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INTRODUCTION

Atelectasis is frequently encountered in clinical practice
during general anesthesia, the post-operative period (1, 2), and
when suctioning during mechanical ventilation (3). Atelec-
tasis has been reported to occur in 23% of patients after sur-
gical treatment of esophageal cancer (4). The incidence of acute
lung injury (ALI) has been reported to be as high as 23.8% in
certain types of elective surgery (5). Taken together, atelec-
tasis may be one of the contributing factors of lung injury
seen in these patients.

Many studies suggest that atelectasis induced by surfactant
depletion or inactivation is injurious (6-8). However, atelec-
tasis induced by the reduction of lung volume may have a
different effect on lung injury. Atelectasis induced by thora-
cotomy and lung over-inflation increased pulmonary vascular
permeability and induced inflammatory gene expression both
in an in-vivo and an ex-vivo model (9, 10). However, the effect
of atelectasis on ventilation with conventional tidal volumes
has not been explored, and this is important since large tidal
volume ventilation alone induces inflammatory cell infiltra-

tion (11).
Although surfactant dysfunction with alveolar collapse may

be an important pathogenic mechanism in ALI, we suggest
that lung volume loss itself may accelerate ALI during sep-
sis. Therefore, we hypothesized that lung volume below the
normal functional residual capacity (FRC) would predispose
the lungs to develop inflammation.

Shear stress stimulates inducible nitric oxide synthase (iNOS)
expression in cultured smooth muscle cells (12). Endotox-
emia and large tidal volume ventilation also induce iNOS
expression, neutrophil infiltration, and increased microvas-
cular permeability (13-15). Taken together, endotoxemia in
combination with shear stress induced by low lung volume
ventilation would have the potential to promote significant
iNOS expression.

To test our hypothesis, rats were pretreated with lipopolysac-
charide (LPS) to mimic sepsis. The rats were then ventilated
with or without a thoracotomy to reduce FRC and with pos-
itive end expiratory pressure (PEEP) to restore lung volume.
Using a selective inhibitor, we investigated whether iNOS was
involved in this inflammatory process.
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Atelectasis Induced by Thoracotomy Causes Lung Injury during
Mechanical Ventilation in Endotoxemic Rats

Atelectasis can impair arterial oxygenation and decrease lung compliance. However,
the effects of atelectasis on endotoxemic lungs during ventilation have not been well
studied. We hypothesized that ventilation at low volumes below functional residual
capacity (FRC) would accentuate lung injury in lipopolysaccharide (LPS)-pretreat-
ed rats. LPS-pretreated rats were ventilated with room air at 85 breaths/min for 2 hr
at a tidal volume of 10 mL/kg with or without thoracotomy. Positive end-expiratory
pressure (PEEP) was applied to restore FRC in the thoracotomy group. While LPS
or thoracotomy alone did not cause significant injury, the combination of endotox-
emia and thoracotomy caused significant hypoxemia and hypercapnia. The injury
was observed along with a marked accumulation of inflammatory cells in the inter-
stitium of the lungs, predominantly comprising neutrophils and mononuclear cells.
Immunohistochemistry showed increased inducible nitric oxide synthase (iNOS)
expression in mononuclear cells accumulated in the interstitium in the injury group.
Pretreatment with PEEP or an iNOS inhibitor (1400 W) attenuated hypoxemia, hyper-
capnia, and the accumulation of inflammatory cells in the lung. In conclusion, the
data suggest that atelectasis induced by thoracotomy causes lung injury during
mechanical ventilation in endotoxemic rats through iNOS expression.
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MATERIALS AND METHODS

Experimental protocol

Male Sprague Dawley rats weighing 200±4 g were anes-
thetized using intraperitoneal ketamine and diazepam, as
approved by the Keimyung University Committee on Animal
Research. Rats were given either 1 mg/kg E. coli lipopolysac-
charide (LPS) or an equal volume of 0.9% NaCl intravenous-
ly via the jugular vein. To avoid significant dehydration, all
animals received 10 mL/kg 0.9% NaCl intraperitoneally prior
to the LPS injection. After one hour of spontaneous respira-
tion, the rats were orally intubated, and mechanical ventila-
tion started at a rate of 85 breaths per minute for 2 hr, at a
tidal volume (VT) of 10 mL/kg in room air. Airway pressure
was monitored with a Gould recorder (Model 53400, Glen
Burine, MD, U.S.A.). Mechanically ventilated rats were divid-
ed into five groups (n=6 per group): 1) mechanical ventila-
tion with neither LPS nor thoracotomy (Control); 2) LPS
without thoracotomy (LPS); 3) thoracotomy without LPS (T);
4) LPS plus thoracotomy (LPS+T); an 5) LPS plus thoraco-
tomy with the application of 2.5 cm H2O PEEP (LPS+T+
P). The thoracotomy procedure was a median sternotomy. 

FRC determination

FRC was measured in all groups using the technique of
direct volume displacement at the end of expiration (16, 17).
Rats were intubated after tracheotomy, and the airway was
occluded at the end of expiration. The tracheal tube was then
clamped, the stopcock removed, and the lungs were excised.
The heart, esophagus, and connective tissues were dissected
and their volumes determined using saline displacement in a
100-mL jar (the accuracy of this measurement was within 0.1
mL). The lungs were then tested for leaks by placing them
underwater and injecting air. The lungs were then weighed,
and the tissue volume calculated assuming a tissue-specific
gravity of 1.06 (16, 17). Clamp volume plus tissue volume
were subtracted from the total measured volume. This lung
air volume was corrected by adding the volume of the clamp-
ed tracheal tube (0.1 mL). This gave the FRC by saline dis-
placement.

Hemodynamic measurements

Silastic (0.012 inch I.D, 0.025 inch O.D) catheters were
placed in the left carotid artery to monitor systemic artery
pressure. An ultrasonic flow transducer (2S; Transonic Systems
Inc., Ithaca, NY, U.S.A.) was positioned in the ascending
aorta after the thoracotomy. Cardiac output (CO) was moni-
tored in all thoracotomy groups (i.e., T, LPS+T, and LPS+
T+P).

Inhibition of iNOS

The iNOS inhibitor 1400 W (1400 W; Sigma, St. Louis,
MO, U.S.A.) was dissolved in sterile saline to create a 1 mg/mL
solution. Rats were administered 10 mg/kg 1400 W intraperi-
toneally 30 min prior to LPS administration (18-20). The
vehicle group received the same volume of 0.9% NaCl.

Histology studies

Lungs were inflated and fixed at a pressure of 23 cm H2O
by instillation of 10% buffered formaldehyde. Sagittal sections
cut from whole lungs were stained with hematoxylin and eosin
(H&E). The sections were used for immunohistochemical stain-
ing with an antibody specific for iNOS (Santa Cruz Biotech-
nology, Santa Cruz, CA, U.S.A., 1:1,000). Sections were light-
ly counterstained with hematoxylin. Two ‘blinded’ investi-
gators evaluated lung morphometry at a magnification of ×
400, while inflammatory cells were examined at ×1,000.
Lung tissue was assessed in five fields. Alveolar wall thick-
ening, intra-alveolar edema fluid, number of neutrophils,
and the presence of neutrophil infiltration in the bronchioles
were semi-quantatively scored as none (0), minimal (1), light
(2), moderate (3), or severe (4), as described previously (8, 21).
The average lung injury score of a randomly assigned area of
each lung was obtained. The total score for each variable was
defined as the average of all lungs (maximum score 5).

Statistical methods

All values were expressed as mean±standard error. The
mean values of variables were compared using Kruskal-Wal-
lis analysis of variance on rank for comparison of the different
groups, and the Scheffe-test for multiple comparisons between
groups, and the significance was set at p<0.05.

RESULTS

All animals survived the experimental period.

FRC

The FRC of the Control group was 2.37±0.3 mL, while
that of rats with thoracotomy was 1.25±0.2 mL. The applica-
tion of PEEP of 2.5 cm H2O after thoracotomy increased FRC
to 2.38±0.4 mL. The PEEP of 2.5 cm H2O was selected
because, in preliminary experiments, it was the level of PEEP
that restored FRC to normal levels in thoracotomized rats.

Blood gas analysis

In the LPS+T, the arterial PO2 was lower (p<0.05) and the
arterial PCO2 was higher (p<0.05) (Fig. 1A, B) than in the
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other groups. Administration of the iNOS inhibitor, 1400
W, attenuated the hypoxemia (p<0.05) and the hypercapnia
(p<0.05) in the LPS+T group. However, 1400 W adminis-
tration did not cause such changes in the other groups (Fig.
1A, B).

Arterial pH was lower in the LPS+T group (p<0.05) com-
pared to the other groups, and 1400 W administration atten-
uated this decrease (Fig. 1C). HCO3

- was lower in the LPS+
T and LPS+T+P groups compared to the other groups (p<
0.05), and 1400 W administration did not affect HCO3

-

levels (Fig. 1D).

Airway pressures and respiratory compliance

At the end of the experiment, peak airway pressure was
higher and quasi-static compliance was lower in the groups
with low FRC (i.e., T and LPS+T) compared with the other
groups (Table 1). The plateau pressure was higher in the LPS+
T group compared with the control or LPS groups (Table 1).
The administration of 1400 W did not affect airway pres-
sure or compliance.

Hemodynamics

There was no significant difference in the mean arterial pres-
sure (MAP) between the groups (Fig. 2A), and 1400 W admin-

Vehicle 1400 W

Peak pressure (cm H2O)
Control 7.9±0.5 8.0±0.4
LPS 8.4±0.6 8.8±0.2
T 11.5±0.8* 11.2±0.3*
LPS+T 12.2±0.6* 11.7±0.6*
LPS+T+P 9.9±0.6 9.5±0.6

Plateau pressure (cm H2O)
Control 6.5±0.3 6.7±0.3
LPS 6.6±0.4 7.1±0.3
T 7.5±0.6 7.4±0.2
LPS+T 8.4±0.4� 7.9±0.6�

LPS+T+P 7.7±0.4 7.5±0.6
Cqs (mL/cm H2O)
Control 0.33±0.01 0.31±0.03
LPS 0.33±0.01 0.29±0.01
T 0.27±0.03* 0.28±0.01�

LPS+T 0.24±0.01* 0.27±0.01�

LPS+T+P 0.39±0.04 0.40±0.03

Table 1. Airway pressure and compliance at the end of the experi-
ment

Cqs, quasi-static respiratory system compliance with tidal ventilation
(tidal volume/plateau pressure-positive end expiratory pressure [PEEP];
LPS, lipopolysaccharide; LPS+T, LPS plus thoracotomy; LPS+T+P,
LPS+T+PEEP).
*, p<0.05 compared with control, LPS+T+P, and LPS groups in vehicle;
�, p<0.05 compared with control and LPS groups in vehicle; �, p< 0.05 com-
pared with control in 1400 W; �, p<0.05 compared with LPS+ T+P in
1400 W.

Fig. 1. Blood gas analysis at the end of the experiment. (A) PO2, (B) PCO2, (C) pH, (D) HCO3
-. LPS plus thoracotomy caused a decrease

in pH and PO2, and also an increase in PCO2. These changes were attenuated by treating with 1400 W (n=6 per group). 
*p<0.05 vs. all other groups with vehicle; �p<0.05 vs. vehicle for the same group; �p<0.05 vs. control, LPS, and T groups with vehicle; �p<
0.05 vs. control, LPS, and LPS+T+P with vehicle.
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istration did not affect MAP (Fig. 2A).
Although cardiac output appeared to be lower in the LPS+

T group compared with the thoracotomy only group (T) (Fig.
2B), this difference did not reach statistical significance (p=
0.08). The 1400 W administration had no affect on cardiac
output (Fig. 2B).

Histology

The lungs of the LPS+T group showed marked inflamma-
tory cell accumulation in the interstitium, predominantly
comprising of neutrophils and mononuclear cells (Fig. 3D).
This group also showed substantial alveolar wall thickening
and alveolar collapse in patches (Fig. 3D). The recruitment
of inflammatory cells in the LPS+T group lungs was atten-
uated by PEEP application (Table 2). 1400 W administra-
tion also attenuated neutrophil infiltration and alveolar wall
thickening (Table 2).

Immunohistochemical staining of iNOS protein

Lung tissue from LPS-treated groups exhibited enhanced
immunostaining with the iNOS antibody, predominantly on
alveolar mononuclear cells (Fig. 4). These iNOS-stained mo-
nonuclear cells accumulated in the interstitium in the LPS+
T group, and this accumulation was attenuated by PEEP appli-
cation (Fig. 4). There was no significant iNOS staining in
groups not treated with LPS.

DISCUSSION

The present study shows that atelectasis induced by tho-
racotomy causes lung injury during mechanical ventilation
with conventional tidal volume in endotoxemic rats. The injury
was attenuated by either applying PEEP to restore normal
FRC or by administration of an iNOS inhibitor. In the injured
lung, neutrophils and mononuclear cells accumulated along
the alveolar wall, and neutrophils infiltrated the peribronchi-
oles. There was a patchy distribution of inflammation and alve-
olar collapse in the lungs.

Since a lower tidal volume strategy reduced the mortality
rate in patients with acute respiratory distress syndrome (22),
many physicians now prefer to use lower tidal volumes when
ventilating patients. However, lower tidal volumes may pre-
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Fig. 2. Hemodynamic parameters after 2 hr of mechanical ventilation. (A) Mean arterial pressure, (B) cardiac output. There was no signif-
icant difference between groups with or without 1400 W (n=6 per group).

Vehicle 1400 W

Alveolar wall thickening
Control 0.5±0.1 0.4±0.2
LPS 0.8±0.2 0.5±0.1
T 1.0±0.3 0.9±0.2
LPS+T 2.1±0.3* 0.9±0.2�

LPS+T+P 0.7±0.1� 0.6±0.2
Edema
Control 0.1±0.1 0.1±0.1
LPS 0.5±0.2 0.1±0.1�

T 0.3±0.2 0.4±0.2
LPS+T 0.8±0.2* 0.4±0.1�

LPS+T+P 0.2±0.1� 0.2±0.2
Neutrophils recruitment
Control 0.5±0.1 0.4±0.2
LPS 0.6±0.1 0.5±0.1
T 0.9±0.2 0.8±0.1
LPS+T 2.7±0.3* 0.9±0.3�

LPS+T+P 0.5±0.2� 0.6±0.2
Peribronchiol neutrophils infiltration
Control 0.0±0.0 0.0±0.0
LPS 0.4±0.3 0.3±0.2
T 0.3±0.2 0.2±0.2
LPS+T 1.7±0.7* 0.8±0.5�

LPS+T+P 0.5±0.3 0.5±0.4

Table 2. Histologic grading of alveolar wall thickening, edema,
neutrophil recruitment, and the presence of neutrophil infiltra-
tion in the peribronchioles

*, p<0.05 versus the other groups in vehicle; �, p<0.05 compared with
vehicle; �, p<0.05 compared with LPS+T.
LPS, lipopolysaccharide; LPS+T, LPS plus thoracotomy; LPS+T+P,
LPS+T+PEEP.
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dispose these patients to atelectasis especially if they are asso-
ciated with high intra-abdominal pressure, pleural effusions,
or other conditions (23). Our data suggest that this ventila-
tion at lower lung volumes below FRC may predispose the
lungs to further injury. Therefore, restoring the normal FRC
by strategies such as higher PEEP may be beneficial in patients

prone to atelectasis. Furthermore, increasing the FRC by
PEEP increases pulmonary vascular permeability if the same
tidal volume is maintained (24). Taken together, maintain-
ing a normal FRC may be important for preventing further
lung injury during mechanical ventilation.

The current study found that atelectasis during mechanical

Fig. 3. Representative histology findings (hematoxylin and eosin stain, original magnification, ×100). Lungs were removed after two hours
of mechanical ventilation. (A) Control, (B) LPS, (C) T, (D) LPS+T, (E) LPS+T+P, and (F) 1400 W+LPS+T. Inflammatory cells including neu-
trophils were infiltrated in the interstitium of collapsed alveolar walls and the peribronchiolar portion in the LPS+T group (D). The group of
iNOS inhibition with 1400 W shows reduced interstitial inflammation and alveolar collapse (F). The other groups show unremarkable histo-
logic changes. (Fig. 3 Continued to the next page)

A B

C D

E F
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ventilation in endotoxemic rats (LPS+T group) caused a
significant increase in peribronchial neutrophil infiltration,
but significant small airway injury with an increase in air-
way resistance was not observed compared to rats with atelec-
tasis without endotoxemia. This result is different from the
results of the ex vivo saline-lavaged non-perfused rat model
that showed significant small airway and alveolar duct injury
(25). The main reason for the difference may be that since
surfactant is distributed in the small airways as well as alve-
oli (26, 27), surfactant depletion or inactivation may have
contributed to the injury to the small airways seen in a saline-
lavaged model emphasizing different lung injury mecha-
nisms of these diverse lung injury models.

Neutrophils and mononuclear cells may be important con-
tributors in the present atelectasis model. iNOS-expressing
mononuclear cells accumulated in the interstitium, and iNOS
inhibition attenuated recruitment of both mononuclear cells
and neutrophils. The accumulation of mononuclear cells and
neutrophils was also abrogated by maintaining a normal FRC
via PEEP. Taken together, it appears that deformational injury

induced by reduced lung volume as well as iNOS is critical
for recruitment of inflammatory cells in the present model.
iNOS gene expression and activity are upregulated and con-
tribute to neutrophil infiltration in ventilator-induced lung
injury, which is also attenuated by iNOS inhibition (15). Al-
though atelectasis induced by the surfactant deactivation model
has shown that lung injury is independent of neutrophils (8),
neutrophil-depleted rabbits had less lung injury than non-
depleted rabbits during conventional mechanical ventilation
(28). It is well established that iNOS is crucial for pulmonary
sequestration of neutrophils in sepsis models (29, 30). Sep-
sis is a common cause of ARDS (31, 32). Therefore, either
iNOS inhibition or maintaining normal FRC may help pre-
vent progression of atelectasis-related injury in patients with
sepsis.

The present study indicated that maintaining normal FRC
may be important for preventing inflammatory cell infiltra-
tion into the lungs during endotoxemia. In addition, the
interaction of repeated opening and closing of alveoli and
LPS was found to increase iNOS expression, and an iNOS

Fig. 3. (Continued from the previous page) Representative histology findings (hematoxylin and eosin stain, original magnification, ×100).
Lungs were removed after two hours of mechanical ventilation. (A) control, (B) LPS, (C) T, (D) LPS+T, (E) LPS+T+P, (F) 1400 W+LPS+T.
Inflammatory cells including neutrophils were infiltrated in the interstitium of collapsed alveolar walls and peribronchiolar portion in the
LPS+T group (D). Group of iNOS inhibition with 1,400 W shows reduced findings of the interstitial inflammation and alveolar collapse (F).
The other groups show unremarkable histologic changes. 
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inhibitor attenuated accumulation of inflammatory cells in
the lungs and restored blood gases.

In conclusion, the results of this study suggest that atelec-
tasis induced by thoracotomy causes lung injury during mec-
hanical ventilation in endotoxemic rats through iNOS expr-
ession.

ACKNOWLEDGMENT

The authors thank Yong-Seok Choi for technical assistance.

REFERENCES

1. Rehder K, Sessler AD, Marsh HM. General anesthesia and the lung.
Am Rev Respir Dis 1975; 112: 541-63.

2. Lindberg P, Gunnarsson L, Tokics L, Secher E, Lundquist H, Bris-
mar B, Hedenstierna G. Atelectasis and lung function in the postop-
erative period. Acta Anaesthesiol Scand 1992; 36: 546-53.

3. Reissmann H, Bohm SH, Suarez-Sipmann F, Tusman G, Buschmann
C, Maisch S, Pesch T, Thamm O, Plumers C, Schulte am Esch J,
Hedenstierna G. Suctioning through a double-lumen endotracheal
tube helps to prevent alveolar collapse and to preserve ventilation.

Fig. 4. Immunostaining for inducible nitric oxide synthase (iNOS)
expression (original magnification, ×200). (A) Control, (B) LPS, (C)
T, (D) LPS+T, and (E) LPS+T+P. The LPS-treated group shows
increased expression for iNOS on the  mononuclear cells (B). In
the LPS+T group, marked expression for iNOS on the mononucle-
ar cells was present in the thickened interstitial areas (D). Less
expression for iNOS was present in the thoracotomy alone (C)
and LPS plus thoracotomy with the PEEP group (E). 

A B

C D

E



Atelectasis-Related Lung Injury 413

Intensive Care Med 2005; 31: 431-40.
4. Muller JM, Erasmi H, Stelzner M, Zieren U, Pichlmaier H. Surgical

therapy of oesophageal carcinoma. Br J Surg 1990; 77: 845-57.
5. Tandon S, Batchelor A, Bullock R, Gascoigne A, Griffin M, Hayes

N, Hing J, Shaw I, Warnell I, Baudouin SV. Peri-operative risk fac-
tors for acute lung injury after elective oesophagectomy. Br J Anaesth
2001; 86: 633-8.

6. Taskar V, John J, Evander E, Robertson B, Jonson B. Surfactant dys-
function makes lungs vulnerable to repetitive collapse and reexpan-
sion. Am J Respir Crit Care Med 1997; 155: 313-20.

7. Neumann P, Berglund JE, Mondejar EF, Magnusson A, Hedenstier-
na G. Effect of different pressure levels on the dynamics of lung col-
lapse and recruitment in oleic-acid-induced lung injury. Am J Respir
Crit Care Med 1998; 158: 1636-43.

8. Steinberg JM, Schiller HJ, Halter JM, Gatto LA, Lee HM, Pavone
LA, Nieman GF. Alveolar instability causes early ventilator-induced
lung injury independent of neutrophils. Am J Respir Crit Care Med
2004; 169: 57-63.

9. Woo SW, Hedley-Whyte J. Macrophage accumulation and pulmonary
edema due to thoracotomy and lung over inflation. J Appl Physiol
1972; 33: 14-21.

10. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ven-
tilatory strategies increase cytokines and c-fos m-RNA expression in
an isolated rat lung model. J Clin Invest 1997; 99: 944-52.

11. Quinn DA, Moufarrej RK, Volokhov A, Hales CA. Interactions of
lung stretch, hyperoxia, and MIP-2 production in ventilator-induced
lung injury. J Appl Physiol 2002; 93: 517-25.

12. Gosgnach W, Messika-Zeitoun D, Gonzalez W, Philipe M, Michel
JB. Shear stress induces iNOS expression in cultured smooth muscle
cells: role of oxidative stress. Am J Physiol Cell Physiol 2000; 279:
C1880-8.

13. Kristof AS, Goldberg P, Laubach V, Hussain SN. Role of inducible
nitric oxide synthase in endotoxin-induced acute lung injury. Am J
Respir Crit Care Med 1998; 158: 1883-9.

14. Frank JA, Pittet JF, Lee H, Godzich M, Matthay MA. High tidal vol-
ume ventilation induces NOS2 and impairs cAMP-dependent air
space fluid clearance. Am J Physiol Lung Cell Mol Physiol 2003;
284: L791-8.

15. Peng X, Abdulnour RE, Sammani S, Ma SF, Han EJ, Hasan EJ, Tuder
R, Garcia JG, Hassoun PM. Inducible nitric oxide synthase contributes
to ventilator-induced lung injury. Am J Respir Crit Care Med 2005;
172: 470-9.

16. Lai YL, Hildebrandt J. Respiratory mechanics in the anesthetized rat.
J Appl Physiol 1978; 45: 255-60.

17. Wohl ME, Turner J, Mead J. Static volume-pressure curves of dog
lungs-in vivo and in vitro. J Appl Physiol 1968; 24: 348-54.

18. Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJ,
Knowles RG. 1400 W is a slow, tight binding and highly selective
inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol
Chem 1997; 272: 4959-63.

19. Thomsen LL, Scott JM, Topley P, Knowles RG, Keerie AJ, Frend AJ.
Selective inhibition of inducible nitric oxide synthase inhibits tumor
growth in vivo: studies with 1400 W, a novel inhibitor. Cancer Res
1997; 57: 3300-4.

20. Krieglstein CF, Cerwinka WH, Laroux FS, Salter JW, Russell JM,
Schuermann G, Grisham MB, Ross CR, Granger DN. Regulation of
murine intestinal inflammation by reactive metabolites of oxygen and
nitrogen: divergent roles of superoxide and nitric oxide. J Exp Med
2001; 194: 1207-18.

21. van Kaam AH, Lachmann RA, Herting E, De Jaegere A, van Iwaar-
den F, Noorduyn LA, Kok JH, Haitsma JJ, Lachmann B. Reducing
atelectasis attenuates bacterial growth and translocation in experi-
mental pneumonia. Am J Respir Crit Care Med 2004; 169: 1046-53.

22. The acute respiratory distress syndrome network. Ventilation with
lower tidal volumes as compared with traditional tidal volumes for
acute lung injury and the acute respiratory distress syndrome. N Engl
J Med 2000; 342: 1301-8.

23. Wongsurakiat P, Pierson DJ, Rubenfeld GD. Changing pattern of ven-
tilator settings in patients without acute lung injury: changes over 11
years in a single institution. Chest 2004; 126: 1281-91.

24. Dreyfuss D, Saumon G. Role of tidal volume, FRC, and end-inspira-
tory volume in the development of pulmonary edema following mechan-
ical ventilation. Am Rev Respir Dis 1993; 148: 1194-203.

25. Muscedere JG, Mullen JB, Gan K, Slutsky AS. Tidal ventilation at
low airway pressures can augment lung injury. Am J Respir Crit Care
Med 1994; 149: 1327-34.

26. Enhorning G, Holm BA. Disruption of pulmonary surfactant’s abil-
ity to maintain openness of a narrow tube. J Appl Physiol 1993; 74:
2922-7.

27. Enhorning G, Duffy LC, Welliver RC. Pulmonary surfactant main-
tains patency of conducting airways in the rat. Am J Respir Crit Care
Med 1995; 151: 554-6.

28. Kawano T, Mori S, Cybulsky M, Burger R, Ballin A, Cutz E, Bryan
AC. Effect of granulocyte depletion in a ventilated surfactant-deplet-
ed lung. J Appl Physiol 1987; 62: 27-33.

29. Razavi HM, Wang le F, Weicker S, Rohan M, Law C, McCormack
DG, Mehta S. Pulmonary neutrophil infiltration in murine sepsis:
role of inducible nitric oxide synthase. Am J Respir Crit Care Med
2004; 170: 227-33.

30. Numata M, Suzuki S, Miyazawa N, Miyashita A, Nagashima Y, Inoue
S, Kaneko T, Okubo T. Inhibition of inducible nitric oxide synthase
prevents LPS-induced acute lung injury in dogs. J Immunol 1998; 160:
3031-7.

31. Fowler AA, Hamman RF, Good JT, Benson KN, Baird M, Eberle DJ,
Petty TL, Hyers TM. Adult respiratory distress syndrome: risk with
common predispositions. Ann Intern Med 1983; 98: 593-7.

32. Hudson LD, Milberg JA, Anardi D, Maunder RJ. Clinical risks for
development of the acute respiratory distress syndrome. Am J Respir
Crit Care Med 1995; 151: 293-301.


