Patterns of Abdominal Fat Distribution

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.2337/dc08-1359</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:4724751</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Patterns of Abdominal Fat Distribution

The Framingham Heart Study

Karla M. Pou, MD1
Joseph M. Massaro, PhD2
Udo Hoffmann, MD, MPH3
Kathrin Lieb, MD4
Ramachandran S. Vasan, MD4
Christopher J. O’Donnell, MD, MPH4,5
Caroline S. Fox, MD, MPH1,4

OBJECTIVE — The prevalence of abdominal obesity exceeds that of general obesity. We sought to determine the prevalence of abdominal subcutaneous and visceral obesity and to characterize the different patterns of fat distribution in a community-based sample.

RESEARCH DESIGN AND METHODS — Participants from the Framingham Heart Study (n = 3,348, 48% women, mean age 52 years) underwent multidetector computed tomography, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) volumes were assessed. Sex-specific high SAT and VAT definitions were based on 90th percentile cut points from a healthy referent sample. Metabolic risk factors were examined in subgroups with elevated SAT and VAT.

RESULTS — The prevalence of high SAT was 30% (women) and 31% (men) and that for high VAT was 44% (women) and 42% (men). Overall, 27.8% of the sample was discordant for high SAT and high VAT: 19.9% had SAT less than but VAT equal to or greater than the 90th percentile, and 7.9% had SAT greater than but VAT less than the 90th percentile. The prevalence of metabolic syndrome was higher among women and men with SAT less than the 90th percentile and high VAT than in those with high SAT but VAT less than the 90th percentile, despite lower BMI and waist circumference. Findings were similar for hypertension, elevated triglycerides, and low HDL cholesterol.

CONCLUSIONS — Nearly one-third of our sample has abdominal subcutaneous obesity, and >40% have visceral obesity. Clinical measures of BMI and waist circumference may misclassify individuals in terms of VAT and metabolic risk.

Diabetes Care 32:481–485, 2009

Obesity is associated with an increased risk of multiple cardiovascular risk factors. The prevalence of obesity in the U.S. has increased over the last two decades, with one-third of adults having a BMI ≥30 kg/m² (1). However, obesity is a heterogeneous condition with individual differences in the pattern of adipose tissue deposition. Accumulation of abdominal fat, particularly in the visceral compartment, may confer the majority of obesity-associated health risks (2).

The prevalence of abdominal obesity (defined as waist circumference ≥88 cm in women and ≥102 cm in men) has increased over the last decade and now exceeds the prevalence of overall obesity, with rates of 42.4% in men and 61.3% in women (1,3). Notably, the largest relative increase in the prevalence of abdominal obesity has been among individuals with BMI <30 kg/m² (3). Although waist circumference is an easily obtainable index of abdominal adiposity, it does not distinguish between the subcutaneous and visceral adipose tissue compartments. We and others have previously reported that visceral adipose tissue (VAT) has a stronger association with metabolic risk factors and metabolic syndrome than subcutaneous adipose tissue (SAT) (4–6). These studies are limited, however, by the high correlations between SAT and VAT that make it difficult to distinguish between the contribution of SAT compared with that of VAT with regard to metabolic risk.

Thus, the objectives of the present study were twofold. First, we sought to define the prevalence of abdominal obesity in terms of elevated volumes of VAT and SAT, as measured by a volumetric computed tomography (CT) method. To do this, we developed cut points for elevated SAT and VAT based on a healthy referent sample. Second, we examined the occurrence of different patterns of adipose tissue distribution and concomitant metabolic risk factor profiles. We hypothesized that metabolic risk factors would be more likely to track with elevated levels of VAT than with SAT.

From the 1Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts; the 2Department of Mathematics, Boston University and School of Public Health, Boston, Massachusetts; the 3Radiology Department, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; the 4National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts; and the 5Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.

Corresponding author: Caroline S. Fox, foxca@nhlbi.nih.gov.
Received 22 July 2008 and accepted 21 November 2008.
Published ahead of print at http://care.diabetesjournals.org on 15 December 2008. DOI: 10.2337/dc08-1350
© 2009 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Additional details regarding the study sample selection, abdominal adipose tissue imaging and volumetric measurements, risk factor assessment, and statistical analysis can be found in the supplemental methods (available in an online appendix at http://dx.doi.org/10.2337/dc08-1359).

RESULTS — Overall, 1,611 women and 1,737 men were available for analysis; study sample characteristics are shown in Table 1. SAT and VAT percentiles in women and men by age are shown in supplemental Table A1.

Healthy referent group
The healthy referent sample was composed of 471 women and 285 men. The 90th percentile cutoffs of SAT and VAT for this healthy referent group were 3,735 and 1,359 cm³, respectively, in women and 2,979 and 2,323 cm³ in men.

Prevalence of elevated SAT and VAT
The prevalence of subcutaneous abdominal obesity (high SAT) in the overall sample was 30% in women and 31% in men. The prevalence of visceral obesity (high VAT) was 44% in women and 42% in men. The prevalence of high SAT and high VAT by age-group is presented in Fig. 1.

In a secondary analysis, the lean healthy referent (further excluding individuals with BMI ≥25 kg/m²) 90th percentile cut points in this sample were 2,883 and 2,031 cm³ for SAT and 1,062 and 1,715 cm³ for VAT in women and men, respectively. Applying these cut points to the overall sample would result in the prevalence of high SAT of 50% in women and 66% in men and high VAT of 56% in women and 67% in men.

Prevalence of high SAT and high VAT by BMI and waist circumference categories
The prevalence of metabolic syndrome was significantly different across the four SAT/VAT groups (P < 0.0001 across the four groups) (Fig. 3); clinical characteristics of these groups are shown in Table 2.

Overall, 49.3% of the sample had both SAT and VAT ≥90th percentile, whereas 22.9% had both high SAT and high VAT. Nearly 28% of the sample was discordant in terms of SAT and VAT: 7.9% had high SAT and VAT ≥90th percentile, whereas 19.9% had SAT ≥90th percentile but high VAT. The mean age was higher among those with SAT ≥90th percentile and high VAT compared with those with high SAT and VAT <90th percentile. The prevalence of metabolic syndrome was higher among those with SAT <90th percentile and high VAT compared with those with high SAT and VAT <90th percentile. The prevalence of metabolic syndrome was significantly different across the four SAT/VAT groups (P < 0.0001 across the four groups) (Fig. 3); clinical characteristics of these groups are shown in Table 2.

Patterns of abdominal fat distribution

Figure 1 — Prevalence of high SAT (A) and high VAT (B) by age-group in women (■) and men (□). Error bars represent SE. For SAT, the linear trends were not significant (P = 0.76 for men and P = 0.11 for women). For VAT, the linear trends were significant for both men (P < 0.0001) and women (P < 0.0001).
30% of our sample, and adverse meta-
amounts of SAT and VAT exist in nearly
useful adiposity categories. Discordant
misclassification exists within clinically
ference have high VAT, suggesting that
20% of men with a normal waist circum-
clines among elderly individuals. Nearly
elevated VAT, whereas 10% of women and
prevalence of abdominal obesity in women
sity in our sample (42% in men and 44%
in women) exceeds the prevalence of sub-
cutaneous adiposity. Of note, the preva-
ance of abdominal obesity in women
(defined by a waist circumference >88
in National Health and Nutrition Ex-
amination Survey data is higher than the
prevalence of visceral obesity (defined by
VAT ≥90th percentile healthy referent
cut point) in our sample of women (61.3
vs. 44%). This difference was not ob-
served in men. However, clinical anthro-
pometrics are well-known to be poor for
imating VAT, and, thus, it is not sur-
prising that there is a discrepancy be-
tween a prevalence based on waist cir-
cumference and one based on more
precise CT measurements (8).

Clinical categories to classify BMI and
waist circumference are useful for pre-
dicting risk of adiposity-related disorders
in the majority of patients, but misclassi-
fication exists (9). Some individuals who
have normal BMI and normal waist cir-
cumference have an excessive amount of
visceral fat that is unrecognized and thus
have a significant cardiometabolic risk.
This phenotype of a metabolically obese
normal-weight individual was first de-
scribed in the 1980s by Ruderman et al.
(10) and was classified as an individual
with a nonobese BMI who showed evi-
dence of impaired insulin sensitivity with
a hyperinsulinemic-euglycemic clamp.
Conversely, the metabolically healthy
obese individual (11) represents individ-
uals with a high BMI who seem to be
protected from associated metabolic de-
mass. Both BMI and waist circumference
are more strongly correlated with subcu-
taneous than with visceral fat (4). There-
fore, both anthropometric measures may
be less reliable in aging individuals, as
BMI and waist circumference may be
more dependent on the relative loss of
SAT over time. This is consistent with the
observation in the present article that al-
though individuals with high VAT and
SAT <90th percentile had more adverse
risk factor profiles, BMI and waist circum-
ference were actually lower compared
with those in individuals with high SAT
and VAT <90th percentile.

In the context of the current
literature
In our cohort, the prevalence of subcuta-
neous adiposity is ~30%, which is con-
sistent with current estimates of the
prevalence of obesity (as defined by a BMI
of at least 30 kg/m²) of 32.2% in U.S.
adults (1). The prevalence of visceral obe-
sity in our sample (42% in men and 44%
in women) exceeds the prevalence of sub-
cutaneous adiposity. Of note, the preva-
elle of abdominal obesity in women
(defined by a waist circumference >88
cm) in National Health and Nutrition Ex-
amination Survey data is higher than the
prevalence of visceral obesity (defined by
VAT ≥90th percentile healthy referent
cut point) in our sample of women (61.3
vs. 44%). This difference was not ob-
served in men. However, clinical anthro-
pometrics are well-known to be poor for
imating VAT, and, thus, it is not sur-
prising that there is a discrepancy be-
tween a prevalence based on waist cir-
cumference and one based on more
precise CT measurements (8).

Clinical categories to classify BMI and
waist circumference are useful for pre-
dicting risk of adiposity-related disorders
in the majority of patients, but misclassi-
fication exists (9). Some individuals who
have normal BMI and normal waist cir-
cumference have an excessive amount of
visceral fat that is unrecognized and thus
have a significant cardiometabolic risk.
This phenotype of a metabolically obese
normal-weight individual was first de-
scribed in the 1980s by Ruderman et al.
(10) and was classified as an individual
with a nonobese BMI who showed evi-
dence of impaired insulin sensitivity with
a hyperinsulinemic-euglycemic clamp.
Conversely, the metabolically healthy
obese individual (11) represents individ-
uals with a high BMI who seem to be
protected from associated metabolic de-

CONCLUSIONS

Major findings

Volumetric measures of both SAT and
VAT revealed a prevalence of high SAT of
~30% and a prevalence of high VAT of
just more than 40% as defined by 90th
percentile cut points in a healthy referent
sample. The prevalence of elevated VAT
rises with age, whereas elevated SAT de-
clines among elderly individuals. Nearly
one-quarter of obese individuals or indi-
viduals with a large waist do not have
elevated VAT, whereas 10% of women and
20% of men with a normal waist circum-
ference have high VAT, suggesting that
misclassification exists within clinically
useful adiposity categories. Discordant
amounts of SAT and VAT exist in nearly
30% of our sample, and adverse meta-

![Figure 2](image)

Figure 2—Prevalence of high SAT or high VAT by BMI category in women (A) and men (B) and
by waist circumference category in women (C) and men (D). Error bars represent SE. A and B: □, normal weight; ■, overweight; ●, obese. C and D: □, normal waist circumference; ■, high waist circumference.
Patterns of abdominal fat distribution

rangentments including insulin resistance. These different phenotypes underscore the importance of identifying and treating cardiometabolic risk factors, irrespective of BMI.

To further explore the existence of different fat phenotypes in a community-based setting, we looked at groups that were discordant for SAT and VAT and found that the group with low SAT but high VAT had a greater prevalence of metabolic syndrome than the group with high SAT but low VAT. The collinearity of SAT and VAT (correlations ranging between 0.38 in men and 0.71 in women) makes it difficult to assess the differential contribution of SAT compared with VAT with regard to metabolic risk. However, the examination of risk factors among discordant categories of high SAT and high VAT in our study suggests that a more adverse risk factor profile tracks with high VAT than with high SAT. This suggestion is supported by the extensive literature suggesting a uniquely important contribution of visceral fat to metabolic risk and a correlation of excess VAT with metabolic risk independent of SAT.

Nonetheless, it is important to note that the mean BMI and waist circumference were actually lower among participants with elevated VAT and normal SAT, highlighting the potential misclassification in clinical anthropometrics.

Compared with the high SAT and high VAT group, the low SAT and high VAT group had a higher prevalence of hypertriglyceridemia. These findings may be consistent with a pattern similar to the metabolic abnormalities present in partial lipodystrophy. The lack of sufficient adipocytes and the limited capacity to store fat in nonlipodystrophic adipose tissue may result in ectopic fat storage around other tissues and organs such as the heart, the liver, skeletal muscles, blood vessels, and kidneys. This ectopic fat storage may lead to organ dysfunction.

Figure 3—Prevalence of metabolic risk factors (MetS) and CVD by SAT/VAT concordant and discordant categories in women (A) and men (B). Age-adjusted P < 0.0001 across all four categories for each risk factor except cardiovascular disease (P = 0.01 for men and P = 0.05 for women). *P < 0.01 for the low SAT/high VAT and high SAT/low VAT comparisons. Error bars represent upper one-sided 97.5% CIs. HTN, hypertension; IFG, impaired fasting glucose; TG, triglyceride; □, low SAT and VAT; □, high SAT and low VAT; □, low SAT and high VAT; □, high SAT and VAT.

Table 2—Distribution of risk factors and clinical characteristics by SAT/VAT categories

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Low SAT/low VAT</th>
<th>High SAT/low VAT</th>
<th>Low SAT/high VAT</th>
<th>High SAT/high VAT</th>
<th>P value comparing discordant SAT and VAT</th>
<th>P value across groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>1,650</td>
<td>266</td>
<td>666</td>
<td>766</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.6</td>
<td>30.2</td>
<td>28.5</td>
<td>34.0</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>93</td>
<td>107</td>
<td>101</td>
<td>116</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>SAT (cm³)</td>
<td>1,861</td>
<td>3,753</td>
<td>2,317</td>
<td>4,190</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>VAT (cm³)</td>
<td>1,532</td>
<td>1,898</td>
<td>2,959</td>
<td>3,315</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>51</td>
<td>51</td>
<td>61</td>
<td>56</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.2</td>
<td>29.5</td>
<td>27.1</td>
<td>34.4</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>83</td>
<td>90</td>
<td>95</td>
<td>112</td>
<td>0.0002</td>
<td><0.0001</td>
</tr>
<tr>
<td>SAT (cm³)</td>
<td>2,088</td>
<td>4,330</td>
<td>2,955</td>
<td>5,157</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>VAT (cm³)</td>
<td>773</td>
<td>1,103</td>
<td>1,831</td>
<td>2,283</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

SAT and VAT categories are defined as high if ≥90th percentile cut points in healthy referent sample: SAT, men = 2,979 cm³; women = 3,735 cm³; VAT, men = 2,323 cm³; women = 1,359 cm³.
Implications: limitations of BMI and waist circumference, particularly among older individuals

Clinical categories of BMI and waist circumference may be useful to estimate overall metabolic risk in the general population, but there may be individuals who develop cardiometabolic complications related to adiposity without a BMI or waist circumference in the high-risk range. In particular, we observed that among individuals discordant for high SAT and VAT, BMI and waist circumference were actually lower among those with high VAT and low SAT, despite having a higher prevalence of metabolic risk factors. Therefore, the reliance on BMI and waist circumference in the aging population may misclassify metabolic risk.

Strengths and limitations

Strengths of our study include the use of a large community-based sample with detailed risk factor assessment. We used a highly reproducible CT assessment of SAT and VAT volumes, which accounts for heterogeneity of fat distribution throughout the abdomen. Our sample size was large enough to explore differences within obesity subgroups. Our study is a population-based epidemiologic study without ascertainment for obesity-related conditions, which increases the generalizability of our findings. Limitations include the use of cross-sectional data, as causality cannot be inferred. Because the Framingham Offspring study is primarily a Caucasian sample, generalizability to other races or ethnic groups is uncertain.

In summary, nearly one-third of our sample has abdominal subcutaneous obesity and more than 40% have visceral obesity. Different patterns of adipose tissue distribution have different metabolic correlates. Clinical measures of BMI and waist circumference may misclassify individuals in terms of metabolic risk.

Acknowledgments—The Framingham Heart Study is supported by the National Heart, Lung, and Blood Institute (NHBLI) (N01-HC-25195). R.S.V. is supported in part by 2K24HL04334 (NHBLI/National Institutes of Health).

No potential conflicts of interest relevant to this article were reported.

References