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The Effect of Projection on Derived Mass-Size and Linewidth-Size

Relationships

Rahul Shetty1,2,5, David C. Collins3, Jens Kauffmann1,2,6, Alyssa A. Goodman1,2, Erik W.

Rosolowsky4, Michael L. Norman3

ABSTRACT

Power law mass-size and linewidth-size correlations, two of “Larson’s laws,”

are often studied to assess the dynamical state of clumps within molecular clouds.

Using the result of a hydrodynamic simulation of a molecular cloud, we investi-

gate how geometric projection may affect the derived Larson relationships. We

find that large scale structures in the column density map have similar masses

and sizes to those in the 3D simulation (PPP). Smaller scale clumps in the col-

umn density map are measured to be more massive than the PPP clumps, due to

the projection of all emitting gas along lines of sight. Further, due to projection

effects, structures in a synthetic spectral observation (PPV) may not necessarily

correlate with physical structures in the simulation. In considering the turbulent

velocities only, the linewidth-size relationship in the PPV cube is appreciably

different from that measured from the simulation. Including thermal pressure in

the simulated linewidths imposes a minimum linewidth, which results in a bet-

ter agreement in the slopes of the linewidth-size relationships, though there are

still discrepancies in the offsets, as well as considerable scatter. Employing com-

monly used assumptions in a virial analysis, we find similarities in the computed

virial parameters of the structures in the PPV and PPP cubes. However, due

to the discrepancies in the linewidth- and mass- size relationships in the PPP

and PPV cubes, we caution that applying a virial analysis to observed clouds
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may be misleading due to geometric projection effects. We speculate that con-

sideration of physical processes beyond kinetic and gravitational pressure would

be required for accurately assessing whether complex clouds, such as those with

highly filamentary structure, are bound.

Subject headings: ISM:clouds – ISM: structure – methods: analytical – stars:formation

1. Introduction

Though stars form in the densest cores within much more voluminous molecular clouds,

the motions and forces within the parent cloud at various scales significantly shape, if not

control, the evolution of the cores as they form stars. Observations, in particular of dust

emission and extinction and of a variety of molecular lines, have provided much information

about the internal structure and dynamics of molecular clouds. However, determining the

3-dimensional (3D) structure of the cloud from observations is not trivial, due in large part

to line-of-sight projection effects.

The scaling between the massM and velocity dispersion σ with size scale is often studied,

in both numerical models and observations of star forming regions (e.g. Ostriker et al. 2001;

Myers & Goodman 1988; Ballesteros-Paredes & Mac Low 2002; Dib et al. 2007; Falgarone et al.

1992; Heyer et al. 2009; Solomon et al. 1987, Kauffmann et al. 2010a,b in preparation). A

radius R is often considered as a proxy for the size of the region under inspection, to construct

power-laws M ∝ Ra and σ ∝ Rb. Larson (1981) found a ∼ 2 and b ∼ 0.5, now generally

known as (the first and third) “Larson’s Laws.” Larson’s second law, relating σ with the

ratio of M/R, is a consequence of the other two, and is often used to study the dynamic

nature of the cloud, through the virial parameter α = 5σ2R/(MG). The value of α may be

indicative of whether structures or other such contiguous regions within clouds are bound,

due either to its own self-gravity or by the ambient external pressure (Bertoldi & McKee

1992; McKee & Zweibel 1992). However, assumptions about the virial theorem that are

commonly employed to derive α, e.g. that the surface terms are negligible compared to the

volume terms, may in fact be erroneous, as discussed by Ballesteros-Paredes (2006) and

Dib et al. (2007).

In order to properly interpret the Larson scaling relations, a thorough understanding of

the effects of projection would be necessary. Contiguous structures in an observed position-

position-velocity (PPV) cube may not be representative of actual 3D structures in position-

position-position (PPP) space of the simulation(Adler & Roberts 1992; Ostriker et al. 2001).

In fact, Pichardo et al. (2000) showed that the structure of a PPV cube is more tightly cor-
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related with the line-of-sight velocity structure than the 3D density distribution. Similarly,

identified structures in a 2D (integrated emission and/or extinction) map, such as high den-

sity knots or filaments, may also be a superposition of numerous lower density peaks along

the line of sight (e.g. Ostriker et al. 2001; Gammie et al. 2003). These projection effects

may indeed provide power law scalings that differ from the actual scalings (as discussed by

Ballesteros-Paredes et al. 1999; Ballesteros-Paredes & Mac Low 2002).

Here, we assess the effect of projection from an analysis of a 3D numerical simulation of

a molecular cloud. We compare the derived M-R and σ - R relationships from 2D projected

density and 3D spectral (PPV) data with those obtained from the full 3D simulation (PPP)

density and velocity data. To derive M , R, and σ, we employ dendrograms, a recently

developed technique which identifies contiguous structures within various chosen (intensity

or density) thresholds, and in the process characterizes the hierarchical nature of the data

(Rosolowsky et al. 2008). We then use the measured sizes, masses, and linewidths in a virial

analysis, to extend our PPP and PPV comparison. In the next section, we briefly describe

the simulation dataset and our method of analysis. In Section 3, we present the Larson

relationships obtained from the full 3D simulation data and idealized observations of those

simulations, and compare the results. We discuss the implications of the results in Section

4, focusing on the interpretations of observations. We summarize our findings in Section 5.

2. Method

In our investigation of the effect of projection on the derived mass- size and linewidth-

size relationships, we use the result of a 3D hydrodynamic simulation at a single timestep.

The simulation used for this study was run with the MHD extension of the Adaptive Mesh

Refinement (AMR) code ENZO described by Collins et al. (2010). In the MHD simulation

of the molecular cloud, isothermal gas collapses into filaments and eventually forms dense

cores in a 1000 pc3 region, with periodic boundary conditions. The gas initially has uniform

density ρ = 200 cm−3 and magnetic field B = 0.6 µG, with isothermal temperature 10 K. The

virial parameter for this box is 0.9, giving a slightly unstable initial cloud. At each timestep,

the gas is driven with a random Gaussian velocity field. The driving field has power in a

top-hat distribution between wavenumbers k = 1, 2, and is normalized to keep the energy

input constant, as described in Mac Low (1999). This results in a constant RMS mach

number of 9. This driving was maintained for several dynamical times to obtain statistical

independence from the initial conditions, after which self-gravity was switched on. The data

analyzed in this study was taken after 0.5 free fall times.

The root grid has a resolution of 1283 zones. Due to the AMR feature of the ENZO
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code, the resolution increases with increasing density, such that the Jeans length of the gas

is always resolved by 4 zones, satisfying the Truelove criterion (Truelove et al. 1997). A total

of 4 levels of refinement are added this way. Self-gravity is included, by solving the Poisson

equation in the root grid using Fast Fourier Transforms, and in the subgrid patches using a

multigrid technique. Normalizing the simulation to a 10 pc side length, this gives a fine grid

resolution of ≈1000 AU. A projection of the density can be seen in Figure 1, which shows the

filamentary nature of the gas. Details of this simulation will be discussed in a forthcoming

paper.

A common method to locate clumps involves the identification of contiguous structures

in datacubes above a chosen threshold. In algorithms such as CLUMPFIND (Williams et al.

1994), or similar variants (see e.g. Dib et al. 2007), structures are labeled as clumps if they

are distinct from the background or from nearby, isolated structures. Some investigators fit

Gaussian profiles to describe the shape of the structures (GAUSSCLUMP, Stutzki & Guesten

1990). Since molecular clouds are known to be hierarchical, evidenced by observations of

dense knots situated in filamentary structures within GMCs, such a method may be inade-

quate (Pineda et al. 2009). We thus employ “dendrograms,” a technique which characterizes

the hierarchical nature of the matter distribution, while simultaneously identifying contigu-

ous structures within chosen (intensity or density) thresholds1 (Rosolowsky et al. 2008).

The simulation data provides ρ and the velocity components vx, vy, and vz at every

position at a chosen time. The ρ-cube itself contains all the information necessary to obtain

the mass and size distribution of the clumps in the simulation. The mass of a clump is simply

the density integrated over all zones within a dendrogram-identified region, or isosurface,

in the ρ-cube, multiplied by the volume of each zone. We regrid the result of the AMR

simulation into a uniform grid with 2563 zones, each with length ∆x, so that the volume of a

zone is (∆x)3. To characterize the size of each clump, we define a radius R3D as that which

identifies a sphere with the same volume as that bound by the isosurface, so R3D ∝ N 1/3,

where N is the number of zones within the dendrogram defined isosurface. We can then

assess whether any clear mass-size relationship exists in the 3D simulation data.

To obtain the linewidth-size relationship of the simulation, we use the velocity informa-

tion to measure the velocity dispersion of a clump. For any observation, denser gas contribute

more to the observed linewidths than diffuse gas. Thus, for more direct comparison with ob-

servations, we consider the density weighted velocity dispersion. From the isosurface defined

in the ρ-cube, the corresponding velocity components vx, vy, and vz, as well as the density

1We we will refer to any of the structures identified by dendrograms generally as “clumps” regardless of

whether they are self-gravitating (or bound) or not.
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ρ, define the 1D density-weighted velocity dispersion σ1D of that particular clump:

σ2

1D =
1

3

∑
ρ[(vx − v̄x)

2 + (vy − v̄y)
2 + (vz − v̄z)

2]
∑

ρ
, (1)

where the summation is taken over all N zones constituting the identified clump. Since

Equation 1 does not include the thermal velocity, it is only representative of the non-thermal,

or turbulent, velocities. An observed linewidth σtot would include a contribution from the

sound speed cs in addition to σ1D, so

σ2

tot = σ2

1D + c2s. (2)

In our investigation of the linewidth-size relationship, we consider both the turbulent linewidth

σ1D as well as the total linewidth σtot.

In order to investigate the effect of projection, we generate a PPV cube and a column

density map (shown in Figure 1) of the simulation cube. We then produce dendrogram

trees of these synthetic observations, and compare the resulting mass-size and linewidth-

size relationships with those obtained from the full 3D simulation data. We only con-

sider optically thin emission, so our analysis is analogous to observational investigations

involving much of the volume of the molecular cloud, including regions containing dense

cores (Myers & Goodman 1988; Falgarone et al. 1992; Heyer et al. 2009; Solomon et al. 1987;

Larson 1981). This study is thus a first step towards a complete understanding of the un-

avoidable consequences of projection in observations. Results based on this assumption

may not be directly applicable to molecular line observations tracing high densities, such as

ammonia observations of dense star forming cores. A thorough investigation of the effect

of projection for those high density tracers would require the additional consideration of

radiative transfer effects.

To produce a 2D column density map, we integrate the density along a given direction

(e.g. ẑ). Since we are assuming purely optically thin emission, the final 2D map is simply

the zeroth-moment of the ρ-cube. We then construct the dendrogram tree of this 2D map,

obtaining the masses and sizes of each 2D-clump. In this case, we define the radius R2D =

(N /π)1/2∆x, which is the radius of a circle with an area identical to the area within the 2D

isosurface.

From the simulation data, a 3D PPV cube is constructed by binning a chosen velocity

component (e.g. vz), and integrating the mass (e.g. along ẑ at each x̂, ŷ position) asso-

ciated with each velocity bin. We consider an idealized PPV cube, with high spatial and

spectral resolution of 0.039 pc and 0.025 km s−1, respectively; at these resolutions, both

the density and velocity structures can be assessed to scales smaller than the typical size of



– 6 –

the dense cores within filaments. Clump masses are obtained by integrating the intensity

within each dendrogram isosurface of the PPV cubes. The velocity dispersion is obtained

by computing the second moment of each clump in velocity; we will refer to this moment

as σz, since we construct the PPV cube along the ẑ direction. We only consider clouds to

by sufficiently resolved if σz ≥ 0.025 km s−1, which is the spectral resolution of the PPV

cube (Rosolowsky & Blitz 2005). For the clumps in the PPV cube, the observed velocity

dispersion σ2

tot = σ2

z + c2s. As with the 2D map, we use the projected area associated with

each clump to define R2D as the size of the clump.

From the full simulation dataset, we derive the mass-size M ∝ Ra
3D and linewidth-size

σ1D ∝ Rb
3D and σtot ∝ Rb

3D power law relationships of the simulated cloud. We then compare

those with the M ∝ Ra
2D, σz ∝ Rb

2D, and σtot ∝ Rb
2D relationships obtained from analyses of

the column density map and PPV cube.

3. Results

3.1. Mass-Size Relationships

Figure 2 shows mass-size relationships of the dendrogram identified clumps, from the

full 3D simulation data, the column density map, and the PPV cube. In all cases, there is

a strong correlation between the M and R, suggestive of a power law relationship M ∝ Ra.

Best fit lines give a ≈ 2 and a ≈ 3 for the 2D and 3D cases, respectively, and a ≈ 2.6 for

the PPV cube. The best fit indices, along with the errors, are listed in Table 1; the table

also indicates best fit exponents and the errors for the linewidth-size relationships discussed

below.2 The best fit mass-size indices from the column density map and the PPV cube are

similar to those derived from many observations of molecular clouds (e.g. Kauffmann et al.

2010b, in preparation, Larson 1981).

Power law fits from observations have provided an estimate a ≈ 2 (Larson 1981;

Solomon et al. 1987), known as “Larson’s 3rd Law.” Indices of a = 2 and a = 3 indi-

cate that structures have constant column densities and constant volume densities in 2D

and 3D, respectively. A further consequence is that the surface density is constant for all

clouds.

2The computed (“standard”) errors in the linear fits are small due to the very large number of datapoints.

Thus, the fits provide estimates for the mean value of M or σ with high accuracy. However, a prediction of

M or σ using an individual datapoint would have a significant error, due to the large scatter in Figures 2 -

4.
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The best fit relationships shown in Figure 2 suggest that the dendrogram identified

clumps have little density variation within them. Clumps with small extents are more likely

to have nearly constant (column or volume) densities, and indeed clumps with R <
∼ 0.6

pc generally agree well with the a = 2 and a = 3 relationships. Note, however, that

at small scales there is still a range of clump masses at any given R, indicating that the

fragmentation process produces clumps with a range of masses. Larger scale clumps include

contributions from the smaller, high density clumps, and so can have larger density gradients

within their surfaces; as can be seen in Figure 2, those clumps deviate from the a = 2 and

a = 3 relationships. We note that we have also modeled the clumps as ellipsoids (see

e.g. Rosolowsky et al. 2008; Bertoldi & McKee 1992), and obtain slightly different mass-size

power-law indices, with a ≈ 1.8 and a ≈ 2.3 for the 2D map and PPP data, respectively; this

difference indicates that the definition of R plays a role in the derived mass-size relationship.

Taking these issues into consideration, even though the best fit indices are a = 2 and a = 3

from the column density map and PPP cube, respectively, we do not conclude that the

structures in the simulation have constant volume densities, or that the surface density is

everywhere equivalent.

Though there are strong correlations betweenM andR atR <
∼ 0.5 pc, the masses derived

from the 2D map are systematically larger than those from the 3D cube. As described by

Gammie et al. (2003), this discrepancy arises because peaks in the 2D map may include

contributions from spatially separated objects which lie along the same line of sight (see also

Kauffmann et al. 2010c, ApJ Submitted, for mass contamination by extended envelopes);

this blending of structures along the line of sight also results in fewer total clumps found by

dendrograms in the 2D map (not all the clumps are shown in Figure 2).

For clumps with R >
∼ 0.5 pc, there is relatively good agreement in the masses of the 2D

and 3D structures. These represent the low density, large scale structures, and their total

masses include the masses of the higher density, smaller scale clumps embedded within them

(i.e. the mass of the “branches” of the dendrogram tree includes the mass of any “leaves”

associated with that “branch,” see Rosolowsky et al. (2008) for definitions). As the clump

scale increases, the masses of both the 2D and the PPP clumps approaches the total mass

of the simulated cloud.

From the PPV cube, many clumps at small scales (R <
∼ 0.08 pc) have similar masses

and sizes to those from the PPP data. At those scales, the clumps are the highest density

objects (e.g. “cores”); many of those clumps may be detected as objects in high resolution

PPV cubes since they might have velocities that are distinguishable from the surrounding

material. But, some of the low mass PPV clumps are not identified as such in the PPP or

column density maps; they are simply part of much larger low density features. They are
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identified as clumps in the PPV cube because various regions along that line-of-sight have

similar (turbulent) velocities, and therefore occur as brighter knots in the PPV cube (as

discussed by Pichardo et al. 2000). Thus, many of the low mass, small extent PPV clumps

in Figure 2 are actually part of the larger, low density PPP clumps. Additionally, we found

that for PPV cubes with lower resolution, many of the identified low mass clumps may not

be detected.

At large scales, at a given radius the masses of the PPV clumps are systematically lower

than those of the PPP clumps. This offset arises because of the difference in the definition of

R2D and R3D, as well as a consequence of only including densities within given velocity bins

in the construct of the PPV cube. Due to the latter effect, line of sight velocity gradients

within a 3D structure may result in (1 or more) corresponding structure(s) in the PPV cube

having lower mass(es) than the single 3D object; a 3D structure within a molecular cloud

may thus not appear as a distinct structure in a PPV cube. These discrepancies indicate

that the identification of clumps in a PPV cube may not provide accurate estimates of the

masses of the real clumps.

The general agreement between the PPV and PPP masses and sizes at small scales,

transitioning to lower PPV masses at a given size at larger scales, results in M ∝ R2.6
2D for

the PPV clumps. A derived index between the a ≈ 2 result from the 2D analysis and a ≈ 3

from the full 3D data should be expected, since a PPV cube is constructed using the column

density in defined line of sight velocity bins, thus involving a mixture of the column density

and 3D density.

3.2. Linewidth-Size Relationships

Figure 3 shows the non-thermal σ1D − R3D and σz − R2D relationships of dendrogram

identified objects from the PPP and PPV cubes, respectively. A best fit of σ ∝ Rb produces

b ≈ 0.7 for the PPP case. For the PPV clumps, there is a large scatter in the σz − R

relationship, and a best fit yields b ≈ 0.85. In practice, it is difficult to accurately measure

linewidths for regions smaller than a few tenths of a parsec. We thus also perform the fit only

considering those structures with R > 0.2 pc, and obtain flatter power-laws with b ≈ 0.5 for

the PPP clumps and b ≈ 0.82 for the PPV clumps. Even when excluding the small scale

clumps, a significant difference in the nonthermal linewidth - size relationship between the

PPP and PPV cases remains.

Besides the differences in the slopes of the linewidth - size relationships, σz is system-

atically lower than the linewidth computed using all velocity components, σ1D. Both PPP
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and PPV dispersions are density weighted, either by design (see Eqn. [1]), or due to the

intrinsic nature of a PPV cube. Thus, any discrepancy can be largely attributed to the

effect of projection. For example, σz might include contributions from physically separate

structures, since a clump in a PPV cube might consist of separate structures in the PPP

cube. Additionally, σz for a given clump does not include any contribution from vx and vy,

though it has been estimated that this can account for at most 20% of the discrepancy seen.

The observed σz is affected by many factors besides the intrinsic velocity distribution of a

given gaseous structure.

As indicated in Section 2, an observed linewidth would include a contribution from

the thermal velocity; Figure 4 shows the σtot − R relationship from the PPP and PPV

data. At small scales, the minimum linewidths are 0.2 km s−1, which is equal to cs of the

simulation; turbulence does not contribute much to the observed linewidths where cs >> the

turbulent velocities. Compared with Figure 3, which only shows the turbulent components,

the minimum linewidth imposed by the thermal component forces the power law index in the

PPP and PPV case to decrease to b = 0.44 and b = 0.39, respectively. For those structures

with R > 0.2 pc, best fits do not change the PPP relationship, but increases the PPV

linewidth size index to b = 0.5, similar to results from numerous observational works (e.g.

Solomon et al. 1987; Larson 1981). Despite the better correspondence in best fit power laws,

there is still a clear systematic offset between the PPP and PPV total linewidths; the best fit

intercepts still differ by a factor of ≈2 (Figure 4, with a larger discrepancy in the turbulent

offsets, as evident in Figure 3). Table 1 lists the best fit indices for the various power laws

considered.

3.3. Mean Subtracted Data and 13CO Emission

We note that in a column density map where the mean density was subtracted off at

each location, the resulting mass-size relationship is similar to that shown in Figure 2. The

main difference is that the measured masses are slightly lower, as would be expected. The

masses of the small scale clumps are still appreciably larger than those from the PPP cube.

We have also performed our analysis on the simulation data where only gas above 650 cm−3

is considered to be emitting, a scenario analogous to observing optically thin 13CO. We

find little difference in the derived mass-size and line-size relationships compared with the

scenario where all gas is emitting. Again, the main difference is that the measured masses

are slightly lower.
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4. Discussion

4.1. Virial Parameters of the PPP and PPV Clumps

The observed M-R and σtot-R correlations have strong bearings on the interpretation of

the state of the cloud, such as the bounded nature of clumps or the clouds as a whole. For

example, a relationship between σ and (R/M) can be constructed from the M ∝ Ra and

σ ∝ Rb relationships:

σ ∝ (M/R)
b

a−1 . (3)

The relationship expressed by Equation 3 is often utilized for studying whether clumps are

bound, through the virial parameter α = 5σ2R/(MG) (e.g. Goodman et al. 2009; Rosolowsky et al.

2008; Larson 1981). Clumps with α <
∼ 2 are considered bound, due to its own self gravity

(McKee & Zweibel 1992). For a = 2 (“Larson’s 3rd law”) and b = 1/2 (“Larson’s 1st law”),

α is independent of R, and if its value is ≈ 2, the clumps under consideration are interpreted

to be in, or close to, virial equilibrium (“Larson’s 2nd law,” Larson 1981). We note, however,

that a recent investigation of high resolution 13CO observations by Heyer et al. (2009) has

found that structures in molecular clouds in fact do not universally follow all of “Larson

laws.”

Even though we have found significant differences between the power law relationships

we obtain from the PPP and synthetic observations, we carry forward an analysis to assess

the stability of the clumps. Taking a = 3 and b = 0.44 from the PPP cube, σ ∝ (M/R)0.22.

This relationship leads to α ∝ R−1.1. We explicitly show α as a function of R from the PPP

analysis in Figure 5. Smaller scale clumps have α >
∼ 2, suggesting they are unbound. At

R >
∼ 0.5 pc, α <

∼ 2, suggesting that the large scale structures are close to virialized, or are

bound.

For a = 2.6 and b = 0.39 from the PPV analysis, σ ∝ (M/R)0.24. These power-laws

result in α ∝ R−0.8. As Figure 5 illustrates, the α − R relationships of the PPV and

PPP clumps are rather similar, despite the glaring differences in the mass- and linewidth-

size relationships shown in Figures 2-4. Though the trend of decreasing virial parameter

with increasing radius from the PPP data is generally reproduced in the PPV analysis,

the threshold radius of ∼1 pc beyond which clouds are bound varies significantly from the

corresponding radius of the PPP clumps.

Figure 6 shows the α − M relationship. The slopes of these power laws are −0.4 and

−0.3 for the PPP and PPV clumps, respectively. Similar to the clumps in the simula-

tions of Dib et al. (2007), the large α-parameters of the low mass dense cores suggests that

these objects are not bound by their own self-gravity. One interpretation of a decreasing

virial parameter with radius, and of very large α for the smallest scale clumps, is that
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dense cores are pressure confined, as formulated by Bertoldi & McKee (1992). However,

our best-fit exponents differ from the 2/3 value derived for purely pressure confined clumps

(Bertoldi & McKee 1992), suggesting that other physical processes, and/or other terms in

the virial equation, need to be taken into account.

The similarity in the virial parameters of the clumps from the PPP and PPV clumps

must not lead to the interpretation that PPV clumps can reliably provide accurate mea-

surements of α. One reason for the general agreement is due to the abundance of low mass

clumps in the PPV cube. As discussed in §3, many of these clumps in fact are not distinct

objects in the simulation data.

Generally, current observations have lower resolutions than those considered in this

work, and such observations would not be capable of detecting all the small scale PPV

clumps shown in Figures 2 and 4. The resulting α-R power law would have a flatter index

than the −0.8 shown in Figure 5. Further, at intermediate radii (0.1 pc <
∼ R <

∼ 0.3 pc),

there is a clear offset in the measured virial parameter of the PPV clumps compared to those

of the PPP clumps, due to the lower mass estimates of the PPV clumps (see Figure 2).

Additionally, we note that the turbulent linewidths, as opposed to the total linewidths,

produce power law linewidth-size relationships with markedly greater discrepancy between

the PPP and PPV clumps (see Figure 3 and Table 1). Of course, identifying the turbulent

linewidth is very difficult when the turbulent velocity components are (very) subsonic; and,

the kinetic term in the virial parameter must include the thermal component to properly

assess a clump’s stability. Yet, the vast differences between the σ1D −R and σz −R relation-

ships are illustrative of the strong influence of turbulence, in conjunction with projection,

on the measured mass- and linewidth- size relationships.

Nevertheless, α is itself derived by excluding the surface terms in the virial equation, as

well as assuming a negligible temporal variation in the moment of inertia. These terms may

in fact be comparable to the surface terms, as Ballesteros-Paredes et al. (1999) and Dib et al.

(2007) demonstrated in extensive analyses of 2D and 3D simulations, respectively. Other

common assumptions, such as that turbulence only acts against collapse, may themselves

be flawed, as discussed by Ballesteros-Paredes (2006). Such simplifications may lead to

inaccurate interpretations of the state of observed clouds. Given these caveats, the standard

virial analysis may not accurately reveal the bounded nature of clumps, even when applied

to the full 3D simulation cube. We thus cannot draw any unequivocal conclusions about the

bounded nature of the clumps in one snapshot of the simulation. Our findings simply suggest

that commonly assessed correlations, such as the mass-size and linewidth-size relationships,

may be significantly affected by projection effects.
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4.2. Implications for Interpreting Observations

The stark discrepancy in the power law relationships between the full simulation dataset

and the synthetic observations may be due in part to the structure of the simulated molecular

cloud (in addition to the aforementioned choice of the definition of R). In the simulation

we consider, filaments are ubiquitous within the cloud, and most dense cores are clustered

(besides residing in filaments).

We have verified that for purely spherical cores that are completely isolated (i.e. not

lying in the same line-of-sight from other cores) with distinct velocity profiles, the masses,

sizes, and linewidths derived from the PPP and PPV cubes agree.3 If such “simple” clouds

exists, and given the discrepancy in derived power-laws between PPP and synthetic obser-

vations of the filamentary simulation we consider, we speculate that there should be some

transition region in parameter space beyond which traditional analysis methods used to as-

sess the “boundedness” of structures cannot be applicable. We illustrate this concept in

Figure 7, which broadly indicates that consideration of more physical processes is necessary

for accurately assessing the boundedness of more complex clouds.

For a very simple spherical clump, it may be possible to determine if the object is

bound or not using the classical virial parameter analysis (however, see caveats expounded

by Ballesteros-Paredes 2006). Including additional physics may increase the accuracy of the

analysis. It may not be possible to apply a given analysis, such as the straightforward virial

parameter analysis, to more complex clouds, indicated by the shaded region in Figure 7.

Accurately determining the bounded nature of objects within complex clouds would require

the consideration of more physics, such as the surface terms in the virial analyses, and/or

the effects of magnetic fields.

Figure 7 is only a schematic, intended to illustrate that considering more physics, rather

than just kinetic and gravitational energies, is required for reliably determining the nature

of the clumps in more complex clouds. The depiction of a distinct transition separating the

structures for which it is possible to determine their bounded nature from those for which it

is not is simply an arbitrary illustration. The confirmation of agreement in the masses, sizes,

and linewidths of simple, isolated cores between the PPV and PPP cubes is representative

of a situation residing near the origin in Figure 7 (marked by a circle). In this case a simple

virial analysis would produce identical results between a PPP and PPV analysis, and thus

may accurately reveal the dynamical state of the clumps. On the other hand, our analysis of

3In the simulation, however, we found that relatively isolated structures give different best fit power laws

from the PPP and synthetic observations.
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the highly filamentary simulation (shown in Figure 1) clearly lies within the shaded regime of

Figure 7 where the cloud structure is rather complex (marked by a cross). An investigation

into the bounded nature of the clumps in this simulation would require consideration of more

physics than those included in the classic virial analysis.

The parameter space depicted in Figure 7 does not indicate the level of modeling nec-

essary to handle the effect of projection. In our analysis, we have simply represented the

scale of the clumps as radii of circles with areas equal to that of the projected clump. The

simulation we consider is rather filamentary, and so our method of assigning a “radius”

to characterize the extent of the cloud may be partially responsible for the discrepancy in

measured power-law correlations between the PPP and synthetic observation cases. As indi-

cated, assuming spherical symmetry may be sufficient for spherical cores with certain density

and velocity profiles. However, such idealized cores might not exist in nature, thus requiring

better modeling efforts even for the most simple objects.

In our analysis, we have not considered effects of chemistry and/or radiative transfer.

We simply consider a purely optically thin medium, within which radiation emerges from

all matter, or regions with densities above a threshold density, and assume thermodynamic

equilibrium. However, the ISM is comprised of various components at different temperatures

(e.g Heiles & Troland 2003); individual cold clouds may also be embedded in warmer gas

(Hennebelle & Inutsuka 2006). The physical state of molecular clouds may thus be more

complex than that considered here. Further, the synthetic observations have insignificant

noise levels. Even in excluding more complex physics and instrumental effects intrinsic to

real observations, we still find rather significant differences between the measured properties

of the cloud from the 3D simulation data compared with the synthetic observations. Thus,

any discrepancies in the observed structure, from either a PPV cube or a column density

map, from the 3D structure of the cloud can be fully attributed to the effect of geometric

projection.

Though we have shown that projection may produce inaccurate scaling relations for

a given observed cloud, comparing scaling relations between various observations may still

prove to be worthwhile. For example, if analyses of PPV cubes, or 2D column density maps,

of different molecular clouds produce different linewidth- and/or mass- size relationships,

there may be some intrinsic physical process that could be responsible for the differences

(e.g. Kauffmann et al. 2010b, in preparation). Some processes, such as heating and cooling,

may play the most influential roles in sculpting one cloud, but may be insignificant compared

to the effect of magnetic fields and gravity in another; thus, the (observed) scaling relations

of those two clouds could be different.

To infer accurate cloud characteristics from the value of the exponents of the de-
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rived scaling relation, a thorough understanding of the effect of projection is a neces-

sity. Analyses of various simulations could be an avenue toward such an understanding

(Ballesteros-Paredes & Mac Low 2002; Dib & Kim 2007; Dib et al. 2007). In this work, we

have only assessed one particular simulation. More analyses on different simulations, e.g.

those with different magnetic field configurations, or including the effects of heating and

cooling, should advance our understanding on how the “observed” mass- and linewidth- size

scaling relations, and ultimately the virial parameter, varies through the combined effects of

geometric projection and the different physical processes at work.

5. Summary

We assess the effect of geometric projection in deriving cloud properties, using a simu-

lation of a molecular cloud. Using dendrograms (Rosolowsky et al. 2008), we identify con-

tiguous structures in the 3D simulation dataset and idealized synthetic observations of the

simulation. We measure the masses, sizes, and linewidths of structures in PPP and PPV

cubes, as well as in column density maps of the simulated cloud. We subsequently perform a

virial analysis to compare the bounded state of clumps in the simulation with that assessed

from the synthetic observations. Our main results and conclusions are:

1) Identified clumps from the 2D column density map with large extents (R >
∼ 0.8

pc) have masses in agreement with those obtained from 3D PPP cube. These large scale

structures contain much of the total mass of the cloud. However, at smaller scales, the 2D

clumps have systematically higher masses than those from the 3D simulation. The measured

masses of these smaller scale clumps in the 2D map include contributions from all gas lying

along the same lines of sight, resulting in inflated mass estimates.

2) Low mass structures with small extents (R <
∼ 0.1 pc) identified in the PPV cube have

similar masses to corresponding objects in the PPP data. However, many of these structures

are not distinct objects in the PPP ρ-cube; they are identified only because gas from different

regions along (or near) the same line of sight happens to have similar line of sight velocities.

Further, high spectral and spatial resolution would be required to identify those structures

from spectral line observations. On the other hand, at large scales (R >
∼ 0.1), PPV

structures systematically have lower masses than PPP structures. This discrepancy again

arises because of line of sight effects: a large scale structure in the PPP data might be

identified as numerous lower mass structures in the PPV cube due to gradients in the line

of sight velocity.

3) When only turbulent velocities are considered, the cumulative distribution of clumps
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from the 3D PPP data give different indices in the M-R and σ −R power law relationships

compared to those from the 2D column density map and PPV cube of the simulated cloud.

After including the contribution from thermal pressure, the linewidth has a lower limit at the

value of cs. This results in similar best fit σtot−R power-law indices from the PPP and PPV

analyses, though there is a large degree of scatter. Further, the PPV clumps systematically

have lower linewidths than those of the PPV clumps, often differing by a factor >
∼ 2 (Figures

3-4 and Table 1).

4) Due to the differences in the measured properties from the PPP data and synthetic

observations, there is a discrepancy in the identified scale beyond which the clumps are

assessed to be bound. Despite the differences indicated by points 2) and 3), a virial analysis

of the clumps in the PPP and PPV cubes show similar trends. But, we suggest that the

similarity should not lead to the interpretation that a PPV analysis can accurately reveal

the dynamical state of the observed clumps.

5) Taking 2) - 4) together, we conclude that projection effects can be rather significant,

leading to inaccurate interpretations of the dynamical state of the cloud. We speculate that

for a simple spherical cloud, the classic virial analysis, where the surface and magnetic terms

are omitted (among other assumptions), may be sufficient for reliably determining whether

cores are bound or not. We suggest that highly filamentary clouds require consideration of

additional physics (Figure 7). We also remark that better modeling techniques are necessary

to properly account for the effect of projection, as well as to appropriately handle the the

non-spherical shapes of cloud structures.
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Fig. 1.— Column density of simulated cloud. Each side has a length of 10 pc.
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Fig. 2.— Mass-size relationships from dendrogram defined clumps in a 3D ρ-cube (black

circles), 2D column density map (green crosses), and PPV cube (red squares). Lines indicate

best fits of M ∝ Ra. In order to distinguish between points, only half of the PPP clumps

and PPV clumps are shown; the excluded points follow the same trends as those shown.
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Fig. 3.— Linewidth - size relationship from dendrogram identified structures in the PPP

ρ-cube (black circles) and PPV cube (red squares). Best fit lines of σ1D ∝ Rb for the PPP

clumps (black) and σz ∝ Rb for the PPV clumps (red) are shown. Best fits to clumps with

R > 0.2 pc are also shown (dashed lines). The linewidths (σ1D for PPP and σz for PPV) do

not include the contribution from the sound speed.
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Fig. 4.— Total linewidth - size relationship from dendrogram identified structures in the

PPP ρ-cube (black circles) and PPV cube (red squares), along with best fit lines σtot ∝ Rb.

Fits to clumps with R > 0.2 pc are also shown (dashed line).
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Fig. 5.— Virial parameter (α) - size relation for clumps found in the 3D simulation (black

circles) and synthetic PPV cube (red squares). Best fit lines are also shown, with slopes

of −1.1 and −0.8 for the 3D simulation and the PPV clumps, respectively. Horizontal line

shows α=2, indicating virialized clumps.
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Fig. 6.— Virial parameter (α) - mass relation for clumps found in the 3D simulation (black

circles) and synthetic PPV cube (red squares). Best fit lines are also shown, with slopes

of −0.4 and −0.3 for the 3D simulation and the PPV clumps, respectively. Horizontal line

shows α=2, indicating virialized clumps.
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Fig. 7.— Schematic diagram indicating how the consideration of more complex physics is

possibly required to reliably assess whether structures in molecular clouds are bound or not.

The abscissa represents the level of complexity in the cloud, from a relatively simple sphere

to a highly filamentary cloud. The ordinate represents the physical process considered in the

analysis. The circle and cross represent cases we have considered in this work.
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Table 1. Summary of Power Law Relationships

Power Law; index PPPa PPVb Column Densityb

M ∝ Ra; a 3.03 ± 0.02 2.56 ± 0.01 1.95 ± 0.03

σ1D ∝ Rb; b 0.72 ± 0.01 - -

σ1D ∝ Rb (R > 0.2 pc); b 0.49 ± 0.02 - -

σz ∝ Rb; b - 0.85 ± 0.01 -

σz ∝ Rb(R > 0.2 pc); b - 0.82 ± 0.01 -

σtot ∝ Rb; b 0.44 ± 0.01 0.39 ± 0.004 -

σtot ∝ Rb(R > 0.2 pc); b 0.42 ± 0.02 0.49 ± 0.01 -

aR = R3D

bR = R2D
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