
Unconstrained Free-Viewpoint Video Coding

Citation
Lamboray, Edouard, Stephan Würmlin, Michael Waschbüsch, Markus Gross, and Hanspeter
Pfister. 2004. Unconstrained free-viewpoint video coding. Proceedings: International Conference
on Image Processing 5: 3261-3264.

Published Version
doi:10.1109/ICIP.2004.1421809

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4726194

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:4726194
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Unconstrained%20Free-Viewpoint%20Video%20Coding&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=511a91fc0a42f47a9a53f1b4b025647b&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Unconstrained Free-Viewpoint Video Coding

Edouard Lamboray Stephan Würmlin Michael Waschbüsch Markus Gross Hanspeter Pfister*

Computer Graphics Laboratory, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
*MERL - Mitsubishi Electric Research Laboratories, Cambridge, MA, USA
{lamboray, wuermlin, waschbuesch, grossm}@inf.ethz.ch pfister@merl.com

Abstract

In this paper, we present a coding framework addressing
image-space compression for free-viewpoint video. Our
framework is based on time-varying 3D point samples which
represent real-world objects. The 3D point samples are
obtained after a geometrical reconstruction from multiple
pre-recorded video sequences and thus allow for arbitrary
viewpoints during playback. The encoding of the data is per-
formed as an off-line process and is not time-critical. The
decoding however, must allow for real-time rendering of the
dynamic 3D data. We introduce a compression framework
which encodes multiple point attributes like depth and color
into progressive streams. The reference data structure is
aligned on the original camera input images and thus allows
for easy view-dependent decoding. A novel differential coding
approach permits random access in constant time throughout
the entire data set and thus enables arbitrary viewpoint tra-
jectories in both time and space.

1. Introduction

In recent years, free-viewpoint video has appeared as a
new technology for interactive rendering of dynamic real-
world objects from arbitrary viewpoints. The respective 3D
information is usually obtained from multiple, synchronized
2D video streams. The MPEG-4 committee is currently inves-
tigating various methods for coding 3D audio/video data [3].
Many 3D reconstruction methods have been proposed but a
complete free-viewpoint video pipeline including a compres-
sion stage of the time-varying 3D data still needs to be devel-
oped. Figure 1 shows a sketch of a free-viewpoint video
acquisition stage with 16 cameras and an example of an arbi-
trary spatial path of the virtual viewpoint during playback.

In this paper, we present a compression framework for 3D
video fragments which is a dynamic point based representa-
tion tailored for real-time streaming and display of free-view-
point videos [12]. A 3D video fragment holds, additionally to
its color, a number of geometrical attributes. Moreover, a one-
to-one relation between 3D point samples and foreground pix-
els in the input 2D video images is guaranteed. 3D video frag-
ments are generic in the sense that they work with any 3D
reconstruction method which extracts depth from images.
Thus the representation is quite complementary to model-
based scene reconstruction methods using volumetric (e.g.
space carving, voxel coloring), polygonal (e.g. polygonal
visual hulls) or image-based (e.g. image-based visual hulls)
scene reconstruction. Our framework can thus be seen as an
abstraction of a 3D video representation and its compression
from the 3D reconstruction methods.

1.1. Related work

Several coding techniques for large but static point repre-
sentations have been proposed in the literature [1, 7]. Botsch
et al. report memory requirements between 8 and 13 bit per
point for storing static point sampled geometry in an octree
data structure including surface normal and color attributes.
Time-varying 3D video data has been encoded by Wuermlin
et al. at comparable bit rates [13]. Briceno et al. propose to
reorganize the data from dynamic 3D objects into 2D images
before deploying video compression techniques for coding
animated meshes [2]. Vedula et al. developed a free-viewpoint
video system based on the computation of a 3D scene flow
and spatio-temporal view interpolation but did not address the
coding of this representation [11].

2. Playback features
Depending on the desired features of a free-viewpoint

video system and the need for real-time playback, a well
designed compression scheme for time-varying 3D data
should address the following features:

Multi-resolution. Scalability and progressivity with respect
to resolution. This feature can be achieved using either pro-
gressive encoding or progressive sampling of the data [8, 12].

Multi-rate. Scalability with respect to time, i.e. the playback
of the sequence is possible at a different frame rate than the
recording frame rate. Backward playback should also be pos-
sible.

View-dependent decoding. Taking into account that the
number of cameras is potentially large and that real-time
decoding is required, it is not realistic on current hardware to

Figure 1: Top view of a free-viewpoint video acquisi-
tion stage. The black line illustrates an arbitrary spatial
path of the virtual viewpoint during playback.

decode all the cameras before rendering the scene for a given
viewpoint. Hence, it is necessary to reduce the set of pro-
cessed cameras already during decoding. Thus, view-depen-
dent decoding is an important characteristic of a real-time
free-viewpoint video decoder.

We define view-dependent decoding such that for a given
rendering frame, the decoder maximizes the ratio of decoded
information which is finally rendered versus the total amount
of decoded information for the given rendering instant. If the
3D video data is encoded in image-space, the technique
described by Wuermlin et al. can be used for deciding which
cameras are required for rendering from the current virtual
viewpoint [12]. Thus, given a viewpoint and the camera cali-
bration data, the decoder computes the contributing cameras
and reads the data accordingly.

If we assume that data from the three cameras closest to
the current virtual viewpoint is used to render the free-view-
point video during playback, the example of Figure 1 leads to
the following configuration: Viewpoint A requires cameras 1,
8, and 15; viewpoint B cameras 1, 7, and 15; viewpoint C
cameras 0, 6 and 7.

This example illustrates that during the spatial navigation
of the viewer, the set of contributing cameras is permanently
changing. Hence, if view-dependent decoding is implemented
and if the data is encoded in image-space, the stream from
each camera must be randomly accessible and virtually every
single frame needs to be an entry point to the stream. This
requirement is definitely very restricting and we thus propose
to distinguish between two classes of free-viewpoint video
which reflect different degrees of spatio-temporal navigabil-
ity.

Constrained free-viewpoint video. After decoding, the 3D
data can be rendered from any possible direction, but either
only small viewpoint changes are allowed during rendering,
or discontinuities in rendering are tolerated in presence of
large viewpoint changes.

Unconstrained free-viewpoint video. After decoding, the
3D data can be rendered from any possible direction, the
viewpoint being a function of the rendering time and the dis-
continuities during rendering are minimized.

According to the above definitions, the spatio-temporal
viewpoint trajectory during playback of unconstrained free-
viewpoint video can be completely arbitrary. In the con-
strained case, the trajectory is restrained to a narrow band, as
illustrated in Figure 2.

3. Data acquisition and preprocessing

The input data of free-viewpoint video systems acquiring
real-world objects typically consists of multiple concentric
video sequences of the same scene, which are recorded with
synchronized cameras. The cameras are calibrated and intrin-
sic and extrinsic calibration parameters are available to both
encoder and decoder. Furthermore, a segmentation mask
needs to be provided for every input frame. The segmentation
mask tells which pixels belong to the object of interest, i.e. are
foreground pixels.

After the input images have been processed by an appro-
priate 3D reconstruction algorithm, each foreground pixel has
associated depth and color values. In combination with the
camera calibration parameters, the depth values describe the
geometry of the object. In general, it is possible to addition-
ally encode any attributes describing the visual appearance of
an object. The set of optional attributes essentially depends on
the final rendering scheme.

In summary, the compression framework described in this
paper can be applied to every static or dynamic 3D data set
which can be completely described by a set of concentric 2D
views. In practice, this applies to many – if not all – acquisi-
tion setups for 3D reconstruction of real world objects. More-
over, our coding framework can smoothly be extended to an
arbitrary camera setup where only a few cameras see the
object at a time.

4. Image-space free-viewpoint video coding
The underlying data representation of our free-viewpoint

video format is a dynamic point cloud. Since the point
attributes are separately stored and compressed, a referencing
scheme, allowing for the unique identification between points
and their attributes is mandatory. Using the camera images as
building elements of the data structure, each point is uniquely
identified by its position in image space and its camera identi-
fier. Furthermore, looking separately at each camera image,
we are only interested in foreground pixels, which contribute
to the point cloud describing the 3D object.

Thus, we use the segmentation mask from the camera
images as reference for all subsequent coding schemes. In
order to avoid shifts and wrong associations of attributes and
points, a lossless encoding of the segmentation mask is
required. This lossless segmentation mask must be at the dis-
posal of all encoders and decoders. However, all pixel
attributes can be encoded by a lossy scheme. Nevertheless, a
lossless or almost lossless decoding should be possible if all
data is available.

The overall compression framework is depicted in Figure
3. From the segmentation masks and the camera calibration
data, a geometric reconstruction of the object of interest is
computed. The output of the geometric reconstruction are 3D
positions. The data streams are compressed and, along with
the texture information and the segmentation masks, multi-
plexed into an embedded, progressive free-viewpoint video
stream. The camera calibration data is encoded as side infor-
mation.

In the remaining of this paper, we discuss more specifi-
cally image-space encoding schemes for the point attributes.
For shape coding, we rely on lossless coding techniques for
binary images [4, 6] where the compression is based on con-
text-sensitive adaptive binary arithmetic coders.

5. Unconstrained free-viewpoint video
Conventional video codecs exploit motion prediction in

subsequent frames and encode them in a recursive way. They
produce a stream consisting of reference frames – which are
used as entry points into the stream – predicted frames and
interpolated frames. Obviously the predicted and interpolated

Figure 2: Possible viewpoint trajectories for con-
strained and unconstrained free-viewpoint video.

frames achieve a higher compression ratio than the indepen-
dent reference frames. However, for unconstrained free-view-
point video the encoded stream must allow for arbitrary entry
points and thus the number of frames between two reference
frames must be relatively small.

State-of the art research in video coding also addresses the
problem of scalable video coding where scalability is under-
stood in terms of image resolution and frame rate [10, 14].
However, the target application of current research and stan-
dardization efforts in scalable video coding is scalable play-
back of conventional 2D video. For example, the criteria on
temporal scalability suggests possible playback rates for at
least three defined frame rates [9]. Such an approach does not
automatically lead to true random access in constant time with
arbitrary entry points and hence does not completely fulfill
the requirements of unconstrained free-viewpoint video cod-
ing.

Average coding. In this section, we propose a coding scheme
that implements arbitrary entry points into a 2D video stream
and builds upon a reference and a delta frame using the pre-
diction from the reference frame. We suggest to use tempo-
rally averaged information in the reference frame and encode
the difference between the original frame and the reference
frame in the corresponding delta frame. Thus, a reference
frame is valid for a specified time window, i.e. N frames, and
is generated by computing the average value of each attribute
for every foreground pixel. Note that – within the respective
time window – the reference frame is independent from the
recording time. Furthermore, for every window of frames
which use the same reference frame, we need to encode

 frames in total. However, we expect the additional cost
of coding the reference frame to be distributed over a large
number of actually displayed frames. Furthermore, a rough
approximation of the average frame is sufficient, since the
image details are averaged out anyway. The principle of aver-
age coding is illustrated in Figure 4. Figure 5 depicts average
coding using texture data from one single camera.

Note that in free-viewpoint video coding we are essentially
interested in coding single objects and not full video frames.
The suggested approach would most probably fail for coding
full-frame video streams.

6. Results

For the actual coding of colors and depths we currently use
zero-tree wavelet transform coding [8], followed by arith-
metic coding. In Figure 6, we compare the PSNR of the aver-
age encoded texture frames to single frame JPEG2000
encoding. The results show that average coding is superior to
single frame coding for most time windows throughout the
sequence. The increase of the reference time window from 5
to 15 frames affects the PSNR performance by approximately
-0.5 dB. For the parts of the sequence with a high motion
activity, i.e. in between frames 150 and 170, the single frame
encoding is more efficient. We thus suggest to use a hybrid
coding scheme for unconstrained free-viewpoint video: Aver-
age coding, potentially with an adaptive window size, should
be used during periods of low motion activity; otherwise, sin-
gle frame coding should be used.

In this experiment, we used a real-world input data set with
a resolution of 640x480 pixels at 25 frames per second. Figure
5 shows example frames from this data set.

Figure 3: Compression framework at the encoder.

Camera calibration
data

Cam 1

Cam 2

Cam N

Segmentation masks
(binary Images)

Camera 1 Camera 2 Camera N

Side info

M
u
l
t
i
p
l
e
x
e
r

Shape coding

Geometry
reconstruction

Position
coding

Color coding

Embedded,
progressive
free viewpoint
video stream

Camera
calibration

N

N 1+

Figure 4: Principle of average coding

Figure 5: Average coding illustrated with a texture ex-
ample. a) Masked camera input image; b) Masked ref-
erence frame; c) Masked delta frame.

Figure 6: Zero-tree average coding for two different
window sizes compared to JPEG2000 plain image com-
pression.

Average Coder

Camera i

Frame l*N

Frame l*N+1

Frame l*N+N-1

Reference frame l

Progressively encoded
Reference frame l

Progressively encoded
Delta frame l*N

Progressively encoded
Delta frame l*N+1

Progressively encoded
Delta frame l*N+N-1

Coder

Coder

Coder

(b) (c)(a)

30

32

34

36

38

0 50 100 150 200 250

Frames

P
S

N
R

 [
d

B
]

N=15 N=5 JPEG2000

Alternatively to the coders compared in Figure 6, MPEG-4
video object coding, which is based on shape adaptive dis-
crete cosine transform coding, could be used. However,
MPEG-4 does not yet allow for progressive decoding [5].

Although free-viewpoint video coding aims at coding of
real-world objects, we also use a test sequence generated from
a synthetic model. The data however is processed identically
to real-world data, i.e. the synthetic model is observed from
multiple virtual cameras which provide the input data to the
free-viewpoint video pipeline. The input images of this
sequence have a resolution of 320x240 at 25 frames per sec-
ond. The use of a synthetic test sequence further allows to
ignore practical problems of data acquisition and camera cali-
bration while working on the compression issues. Addition-
ally, only a synthetic model can provide exact reference
values for the geometry attributes.

The fair evaluation of free-viewpoint video formats is
however a difficult task and no appropriate error metric has
yet been defined. The traditional metrics like PSNR do not
deliver reasonable results if applied to result images rendered
from viewpoints lying in between two or more input camera
positions.

In the experiment of Table 1, we compressed the test data
sequence with our unconstrained free-viewpoint video codec
using one single average frame for the complete sequence, i.e.
the reference frame covers 200 frames which corresponds to 8
seconds at normal playback speed. We further improved the
compression performance by downscaling the depth images
and re-expanding them to full resolution during decoding.

For view-dependent decoding and rendering, we select the
three cameras closest to the virtual viewpoint. The resulting
3D object consists of approximately 8000 point samples per
frame. We progressively decode our data with several exam-
ple bit rates as specified in Table 1. The total bit rate includes
the contribution of reference and delta frames for depth and
texture and the lossless shape coding. Snapshots from the
respective sequences are shown in Figure 7.

7. Conclusions and outlook
This paper introduces a compression framework for free-

viewpoint video using a point-based data representation. The
deployment of a novel average coding scheme enables for an
unconstrained spatio-temporal navigation throughout the 3D
video stream. Ideally, all data is progressively encoded and
hence a free-viewpoint video stream can be generated for dif-
ferent target bit rates.

In the future, the specific codecs to be used in our com-
pression framework need to be investigated in detail. Further-
more, an algorithm optimizing the window length for average
coding should be developed. Finally, we would like to investi-
gate how the proposed free-viewpoint video coding scheme
can be implemented in standardized multi-media frameworks
like MPEG-4.

Acknowledgements

The authors would like to thank the GrOVis group of the
Max-Planck-Institut für Informatik in Saarbrücken for provid-
ing the synthetic test sequence and Aljoscha Smolic for many
fruitful discussions.

References
[1] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high qual-

ity rendering of point sampled geometry. In Proceedings of the
13th Eurographics Workshop on Rendering, pages 53–64, 2002.

[2] H. Briceno, P. Sander, L. McMillan, S. Gortler, and H. Hoppe.
Geometry videos: A new representation for 3d animations. In
Proceedings of ACM Symposium on Computer Animation 2003,
pages 136–146, July 2003.

[3] Description of explaration experiments in 3DAV. ISO/IEC
JTC1/SC29/WG11 N6194, December 2003.

[4] A. K. Katsaggelos, L. P. Kondi, F. W. Meier, J. Ostermann, and
G. M. Schuster. MPEG-4 and rate-distortion-based shape-coding
techniques. Proceedings of the IEEE, 86(6):1126–1154, June
1998.

[5] J. Ostermann, E. S. Jang, J.-S. Shin, and T. Chen. Coding of
arbitrarily shaped video objects in MPEG-4. In Proceedings of
ICIP, pages 496–499, 1997.

[6] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, and R. Arps.
An overview of the basic principles of the q-coder adaptive
binary arithmetic coder. IBM Journal of Research and Develop-
ment, 32(6):717–726, 1988.

[7] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point
rendering system for large meshes. In SIGGRAPH 2000 Confer-
ence Proceedings, ACM Siggraph Annual Conference Series,
pages 343–352, 2000.

[8] J. M. Shapiro. Embedded image coding using zerotrees of wave-
let coefficients. IEEE Transactions on Signal Processing,
41:3445–3462, December 1993.

[9] Requirements and applications for scalable video coding. ISO/
IEC JTC1/SC29/WG11 N6052, October 2003.

[10] D. Taubman and A. Seeker. Highly scalable video compression
with scalable motion coding. In Proceedings of ICIP, volume 3,
pages 273–276, 2003.

[11] S. Vedula, S. Baker, and T. Kanade. Spatio-temporal view inter-
polation. In Proceedings of the 13th Eurographics Workshop on
Rendering, June 2002.

[12] S. Wuermlin, E. Lamboray, and M. Gross. 3D video fragments:
Dynamic point samples for real-time free-viewpoint video.
Computers & Graphics, Special Issue on Coding, Compression
and Streaming Techniques for 3D and Multimedia Data, 28(1),
2004.

[13] S. Wuermlin, E. Lamboray, O. G. Staadt, and M. H. Gross. 3D
video recorder. In S. Coquillart, H.-Y. Shum, and S.-M. Hu, edi-
tors, IEEE Pacific Graphics 2002 Proceedings, pages 325–334.
IEEE Computer Society Press, October 2002.

[14] Z. Zhang, G. Liu, and Y. Yang. High performance full scalable
video compression with embedded multiresolution MC-
3DSPIHT. In Proceedings of ICIP, volume 3, pages 721–724,
2002.

Table 1: Example bit rates for unconstrained free-
viewpoint video with three reconstruction cameras per
virtual viewpoint.

Depth image

resolution

Depth

bits / sample

Color

bits / sample

Total bit rate

bits / second

107x80 0.166 0.7 350k

160x120 0.5 1.5 560k

320x240 1.5 1.5 740k

320x240 2.0 2.0 920k

 320x240
8.0 24.0 10200k

(uncompressed)

Figure 7: Example renderings at various bit rates for a
virtual viewpoint in between three cameras images.

350 kbps 560 kbps 740 kbps 920 kbps uncompr.

