to 112,531 (28,143 cap3_contigs and 84,388 cap3_singlets). Thus, in total, 

our assembly generated a total of 133,628 sequences, including isotigs, cap3_contigs and 

cap3_singlets (Table 2). 

 Our data assembled into 22,235 contigs, organized among 21,097 isotigs (Fig. 

2B). The isotig N50 length was 1,735 bp (in other words, 50% of the bases are 

incorporated into isotigs ≥ 1,735 bp), and 14,460 (68.5%) of the isotigs contained only 

one contig. The 21,097 isotigs fell into 16,617 isogroups, of which 14,562 (87.6%) 

contain only one isotig (average number of isotigs per isogroup = 1.3).  

 The average coverage among contigs was 23.2 reads/bp (median coverage = 6.9 

reads/bp) (Additional file 2). This coverage value is more than twice as high as the 

highest reported value from a de novo transcriptome assembly to date [summarized in 

20]. Such deep coverage should be helpful for overcoming the presence of 

insertion/deletion errors in the individual raw reads [49].  
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 To test whether our assembly would have been aided by the inclusion of 

nucleotide sequence from Rhodnius prolixus, the most closely related hemipteran to O. 

fasciatus whose genome is currently being sequenced [39], we used the BLASTN 

algorithm to compare our isotigs (the longest isotig per isogroup) with the published 

ESTs of R. prolixus with an e-value cut-off of 1e-6. Consistent with previous 

observations of extremely low levels of conservation between insect genomes [50] we 

found that only 53 out of 16,617 isotigs had hits to R. prolixus ESTs on the nucleotide 

level. These results suggest that de novo sequencing and assembling efforts will be 

necessary for most insect species, even when sequence data are available for other 

members of the same order. We note, however, that a recent study [51] has shown that it 

may be possible to incorporate EST data from different species into a de novo assembly 

by using amino acid sequence rather than nucleotide sequence. 

 

Validation of predicted alternate isoforms  

To examine whether the alternative isoforms predicted by Newbler v2.3 are in fact 

present in developing embryos of O. fasciatus, we first focused on a gene of particular 

interest to developmental biologists, nanos. This conserved metazoan gene was first 

described as a loss of function mutation in Drosophila melanogaster [52], and is 

necessary for germ cell and posterior somatic development [reviewed in 53]. Newbler 

v2.3 predicted this gene to encode two alternative isotigs within a single isogroup (Fig. 

3B). The two isotigs differ in that the longer contains an additional 100-bp exon that is 

absent from the shorter (Fig. 3B). We designed PCR primers against sequences present in 

both isotigs (Fig. 3B arrows), which amplified two bands differing by ~100 bp from a 
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pool of embryonic cDNA (Fig. 3C). Sequencing of these two bands confirmed that they 

differ exactly as predicted by Newbler v2.3 (Fig. 3D). 

 Importantly, a previous version of Newbler (v2.0), which does not account for 

alternative splicing, failed to join together the three fragments which were linked by 

Newbler v2.3 (Fig. 3A). Because of this, Newbler v2.0 (and presumably other assemblers 

which do not address branching within contigs) predicted three separate contigs, only one 

of which could be identified as nanos with BLASTX, as the others fall in poorly 

conserved regions of the gene. Thus, the ability of Newbler2.3 to handle branching 

conflicts between reads allows this program to assemble longer continuous sequences, 

which are therefore in turn more easily annotated using BLAST.  

 To further characterize the accuracy of Newbler’s predictions of alternative 

transcript isoforms, we randomly selected 10 isogroups that contained exactly two 

alternative isotigs differing by the presence/absence of a single contig (Additional file 3). 

As we did for nanos, we designed primers to flank the region differing between the two 

predicted isoforms (Additional file 3A), and performed RT-PCR on O. fasciatus 

embryonic cDNA. In eight of ten instances, we observed bands of the predicted sizes 

following agarose gel electrophoresis (Additional file 3B,C). However, in four of the 

eight positive cases, additional, unpredicted bands were present (Additional file 3). In one 

of the ten cases, we observed two RT-PCR products, but only one of them was of the 

predicted size (Additional file 3C, lane 6). Taken together, these results suggest that 

Newbler v2.3 has a low rate of false positives in the prediction of multiple splicing 

isoforms. Including our investigation of nanos, only one of 11 test cases (9.1%) produced 

a single RT-PCR product where Newbler v2.3 had predicted multiple products. However, 
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we observed that roughly half of the time, Newbler v2.3 failed to predict all of the 

isoforms identified via RT-PCR. 

 

Transcriptome annotation 

A BLASTN search of our dataset for the 93 existing GenBank accessions for O. fasciatus 

sequences yielded a hit result for 56% of the accessions, with an e-value cut-off of 1e-10. 

This result may be due in part to the short length of some of the GenBank sequences. 

Accordingly, we found that accessions with hits in the database were significantly longer 

(mean length 729 bp) than accessions without hits (mean length 397 bp) (unpaired 

Student’s t-Test: t = 2.89, DF = 91, p = 0.0048). Of greater relevance to developmental 

applications of this dataset, however, was our finding that 85% of O. fasciatus 

developmental genes with existing GenBank accessions (n = 32) are represented in our 

transcriptome. 

We then used BLASTX to map the 133,628 O. fasciatus sequences (isotigs, 

cap3_contigs and cap3_singletons) against the entire RefSeq Protein database with an e-

value cut-off of 1e-10. To simplify these statistics, we report only the BLAST results for 

the longest isotig per isogroup, under the assumption that all isotigs within an isogroup 

share nearly identical BLAST results. Of 16,617 isotigs, 7,219 (43.4%) had at least one 

hit. Of the 28,143 cap3_contigs, 2,594 (9.2%) had hits, and of the 84,388 cap3_singlets, 

2,367 (2.8%) had hits. These values are higher than comparable BLAST statistics of most 

other published studies of 454-generated de novo transcriptomes [24-26, 30, 32, 33], 

likely because deeper sequencing increases the length of assembled sequences and 

thereby makes these sequences more likely to be identified via BLAST. The 
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unidentifiable sequences likely originate from UTRs or non-conserved portions of 

protein-coding sequences. Of the top BLAST hits, 89.3% were genes from arthropod 

sequences (Additional file 4). Of the 12,180 O. fasciatus sequences with BLAST hits, 

1,455 hit non-overlapping segments of the same top BLAST hit (i.e. potentially 

unassembled portions of the same transcript), and 825 hit overlapping segments of the 

same top BLAST hit (i.e. potential paralogs). Excluding those 1,455 potentially double-

counted BLAST hits, our transcriptome identified a total of 10,775 genes. The assembled 

sequences generated in this study, as well as pre-computed BLAST results, are available 

as flat files from the authors upon request. 

 To explore and summarize the functional categories of the genes sequenced in this 

study, we obtained the Gene Ontology (GO) terms associated with the top 20 BLAST hits 

of each sequence using Blast2GO [54]. Among the 7,059 genes for which we obtained 

GO terms, we observed a wide diversity of functional categories represented on all levels 

of the Gene Ontology database (Fig. 4). The O. fasciatus sequences fall into GO 

categories with a roughly similar distribution to that of the well-annotated Drosophila 

melanogaster genome, suggesting that our sequence data contain a large diversity of 

genes involved in a variety of biological processes, and do not contain any notable biases 

towards particular categories of genes.  

 

Assessing coverage of the O. fasciatus transcriptome 

We wished to know how thoroughly our sequencing efforts sampled the true diversity of 

transcripts present in our cDNA samples. This is a two-part question: first, of the genes 

truly expressed during O. fasciatus oogenesis and embryogenesis, how many did we 
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identify? And second, of these identified genes, how thoroughly had we assembled their 

full-length transcripts? 

To address the first question, we created eight separate assemblies of 

progressively larger sub-samples of our total reads and tallied the total number of genes 

identified via BLASTX. The number of newly discovered genes began to plateau after 

~1.5M reads (1 7/8 plates in our case) (Fig. 5 black line). However, the N50 isotig length 

continued to increase roughly linearly over this range of reads (Fig. 5 grey line). These 

results suggest that additional sequencing of this sample is unlikely to identify 

substantially more genes, but may continue to lengthen the existing sequences. Although 

in the absence of a sequenced genome it is not possible to accurately estimate how many 

genes are in fact present in the O. fasciatus transcriptome, we note that while several 

developmental genes of interest were identified in this study, others were not. (Tables 3, 

4 and see below). Because these data suggest that we have sequenced these specific 

cDNA samples quite deeply, some form of specific target enrichment may be necessary 

for future attempts to discover additional genes not identified in this dataset.  

To address the second question, we employed a method proposed by O’Neil and 

colleagues [20] for addressing the question of how closely our sequences approached 

full-length transcripts. Their metric, the “ortholog hit ratio,” compares the length of the 

newly discovered sequence that obtains a BLAST hit versus the full length of its top hit 

[20]. Thus, an ortholog hit ratio of one implies that a transcript has been assembled to its 

true full length, while values over one suggest insertions in the query sequence relative to 

its top BLAST hit. We note the caveat that many genes contain relatively poorly 

conserved regions that may fail to obtain a BLAST hit at all, causing the ortholog hit 
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ratio to be an underestimate in these cases (Additional file 5). In our dataset, many of the 

O. fasciatus isotigs appear to be nearly fully assembled, while the singletons predictably 

tend to represent small portions of their top BLAST hit in RefSeq (Fig. 6). In total, of the 

7,219 isotigs with BLAST hits, 3,953 (54.8%) had ratios > 0.5 and 2,689 (37.2%) had 

ratios > 0.8.  

We also asked, for those O. fasciatus sequences of developmental genes already 

present in GenBank that overlapped with transcriptome hits (n=23), whether our 

transcriptome data provided any net gain in transcript sequence compared to the 

GenBank accession sequence. In 15/23 cases (68%), the transcriptome data extended the 

known sequence beyond that reported in GenBank by an average of 349 bp (range: 82-

1,366 bp). In most cases, additional 3’ sequence was obtained (Fig. 7). 

 

Assessing the value of cDNA normalization 

Reducing the representation of highly abundant transcripts (i.e. normalizing the cDNA) is 

often considered essential to capture sequence from genes expressed at lower levels, 

including many important developmental genes [see for example 55, 56, 57]. However, 

we hypothesized that current next-generation sequencing technologies could provide 

sufficiently deep sequence to render normalization largely unnecessary for construction 

of de novo transcriptomes for comparative developmental biologists. To address this 

question, we assessed the relative contribution of the N and NN cDNA to our final 

assembly using several strategies.  

First, to test whether our normalization protocol successfully reduced the presence 

of highly abundant transcripts, we created separate assemblies from the N and NN cDNA 
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samples (equalizing the total number of bases to reduce the contribution of additional 

sequence found in the NN sample). The N assembly contained a greater number of isotigs 

that were shorter on average than those in the NN assembly (Fig. 2B). Additionally, more 

singletons were generated in the N assembly relative to the NN assembly (Table 2). 

Further, similar to the results obtained by Bellin and colleagues [27], we observed the 

predicted decrease in the maximum number of reads per contig in the N assembly 

compared to the NN assembly (Fig. 8A, B), demonstrating that the normalization 

procedure successfully reduced the sequencing of highly abundant transcripts. These 

statistics, which could be interpreted to suggest that the N reads generated an inferior 

assembly, may result from the shorter average length of reads in the N sample (Fig. 2A). 

Indeed, Newbler rejected 7.9% (30,780) of the N reads as too short, compared to only 1% 

(3,935) of the NN reads. However, these assembly statistics could also indicate greater 

heterogeneity in the N sample, which would suggest that normalization might increase 

the number of new genes identified.  

To discriminate between these possibilities, we explored the contribution of the N 

and NN reads to the genes discovered in our full assembly. We used BLASTN to map 

one plate’s worth of raw reads from the N sample and from the NN sample (equalized to 

contain the same number of base pairs) against the complete assembled transcriptome, 

with an e-value cut-off of 1e-4. We then explored the GO annotation of those genes hit 

exclusively by only one of these two samples. We observed similar overall GO term 

distributions between the N and NN samples (Fig. 8C). We found that a small number of 

GO terms (n=20) were significantly differentially represented in the two samples, albeit 

generally with very few sequences in each GO term (Additional file 6). For example, we 
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were surprised to see that three of the four terms statistically over-represented in the N 

sample were related to ribosome function (14/750 (1.9%) of the N hits were annotated 

with ‘ribosomal subunit’, compared to 1/1124 (0.09%) NN hits; FDR-corrected p-value = 

0.006). In contrast, several terms related to active transmembrane transport were over-

represented in the NN sample (Additional file 6) possibly indicating that normalization 

may have reduced the representation of genes involved in certain basic metabolic 

processes.  

As an additional way to investigate the contribution of the N and NN samples to 

identifying specific genes of interest for our studies, we manually examined the results of 

mapping the N and NN samples to the fully assembled transcriptome. Of the 79 genes of 

interest that we investigated, four (5.1%) were uniquely present in the N sample, whereas 

nine (11.4%) were uniquely present in the NN sample, and the remaining 66 (83.6%) 

were present in reads of both the N and NN samples (Tables 3, 4). Although this may be 

an artifact of sequencing depth (i.e. low-abundance genes of interest may be present in 

only one of the two cDNA samples simply due to sampling effects rather than the 

normalization protocol per se), our data suggest that the normalized cDNA sample did 

not contribute disproportionately to gene discovery. 

 

Gene discovery for developmental studies 

The ultimate goal of this sequencing project was to identify a wide diversity of candidate 

genes involved in developmental processes. Traditionally, such gene discovery in “non-

model” organisms has required degenerate PCR, which is labor-intensive, expensive, and 

prone to failure. The annotated transcriptome assembly we present here allows 
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researchers to identify genes of interest via simple text searches, or via BLAST searches. 

To demonstrate the usefulness of these data for large-scale gene discovery, we report here 

the identification of several components from each of the seven widely studied metazoan 

signaling pathways (Table 3) as well as many genes involved in specific developmental 

processes (Table 4). We note that the majority of these gene fragments are of suitable 

length for immediate application of such widely used techniques as in situ hybridization 

and RNAi-based functional knockdown. In cases of functional experiments where full-

length proteins are desirable, such as protein overexpression, RACE PCR will likely be 

required. Importantly, we note that many genes of interest were present among the 

singletons, many of which are long enough for immediate use as sequences for in situ 

hybridization probes or RNAi templates, emphasizing the importance of including these 

in NGS gene discovery studies. 

Although we identified a diverse array of genes, some well-studied genes known 

to be expressed during embryogenesis were not easily identified in this study. For 

example, our BLAST results only contained three genes from the Hox cluster (fushi 

tarazu, Antennapedia, and Abdominal-B), although orthologs of all the canonical 

arthropod Hox genes are known to be present in O. fasciatus [58]. However, using the O. 

fasciatus Hox gene sequence fragments available from NCBI as a BLAST query against 

our transcriptome did reveal sequences for all Hox genes except Sex combs reduced. It is 

possible that these genes are expressed at very low levels during the developmental 

stages sampled here, suggesting that enrichment techniques may be necessary to more 

easily identify certain genes of interest. We do note, however, that fushi tarazu, the only 
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Hox cluster gene not previously identified in O. fasciatus, was identified in both N and 

NN samples of this transcriptome dataset (Table 4). 

 

Case study: gene discovery for endocrine regulation of development 

In addition to surveying the transcriptome for genes involved in embryonic patterning 

and other developmental processes, we asked whether we could also identify genes 

known to be employed in biological processes during postembryonic development of 

holometabolous insects. Recent studies have suggested that many of the genes used 

during holometabolous insect metamorphosis may also play important roles during 

embryogenesis in hemimetabolous insects [59, 60]. To investigate this, we searched the 

O. fasciatus transcriptome for expression of key ecdysteroid- and juvenile hormone (JH)-

related genes. We identified transcripts for many of the known ecdysteroid biosynthesis 

genes, including cytochrome P450 genes encoded by the Drosophila Halloween family, 

such as shade (CYP314A1), shadow (CYP315A1), phantom (CYP306A1) and 

disembodied (CYP302A1) (Table 4). We also detected expression of ecdysone response 

genes. In particular, we identified many of the ecdysone-regulated genes that play key 

roles during molting and metamorphosis, including E75, HR3, and HR4 (Table 4). The 

presence of these genes in the ovaries and early embryos of O. fasciatus corroborates 

recent studies that implicate ecdysone-response genes in key developmental processes 

during embryogenesis [59-61]. As might be expected for a situation where ecdysone 

regulates embryonic development but not molting, transcripts encoding insect peptide 

hormones implicated in eclosion behavior, such as ecdysis-triggering hormone, eclosion 

hormone and crustacean cardioactive peptide, were not detected. JH biosynthesis and 
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response genes were also isolated (Table 4). JH has been shown to play a role in 

promoting embryonic development and tissue maturation [62]. The expression of these 

genes, together with that of JH esterase and JH binding proteins, is consistent with 

previous studies implicating tight control of JH during embryogenesis [63]. 

 

 

Conclusions 

 

We have used 454 pyrosequencing to create an early developmental transcriptome for the 

milkweed bug O. fasciatus in the absence of a reference genome. Although genomic 

sequence data will be necessary in the future for linkage or cis-regulatory analyses, at the 

early stages of establishing new model organisms, one of the most important goals is 

often gene discovery. In this regard, while no transcriptome generated in this way can 

realistically be “complete” in the sense of containing full length transcripts for all 

expressed genes, we propose that for many evolutionary developmental biology studies, 

the approach described here is a useful one for fast, high-throughput gene discovery. A 

high priority for comparative developmental biology research is gene expression and 

function analyses. By sequencing at great depth and testing a variety of cDNA 

preparation methods (normalized, non-normalized, embryo- and ovary-specific), we have 

generated tens of thousands of gene sequences of sufficient lengths for the commonly 

used developmental techniques of in situ hybridization and RNAi-mediated gene 

knockdown. These data can also be used for phylogenetic, population genetic, and 

functional genomic applications, provide a starting point for identification of genomic 
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regulatory sequences, and assist with assembly of hemipteran genomes sequenced in the 

future. 

 

Note added in Proof 

While this article was in review, Kumar and Blaxter [64] published a comparison of de 

novo assemblers for 454 transcriptome data, and reported important shortcomings of 

Newbler v2.3 compared to other available assemblers. Specifically, the authors reported 

that Newbler v2.3 produced the smallest assembly (i.e. the smallest number of base pairs 

incorporated into contigs) of the assemblers tested. The authors argue that this poor 

performance is likely because Newbler v2.3 inexplicably discards portions of read 

overlap information. In contrast, a newer, currently unreleased version of Newbler, v2.5, 

produced the most complete assembly of all those tested. Kumar and Blaxter (2010) 

therefore strongly advise all de novo 454 transcriptome assembly projects which have 

used Newbler v2.3 to recompute their assemblies with Newbler v2.5.  

 To address this concern, we obtained a pre-release version of Newbler v2.5 from 

Roche and reassembled the O. fasciatus data, again using the –nosplit flag. In contrast to 

Kumar and Blaxter (2010), we observed much less dramatic differences between the 

assemblies produced by Newbler v2.3 and Newbler v2.5 (Additional file 7). For example, 

Kumar and Blaxter (2010) report that Newbler v2.5 increased their total assembly size by 

39% compared to Newbler v2.3. For the O. fasciatus data analyzed here, Newbler v2.5 

increased the total assembly size by less than 1% (Additional file 7). Further, we 

observed very similar numbers of isogroups, isotigs, and singletons between the two 

assemblies (Additional file 7). We did observe a 16% increase in the number of contigs 
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reported by Newbler v2.5, but this difference was markedly less than the 80% increase 

observed in the data analyzed by Kumar and Blaxter (2010). After BLASTing all of the 

assembled isotigs and cap3-assembled singletons against the RefSeq database, we 

identified a total of 10,886 unique BLAST hits, compared to 10,775 genes identified 

using Newbler v2.3. 

 These results suggest that, although we did observe a modest increase in assembly 

size using Newbler v2.5, the analyses presented in the current study are largely robust 

against differences between currently available versions of Newbler. One possible 

explanation for the difference between these results and those observed by Kumar and 

Blaxter (2010), is the greater sequencing depth performed in the current study. If in fact 

the poor performance of Newbler v2.3 involves discarding information in regions of low 

coverage, the fact that our dataset includes ~2.4x more reads than that analyzed by 

Kumar and Blaxter (2010) may explain the reduced improvement that Newbler v2.5 

provided our dataset. We also suggest that the reduced number of genes identified via 

BLAST observed by Kumar and Blaxter (their Table five) may result from the fact that 

the authors excluded singletons from their analyses. If Newbler v2.3 indeed fails to 

assemble regions of low coverage and instead retains those reads as singletons, many 

genes of interest may only be present as singletons. Indeed, we observed many genes of 

interest exclusively represented as singletons (Tables 3 and 4). Thus, for the purpose of 

gene discovery, we emphasize that future de novo transcriptome projects should analyze 

singletons as an important source of useful gene sequence.  

 Although our results do not appear to be greatly sensitive to which version of 

Newbler is used, we agree with Kumar and Blaxter (2010) that future transcriptome 
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project should use utilize the most current available version of Newbler, or whichever 

assembler algorithm they find most useful for their data.  

  

Methods  

 

Animal culture 

The O. fasciatus specimens sequenced in this study were originally purchased from the 

Carolina Biological Supply Company (Burlington, NC) and were maintained in the 

laboratory on sunflower seeds under a 12h:12h light/dark cycle at 28°C. 

 

cDNA Synthesis  

For our pilot study using the GS-FLX platform, total RNA was isolated from mature 

ovaries (Fig. 1B) and from mixed-stage embryos representing the first three days of 

development (roughly 60% of embryogenesis at 28ºC; Fig. 1C, D) using TRIzol 

(Invitrogen), following the manufacturer’s protocols. For each RNA sample, 

approximately 5 µg of cDNA was prepared using the SMART cDNA library construction 

kit (Clontech, CA, USA). The cDNA was normalized using Evrogen’s Trimmer-Direct 

cDNA Normalization kit (Evrogen, Moscow, Russia), and subsequently digested with 

SfiI to partially remove the SMART adapters. The size distributions of total RNA and 

cDNA were assessed on 1.0% agarose gels following each step of the protocol. 

To prepare cDNA for sequencing on the GS-FLX Titanium platform, we followed 

a modified version of the SMART cDNA protocol [65] that has been optimized for 

cDNA quality and yield from small quantities of total RNA. A helpful guide that formed 
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the initial basis for the optimization of this protocol was once available online from 

Evrogen, but has since been removed. At the time these libraries were prepared, Roche 

had not yet provided a specific protocol for cDNA library preparation for 454 

pyrosequencing. Subsequently, the company has released a cDNA protocol that requires 

approximately 500 ng of purified mRNA (typically requiring isolation of 10 to 50 µg of 

total RNA). While useful for larger tissue samples, the Roche cDNA preparation protocol 

is difficult to apply to samples in which RNA quantity is limiting, as is the case with 

many non-model organisms. The protocol we present here does not require the loss-prone 

step of mRNA purification, and we have found that it produces sufficient quantities of 

high-quality cDNA when 5 µl of the RNA (18S and 28S bands) can be visualized on a 

1% agarose gel stained with ethidium bromide. Compared with the original SMART 

protocol, we have optimized the primers, PCR conditions, and downstream purification 

steps to maximize the yield of double-stranded cDNA required for 454 pyrosequencing. 

We initially optimized this protocol for Roche’s original 454 library preparation protocol 

(not specific to cDNA), which required input of double-stranded DNA amounts of 2.5-10 

µg (in our experience, typically 10-20 µg prepared cDNA as measured by UV 

absorbance). However, newer protocols from Roche require only 500 ng double-stranded 

cDNA, limiting the need for a secondary amplification step, as described here, for 

samples with highly limiting quantities of total RNA. 

After separately isolating total RNA from mature ovaries (Fig. 1B) and from each 

of the first three days of embryogenesis (Fig. 1C, D) as described above, each RNA 

sample was treated with DNAse to remove potential genomic contamination. Equal 

amounts of each sample were then pooled for use as a template for first strand cDNA 
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synthesis. Due to concerns that the poly(T) primer used in the SMART kit could interfere 

with pyrosequencing, the 3’-primer used was modified in two ways: (1) the poly(T) was 

interrupted every fourth base by the inclusion of a cytosine [sensu 30]; and (2) the primer 

contained an MmeI site which allowed most of the poly(T) to be removed during 

digestion. This 3’-primer (PD243Mme-30TC, 5’-ATT CTA GAG CGC ACC TTG GCC 

TCC GAC TTT TCT TTT CTT TTT TTT TCT TTT TTT TTT VN-3’) was used during 

first strand synthesis and for all subsequent amplification steps. Because MmeI also 

cleaves relatively commonly within eukaryotic genes, it may not always be desirable to 

use this enzyme for library preparation. As an alternative, we have additionally found that 

a similar 3’ primer containing an SfiI cleavage site (PD243-30TC, 5’-ATT CTA GAG 

GCC ACC TTG GCC GAC ATG TTT TCT TTT CTT TTT TTT TCT TTT TTT TTT 

VN-3’) is also effective in producing cDNA that yields high-quality 454 data (data not 

shown).  

For first-strand synthesis, 3 µg of total RNA (in 6 µl) and 2 µl 3’ primer (12 µM) 

were mixed and denatured at 65°C for 5 minutes, then placed on ice. Reverse 

transcription reactions using SuperScript II (Invitrogen) in the manufacturer’s 

recommended buffer were performed for 50 minutes at 42ºC using twice the 

recommended concentration of enzyme, 1 µl of Protector RNAse inhibitor (Roche) to 

avoid RNA degradation, 2 µl 5’ primer (12 µM), 2 µl 10mM DTT, and 1 µl 10 mM 

dNTPs. Template-switching essential for the SMART technique was achieved using a 5’ 

primer (PD242, 5’-AAG CAG TGG TAT CAA CGC AGA GTG GCC ACG AAG GCC 

rGrGrG-3’) with three RNA nucleotides at its 3’ end, which contains an SfiI site. 

Reactions were then heat-inactivated for 15 minutes at 70°C and diluted 1:5 in milliQ 
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water in preparation for PCR amplification. Contrary to some expectations, SuperScript 

III reverse transcriptase (Invitrogen) may be substituted in this protocol with equivalent 

results (data not shown). 

To maximize yield during cDNA amplification, the first round of amplification 

was conducted using a 2:2:1 mix (v:v:v) of Hemo KlenTaq (New England Biolabs), 

Phusion (New England Biolabs), and PfuTurbo (Stratagene) polymerases. This mixture 

of enzymes was determined empirically to provide the highest yield of cDNA with a 

range of input first-strand concentrations. Cesium KlenTaq AC (DNA Polymerase 

Technologies) and the hot start versions of Phusion and PfuTurbo polymerases in the 

same ratio may be also substituted at this step without sacrificing yield; this may produce 

fewer PCR artifacts in the final cDNA preparation. Buffer conditions (MgCl2 and 

DMSO) were also empirically optimized to maximize yield and minimize PCR artifacts. 

Reactions were performed in 100 µL total volume in 1X Phusion HF buffer, 1.5 µL 

polymerase mix, 5 µL first-strand cDNA (previously diluted 1:5 in H2O), 1 µL 3’ primer 

(PD243Mme-30TC, 12 µM), 1 µL 5’ primer (PCRIIA, 5’-AAG CAG TGG TAT CAA 

CGC AGA GT-3’, 12 µM), and a final concentration of 1% DMSO, 1.5 mM MgCl2 (in 

addition to the MgCl2 already present in the HF buffer), and 200 µM dNTPs. Reactions 

were cycled with the following program: 1 minute at 95°C, followed by 16-20 cycles of 

30 seconds at 95°C (see below for determining optimal number of cycles), 30 seconds at 

66°C, and 3 minutes at 72°C, and a final 10 minutes at 72°C. After cooling to room 

temperature, 10 µL 3M NaOAc pH 5.5 was added to each 100 µL secondary PCR 

reaction followed by purification with the QiaQuick PCR purification kit (Qiagen) using 

the manufacturer’s recommended protocol. For all purification steps, samples were eluted 
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with TM buffer (10 mM Tris-HCl pH 8.5, 1 mM MgCl2) to prevent strand separation of 

double-stranded cDNA. 

To produce sufficient cDNA for sequencing, Advantage 2 (Clontech) polymerase 

was used under the manufacturer’s recommended conditions during the second round of 

amplification using the same primer concentrations and 1 µl of undiluted primary PCR 

product. We recommend testing a range of dilutions of the primary PCR product to 

obtain the desired quantity of amplified cDNA in 9-10 PCR cycles. In cases of highly 

limiting RNA concentration, we have also found that a secondary PCR reaction using a 

1:1:1 mix of Phusion, Cesium KlenTaq AC, and Deep Vent (exo-) (New England 

Biolabs) polymerase in ThermoPol reaction buffer supplemented with 1.5 mM MgSO4 

and 1% DMSO produces the highest yield of secondary PCR product (note that this 

polymerase mix does not produce optimal results when used for first-round 

amplification). Secondary PCR reactions were cycled using the same parameters as the 

primary PCR but running for approximately 10 cycles. 

To prevent overcycling during both rounds of PCR amplification, each reaction 

was prepared in duplicate, and one reaction was spiked with 1 µl of 1:750 SybrGreen I 

(Invitrogen). The spiked reactions were monitored in real time on an Mx3005P QPCR 

machine (Stratagene Inc.), and the samples were removed when amplification began to 

plateau. To increase the representation of double-stranded cDNA, two cycles of “chase 

PCR” were conducted following each round of cDNA amplification after the optimal 

number of cycles had been reached. Excess primers were added (1.5 µL of each, 12 µM 

primer per 100 µL reaction), and each reaction was subjected to two additional non-



 Page 28 of 52 

denaturing cycles of 1 minute at 77ºC, 1 minute at 65ºC, and 3 minutes at 72ºC, followed 

by a 10 minute extension at 72° C.  

Following the second round of amplification and PCR purification, the cDNA 

samples were double-digested with SfiI and MmeI (40 and 26 units per 150 µl reaction, 

respectively). cDNA species <500bp were then removed using Chroma Spin 400 

columns (Clontech) which had been equilibrated with TM buffer following the 

manufacturer’s protocol. It should be noted that the Chroma Spin column protocol 

suggested in the Clontech SMART cDNA kit is non-optimal, and that following the 

protocol provided with the separately purchased columns is less labor-intensive and 

produces a higher yield of size-selected cDNA. Equilibration of Chroma Spin columns is 

critical for maximizing the yield of double-stranded cDNA as required by the Roche 

library preparation protocols. Following size selection, cDNA was blunt-ended with the 

NEB Quick Blunting kit (New England Biolabs) and purified once more with the 

QiaQuick kit. After each step of cDNA synthesis, the size distribution was checked on 

1.0% agarose gels, and the cDNA samples were quantified using a Qubit (Invitrogen), 

after observing that the NanoDrop 1000 (Thermo Scientific) did not reliably quantify ds-

cDNA (C. Dunn, personal communication). 

To prepare normalized cDNA for GS-FLX Titanium sequencing, 1 µl of the 

twice-amplified, purified cDNA sample described above was subjected to Evrogen’s 

DSN-treatment protocol, followed by a single round of further amplification, SfiI/MmeI 

digestion, and size selection. Approximately 5 µl of normalized and non-normalized 

cDNA were synthesized. 
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454 Titanium Pyrosequencing 

For the pilot study using the GS-FLX platform, EnGenCore (University of South 

Carolina) conducted the final steps of library preparation, including nebulization, 

adaptor-ligation, and sequencing of each sample (¼ plate each). For sequencing using the 

Titanium platform, the samples were nebulized, adaptor-ligated, and pyrosequenced by 

the Institute for Genome Science and Policy DNA Sequencing Facility (Duke 

University).  

 

Sequence Assembly  

Raw reads were assembled using the cDNA assembly algorithm of Newbler v2.3 (Roche) 

with default assembly parameters. An adaptor-trimming step was included in the 

assembly (the “–v” flag), and the “-nosplit” flag was also used to reduce the generation of 

extremely short contigs that might otherwise have been created. All of the raw reads 

generated in this study have been submitted to the NCBI Short Read Archive (Study 

Accession Number: SRP002610.1).  

Because redundancy was observed among the singletons generated by Newbler 

v2.3, the singletons were reassembled using CAP3 [48], with ‘-z’ option set to 1. Prior to 

this secondary assembly, the singletons were screened for adaptor sequences using both 

cross_match [66-68] and a custom python script (Casey Dunn, personal communication), 

We note that Newbler can also be used to produce a .fasta and corresponding .qual files 

of trimmed reads using the ‘-tr’ option. The final assembly thus consists of three types of 

sequences: Newbler-assembled sequences, cap3_contigs, and cap3_singlets, all of which 

were subjected to subsequent analyses. 
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Sequence Annotation 

 Sequences were first mapped against the RefSeq Protein database [69, downloaded from 

ftp://ftp.ncbi.nih.gov/blast/db/ on April 27, 2010] using BLASTX. All BLAST searches 

were conducting using BLAST v2.2.23+ [70] with an e-value cut-off of 1e-10. We then 

used Blast2GO v1.2.7 [54] to retrieve the Gene Ontology (GO) [71] terms and their 

parents associated with the top 20 BLAST hits for each sequence. To avoid potentially 

double-counting sequences that might represent un-assembled portions of the same 

transcript, a custom python script (“transcriptome_blast_summarizer.py”, available at 

http://www.extavourlab.com/protocols/index.html) was used to identify sequences with 

identical top BLAST hits prior to GO annotation. If multiple sequences hit non-

overlapping portions of the same top BLAST hit, we used the conservative assumption 

that these sequences represented unassembled portions of the same transcript, and 

therefore only tallied the GO terms of one of these sequences. However, if multiple 

sequences hit overlapping portions of the same top BLAST hit, we considered these 

sequences potential paralogs and retained them all. Thus, the counts of sequences in each 

GO term only include one sequence per top BLAST hit, unless the multiple sequences 

mapped to overlapping portions of the same BLAST hit. These counts were used to 

compare the distribution of sequences among specific GO terms between the 

transcriptomes of O. fasciatus and the Drosophila melanogaster genome. For this 

comparison, we used a precomputed GO annotation of the D. melanogaster genome [72]. 

 The FASTA formatted transcriptome data set file was examined in TextWrangler 

(v. 3.1, Bare Bones Software, Inc.). Candidate genes were sought via whole gene names 
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and, where possible, via the gene name abbreviations, while avoiding irrelevant hits. The 

FASTA header annotation of transcriptome sequences includes the top 20 BLASTx hits 

to the RefSeq database as described above. 

 Sequencher (v4.8, Gene Codes Corporation; default settings: minimum 20 bp 

overlap between sequences, ≥85% sequence identity) and CLC Combined Workbench 

(v5.6.1, CLC Bio) were used to examine whether transcriptome sequences could be 

further assembled. 

 

Estimating sequencing depth 

To estimate how thoroughly our sequencing efforts sampled the O. fasciatus 

transcriptome, eight progressively larger subsets of the reads were independently 

assembled. The total number of genes was then identified via BLASTX. For these 

smaller assemblies, reads from one plate each of normalized and non-normalized reads 

were combined in random order and sampled without replacement. For each assembly, 

we BLASTed the longest isotig of each isogroup, and all of the singletons, against the 

SwissProt database [73, downloaded from ftp://ftp.ncbi.nih.gov/blast/db/ on April 21, 

2010]. We used the relatively small SwissProt database in order to reduce computation 

time. However, the absolute values of BLAST hits against this database are likely to be 

underestimates of those values that would have been obtained from a larger database such 

as RefSeq or nr. If multiple isotigs or contigs hit non-overlapping portions of the same 

top BLAST hit, only one of these sequences was counted. However, because frequent 

cases of identical, unassembled singletons were observed, we counted only one singleton 

per top BLAST hit, regardless of whether these hits overlapped or not. 
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 We used a custom python script to calculate the ortholog hit ratio. This script, 

“ortholog_hit_ratio_calculator.py” is available at 

http://www.extavourlab.com/protocols/index.html). 

  

Assessing the importance of cDNA normalization 

To assess the relative contribution of cDNA normalization to the quality of our assembly, 

the screened, raw reads from both normalized (N) and non-normalized (NN) samples 

were mapped against the complete assembly of all reads using the BLASTN algorithm 

[70] with an e-value cut-off of 1e-4. Based on these results, the Fisher’s Exact Test was 

used to identify over- and under-represented terms in each gene list. This test was 

performed using Blast2GO (two-tailed, removing double IDs so that only those genes hit 

uniquely by either N or NN reads were considered). The BLASTN results were also 

investigated using text searches to find whether certain genes of interest were present in 

only one of the two cDNA samples.  
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Table 3. Selected signaling pathway genes identified in the O. fasciatus 

transcriptome.  

 

      

  Present in: 

Pathway # Hits 
Hit ID 
(I/C/S) 

Length 
(range) 

Normalized 
Non-

Normalized 

HEDGEHOG           
cubitus interruptus 3 I,S 225-906 Y Y 

fused 2 I 516-1582 Y Y 

patched 2 C, S 225-418 N Y 

smoothened 2 I 1270-1604 Y Y 

      

JAK/STAT           

domeless 1 I 4028 Y Y 

hopscotch (janus kinase) 3 I, C 473-2644 Y Y 
Signal transducer and activator of 
transcription 4 I 444-3270 Y Y 

      

NFKB/TOLL           

cactus 7 I, C 629-1748 Y Y 

dorsal (Nuclear factor NF-kappa-B) 2 I 1308-3926 Y Y 

relish 1 I 2650 Y Y 

Toll 11 I, C, S 215-4323 Y Y 

      

NOTCH           

fringe 1 I 877 Y Y 

Hairless 1 I 1053 Y Y 

hairy (Enhancer of split/HES-1) 1 I 2530 Y Y 

mind bomb 7 (6
†
) I,C,S 335-1185 Y Y 

Notch 1 S 235 Y* N 

Notchless 1 I 2035 Y Y 

Presenilin 1 I 1661 Y Y 

Serrate/Jagged 2 S 246-300 Y* Y 

strawberry notch 7 I,S 191-3519 Y Y 

Suppressor of Hairless  3 I,C 375-697 Y Y 

      

WNT           

armadillo 5 I,S 348-3001 Y Y 

dishevelled  2 I 954-1321 Y Y 

frizzled 3 C,S 194-500 N Y 

Wnt family (wingless, WNTs) 6 C,S 207-508 Y Y 

      

TGF-BETA           

decapentaplegic (BMP2/4) 1 C 547 Y Y 

glass bottom boat (BMP5/7) 2 I 510-737 Y Y 
SMADs (Mad, Smad2/3, 
Smad4/Medea) 7 I,C 276-2276 Y Y 
Type I Receptor 
(saxophone/thickveins/activin 
receptor type I) 5 I,C 236-2466 Y Y 
Type II Receptor (punt, wishful 
thinking) 3 I 259-5038 Y Y 
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RECEPTOR TYROSINE KINASES           

Epidermal growth factor receptor 7 (5
†
) I,C,S 229-715 N Y 

rhomboid 2 C 229-602 N Y 

      

HORMONE SIGNALING (ECDYSONE, NUCLEAR HORMONE) 
disembodied (ecdysteroidogenic 
P450) 1 I 1835 Y Y 

Ecdysone receptor 2 I,C 231-1393 Y Y 

E75 3 I,S 257-649 Y Y 

Ecdysone-induced protein 63E 1 I 1479 Y Y 

ecdysoneless 1 I 4158 Y Y 

Nuclear hormone receptor E78 1 I 3150 Y Y 

Nuclear hormone receptor HR3 2 I 529-737 Y Y 

phantom (cytochrome P450 306a1) 2 C 344-575 N Y 

shade (cytochrome 450 314A1) 1 I 2125 Y Y 

shadow (cytochrome 450 315A1) 1 I 1650 Y Y 

ultraspiracle nuclear receptor 1 C 245 Y* N 

without children 2 I 1155-1357 Y Y 

 

Hit ID indicates if gene hits were found among isotigs (I), Cap3-assembled contigs (C), 

or unassembled singletons (S). Sequence length (range) indicates the shortest and longest 

S, C or I hit sequences for each gene. These results were generated by BLASTing the raw 

reads from the N and NN samples against the full assembly. When multiple sequences 

were obtained via name search, they were tested to see whether they could be made to 

form a contig with Sequencher or CLC Combined Workbench (see Methods). Asterisk 

indicates hits only present in normalized GS-FLX reads. X(Y†) indicates that the X 

sequences with hits could be assembled into Y contigs. 
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Table 4. Selected developmental process genes identified in the O. fasciatus 

transcriptome.  

 

      

Process # Hits 
Hit ID 
(I/C/S) 

Length 
(range) 

Normalized 
Non-

Normalized 
GERM PLASM           

Argonaute 3 2 (1
†
) I 2042-2231 Y Y 

germ cell-less 2 (1
†
) I 630-1817 Y Y 

maelstrom 1 I 994 Y Y 

nanos 1 I 1961 Y Y 

piwi/aubergine 1 I 2888 Y Y 

pumilio 2 I 424-2574 Y Y 

staufen 3 I 599-2100 Y Y 

Tudor 2 I 2719-3299 Y Y 

vasa 1 C 330 Y Y 

      

ANTERIOR-POSTERIOR DETERMINATION  

GAP           

hunchback 1 I 1429 Y Y 

Kruppel 1 S 250 N Y 

ocelliless (orthodenticle)  1 S 207 Y N 

      

TERMINAL GROUP           

huckebein 1 I 589 Y Y 

torso-like 2 (1
†
) I,C 430-1868 Y Y 

      

PAIR RULE           

fushi tarazu 1 I 788 Y Y 

hairy (Enhancer of split/HES-1) 1 I 2530 Y Y 

odd skipped 1 C 346 N Y 

      

SEGMENT POLARITY           

armadillo 5 I,S 348-3001 Y Y 

cubitus interruptus 3 I,S 225-906 Y Y 

engrailed 1 S 227 Y* N 

fused 2 I 516-1582 Y Y 

pangolin 2 I,C 492-544 N Y 

patched 2 C, S 225-418 N Y 

Wnt family (wingless, Wnts) 6 C,S 207-508 Y Y 

      

DORSO-VENTRAL AXIS           

cactus 7 I, C 629-1748 Y Y 

decapentaplegic (BMP2/4) 1 C 547 Y Y 

gastrulation-defective 1 I 1773 Y Y 

nudel 4 I,S 322-1458 Y Y 

pipe 1 C 266 N Y 

short gastrulation 2 C 254-615 Y Y 

snake 1 I 1789 Y Y 

spätzle 2 I 993-3170 Y Y 

Toll 11 I, C, S 215-4323 Y Y 

      

MOLTING/METAMORPHOSIS           
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cuticular proteins (including CP 
49Ae and adult cuticle protein) 4 I,C 404-566 Y Y 
disembodied (ecdysteroidogenic 
P450) 1 I 1835 Y Y 

Ecdysone receptor 2 I,C 231-1393 Y Y 

E75 3 I,S 257-649 Y Y 

Ecdysone-induced protein 63E 1 I 1479 Y Y 

ecdysoneless 1 I 4158 Y Y 

ftz transcription factor 1 1 I 807 Y Y 

hormone receptor 4 2 I 1003-2114 Y Y 
juvenile hormone acid 
methyltransferase 5 I 548-2871 Y Y 

juvenile hormone binding protein 1 I 1099 Y Y 

juvenile hormone epoxide hydrolase 5 I,S 255-2859 Y Y 

juvenile hormone esterase  4 I 850-2382 Y Y 
juvenile hormone esterase binding 
protein 1 I 1057 Y Y 

Juvenile hormone-inducible protein 7 I 456-2757 Y Y 

Methoprene-tolerant 1 I 3415 Y Y 

Nuclear hormone receptor E78 1 I 3150 Y Y 

Nuclear hormone receptor HR3 2 I 529-737 Y Y 
phantom (cytochrome P450 
306a1) 2 C 344-575 N Y 

shade (cytochrome 450 314A1) 1 I 2125 Y Y 

shadow (cytochrome 450 315A1) 1 I 1650 Y Y 

takeout 3 I 591-1011 Y Y 

ultraspiracle nuclear receptor 1 C 245 Y* N 

without children 2 I 1155-1357 Y Y 

 

Hit ID indicates if gene hits were found among isotigs (I), CAP3-assembled contigs (C), 

or unassembled singletons (S). Sequence length (range) indicates the shortest and longest 

S, C or I hit sequences for each gene. These results were generated by BLASTing the raw 

reads from the N and NN samples against the full assembly. When multiple sequences 

were obtained via name search, they were tested to see whether they could be made to 

form a contig with Sequencher or CLC Combined Workbench (see Methods). Asterisk 

indicates hits only present in normalized GS-FLX reads. X(Y†) indicates that the X 

sequences with hits could be assembled into Y contigs. Boldface indicates genes also 

present in Table 3. 
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Figure Legends 

 

Figure 1. Introduction to Oncopeltus fasciatus and the workflow for producing a de 

novo transcriptome assembly. (A) An adult milkweed bug, Oncopeltus fasciatus. (B) 

Ovaries of adult female. Anterior is up. Oocytes (O) are visible in progressive stages of 

growth before reaching a common oviduct (Od). Oocytes are cytoplasmically connected 

to nurse cells (Nc) in the anterior of each ovariole. Scale bar = 1.0 mm. (C-D) The stages 

of O. fasciatus embryogenesis represented in this transcriptome. Embryos are stained 

with Sytox Green (Invitrogen) to visualize nuclei. Scale bars = 0.5 mm. (C) Development 

proceeds from left to right. Anterior is to the left. The cellularized blastoderm forms 

during the first ~20% of development (~0-24 hours at 28°C), as nuclei reach the surface 

of the yolk and repeatedly divide. (D) Germ band extension and segmentation occur from 

~20-60% of development (~24-72 hours at 28° C). Development proceeds from left to 

right. Anterior is up. Mn = mandibular segment; Mx = maxillary segment; Lb = labial 

segment; T1-T3 = leg-bearing thoracic segments 1-3; Ab = abdomen. (E) The flow of 

information during this de novo transcriptome assembly project. Data files are 

represented as white boxes within grey boxes that indicate the computer programs used to 

generate these files. All of the computer programs used are freely available. 

Ortholog_best_hit_calculator.py and transcriptome_blast_summarizer.py are custom 

python scripts available at http://www.extavourlab.com/protocols/index.html (see text for 

details). Photograph in (A) courtesy of David Behl. 
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Figure 2. Effects of normalization and 454 sequencing chemistry on read length and 

isotig length. (A) Titanium sequencing chemistry (grey, black) generally results in longer 

read lengths when compared with FLX chemistry (white). However, the normalized 

sample run with Titanium chemistry (black) had shorter read lengths than the non-

normalized sample (grey). This result is likely due to a technical error in that particular 

sequencing run, since a 1/8 plate run of the same sample showed a read length 

distribution comparable to that of the non-normalized sample (Additional file 1). (B) 

Isotig length distributions from assemblies of Titanium-sequenced data. The longest 

isotig per isogroup is shown. The number of bases in the non-normalized (grey) and 

normalized (black) samples has been equalized to eliminate possible bias due to the 

greater number and length of reads obtained from the run of the normalized sample (see 

(A)). The isotigs generated from the normalized cDNA tended to be shorter than those 

produced by the non-normalized cDNA (see also Table 2). Pooling all FLX and Titanium 

reads generates an assembly with more, longer isotigs (blue). 

 

Figure 3. Newbler 2.3 correctly identifies splicing isoforms of nanos. (A) Newbler 

v2.0 identified three separate contigs that map to an O. fasciatus nanos homologue that 

we had previously identified by degenerate PCR (Ewen-Campen & Extavour, 

unpublished). Newbler v2.0 failed to identify these contigs as belonging to the same 

transcript because of branching conflicts amongst the reads joining these contigs. 

BLASTX against the RefSeq protein database identified only contig 31035 as being a 

putative nanos homologue; the other two contigs lie outside the conserved Nanos domain 

and obtain no BLAST hits. (B) Newbler v2.3 predicted that the same three contigs 
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identified by Newbler v2.0 belonged to two isotigs, or splicing isoforms. (C) RT-PCR 

with specific primers F and R shown in (B) resulted in two bands of the predicted sizes of 

the isotigs predicted by Newbler v2.3. (D) Sequencing the bands from (C) revealed that 

they were identical to the sequences of the predicted isotigs from (B). 

 

Figure 4. GO term distribution of BLAST hits from the O. fasciatus transcriptome 

compared with those from the D. melanogaster genome. Several GO categories are 

shown within the top-level divisions of Biological Process, Molecular Function, and 

Cellular Component. Column heights reflect the percentage of annotated sequences in 

each assembly that mapped to a given Biological Process GO term. The relative 

percentages of genes falling into GO categories are comparable between our O. fasciatus 

transcriptome (black) and the D. melanogaster transcriptome (white). 

 

Figure 5. Assessing coverage of the O. fasciatus transcriptome. Randomly chosen 

subsets of increasing numbers of Titanium reads were used to generate progressively 

larger sub-assemblies. The number of reads in each sub-assembly (X axis) is plotted 

against the number of unique BLAST hits in each sub-assembly (left Y axis: black), and 

against the N50 isotig length (right Y axis: grey). For this analysis BLAST was 

performed against the SwissProt database. The number of unique BLAST hits plateaus 

when the assembly is composed of approximately 1.5 million reads. However, the N50 

isotig length maintains an approximately constant rate of increase.  
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Figure 6. Ortholog hit ratio analysis of isotigs and CAP3-reassembled singletons. An 

ortholog hit ratio of one implies that a transcript has been assembled to its true full 

length. For isotigs (black), a majority (54.8%) appear to contain at least 50% of the full 

length transcript sequence (arrow), while over one-third (37.2%) appear to represent at 

least 80% of the full length transcript sequence (arrowhead). Most singletons (grey) 

represent much smaller percentages of full-length transcripts. 

 

Figure 7. The O. fasciatus transcriptome adds sequence data to existing GenBank 

accessions, which in turn improves annotation of transcriptome sequences. (A) 

Extended contig for Of-hunchback (bottom), comprising the complete mRNA GenBank 

accession (top, light grey), two isotigs and one CAP3 contig from the transcriptome 

(middle, dark grey). The largest isotig provides an additional 252 bp of 3’ UTR sequence 

to the GenBank sequence (black). Comparison with the GenBank sequence enabled isotig 

08619 and cap3_contig 21314 to be assembled into the same contig. (B) Extended contig 

for Of-homothorax (bottom), with a partial mRNA GenBank accession (top, light grey) 

and two transcriptome isotigs (middle, dark grey). Both isotigs extend beyond the known 

GenBank sequence at the 3’ and 5’ ends, extending the known region by 449 bp in total 

(black). Both isotigs had been identified as homothorax, and because they did not 

overlap, they were classified as belonging to the same transcript rather than being 

paralogs. The GenBank sequence bridges an 87 bp gap between the isotigs, confirming 

that both sequences are fragments of a single gene. 
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Figure 8. Normalization decreases coverage of highly abundant genes, but does not 

change the GO term distribution of contigs. In both samples, most contigs are 

composed of <10
2
 reads. However, the non-normalized sample (A) contains contigs with 

many more reads per contigs than the normalized sample (B). In other words, 

normalization preferentially decreases the number of reads of those contigs with the most 

reads. (C) GO term distributions do not differ dramatically between pyrosequenced 

libraries of N versus NN cDNA. However, see Additional file 6 for exceptions. Column 

heights reflect the percentage of annotated sequences in each assembly that mapped to a 

given GO term. Note that the GO terms shown represent the results of mapping the N and 

NN reads against the complete assembly, rather than those obtained via independent 

assemblies of N and NN reads.  
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Additional files 

 

The following additional data are available with the online version of this paper: 

Additional file 1 is a figure showing that the normalized sample performed similarly to 

the non-normalized sample in the pilot run but not in the full sequencing run. Additional 

file 2 is a figure showing the average coverage of contigs in the transcriptome. Additional 

file 3 is a figure showing the results of RT-PCR validation of multiple splicing isoforms 

predicted by Newbler v2.3.  Additional file 4 is a table showing that most BLAST hits for 

the transcriptome are to insect sequences. Additional file 5 is a figure showing that the 

ortholog hit ratios for the transcriptome are similar to predictions from fully sequenced 

genome databases. Additional file 5 is a table showing that most BLAST hits for the 

transcriptome are to insect sequences. Additional file 6 is a table showing specific GO 

terms that are differently represented in normalised versus non-normalized cDNA 

libraries. Additional file 7 is a table comparing the assemblies produced by Newbler v2.3 

and Newbler v2.5. 

 

Additional file Legends 

 

Additional file 1. Normalized sample did not perform equally in pilot and full 

sequencing runs. (A) For the normalized sample, the read lengths of the full plate 

sequencing runs (white) were shorter than those obtained by the 1/8 plate run (grey). (B) 

The read length distribution of the non-normalized sample was comparable for both 1/8 

plate (grey) and full plate (white) sequencing runs. 
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Additional file 2. Distribution of average coverage (reads/bp) within contigs in the 

O. fasciatus transcriptome. The coverage within contigs is calculated by dividing the 

total number of base pairs contained in the reads used to construct a contig by the length 

of that contig. Note that Newbler v2.3 discards those contigs <100 bp.  

 

Additional file 3. RT-PCR validation of bioinformatically predicted multiple 

isoforms. (A) Schematic of experimental design. Ten isogroups were randomly selected, 

each containing exactly two isotigs that differed by the presence/absence of a single 

contig. PCR primers were designed to flank the differing region. (B) Band sizes predicted 

by Newbler v2.3 for ten randomly selected isogroups containing exactly two isotigs. (C) 

Agarose gel following RT-PCR using primers against the sequences described in (B). 

Ladder sizes are given in base pairs on the left. Blue arrowheads: bands of the sizes 

predicted by Newbler v2.3; red arrowheads: bands not predicted by Newbler v2.3. 

 

Additional file 4. Identity of taxa with top BLAST hits. “Isotigs” refers only to the 

longest isotig of each isogroup; “Singletons” refers to the Newbler-generated singletons 

after secondary CAP3 assembly.  The category “other” is the summation of all those 

species obtaining very low numbers of BLAST hits. 

 

Additional file 5. O. fasciatus assembly isotigs have ortholog hit ratios similar to 

predictions from fully genome-sequenced databases. When isotigs from the O. 

fasciatus transcriptome are BLASTed against the RefSeq protein database, ortholog hit 
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ratios show a similar profile to those obtained when the complete Acyrthosiphon pisum 

gene prediction set (downloaded from http://www.aphidbase.com/aphidbase/downloads/) 

is BLASTed against the predicted gene set of Drosophila melanogaster (r5.28 

downloaded from ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/) with an e-

value cut-off of 1e-10. 

 

Additional file 6. GO terms enriched in Normalized (N) and Non-Normalized (NN) 

cDNA samples. N (assembly generated from full plate of normalized cDNA) and NN 

(assembly generated from an equalized number of base pairs of non-normalized cDNA) 

reads were BLASTed against the full transcriptome assembly, and the results were used 

to generate "test" and "reference" sets for a Fisher's Exact Test. FDR: false discovery 

rate. 

 

Additional file 7. Comparison of de novo transcriptome assemblies produced by 

Newbler v2.3 and Newbler v2.5. Number of BLASTx hits reflects a search against 

RefSeq Protein database with an e-value cut-off value of 1e-10.  
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Additional file 1: EwenCampen_Additional_File_1.pdf, 429K
http://www.biomedcentral.com/imedia/3892203485088966/supp1.pdf
Additional file 2: EwenCampen_Additional_File_2.pdf, 154K
http://www.biomedcentral.com/imedia/8864864485088957/supp2.pdf
Additional file 3: EwenCampen_Additional_File_3.pdf, 220K
http://www.biomedcentral.com/imedia/1008299939508896/supp3.pdf
Additional file 4: EwenCampen_Additional_File_4.pdf, 46K
http://www.biomedcentral.com/imedia/1633559434508897/supp4.pdf
Additional file 5: EwenCampen_Additional_File_5.pdf, 90K
http://www.biomedcentral.com/imedia/1250863435088971/supp5.pdf
Additional file 6: EwenCampen_Additional_File_6.pdf, 41K
http://www.biomedcentral.com/imedia/1370304528508897/supp6.pdf
Additional file 7: EwenCampen_Additional_File_7.pdf, 36K
http://www.biomedcentral.com/imedia/1120465359508898/supp7.pdf
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