Higher versus lower positive end-expiratory pressure in acute lung injury and acute respiratory distress syndrome: systematic review and individual patient data meta-analysis

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1186/cc8414

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4739381

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
PaO₂/FiO₂ ≤ 150 also had their extravascular lung water index (EVLWi) and pulmonary vascular permeability index (PVPI) monitored using the PiCCO system (Pulsion, Munich, Germany) when required by their attending physician. Statistical analysis was performed using the Spearman correlation coefficient (R) with P ≤ 0.05 assumed to be significant.

Results Fourteen patients were enrolled in the study. In six of these patients, the EVLWi and PVPI were measured simultaneously. At baseline, the elastase level and the PVPI showed a strong and significant correlation (R = 1.000, n = 6, P < 0.05). All of the plot data of the six patients showed strong correlations of the elastase level with the EVLWi (R = 0.750, n = 25, P < 0.001) and the PVPI (R = 0.881, n = 25, P < 0.01).

Conclusions The plasma neutrophil elastase level and the PVPI measured by PiCCO were strongly correlated in patients with pneumonia. This suggests that a rise in the blood level of elastase may elevate the PVPI, resulting in an increased EVLWi. (UMIN Clinical Trials Registry: ID UMIN000002803.)

P180 Evaluating the fibroproliferative response to ventilator-induced lung injury
G Curley1, M Contreras1, B Hoggins1, D O’Toole1, C O’Kane2, JG Lafey1
1National University of Ireland, Galway, Ireland; 2Queens University Belfast, UK

Introduction Acute lung injury (ALI), and its more severe subset acute respiratory distress syndrome (ARDS), are a major cause of mortality in the ICU [1]. Mechanical ventilation, a supportive therapy necessary to sustain life in many cases, may contribute to and worsen ALI, termed ventilator-induced lung injury (VILI). Fibroproliferation is an early response to lung injury [2]. Indeed, dysregulated repair resulting in pulmonary fibrosis may be at the heart of ventilator dependence in ARDS. Characterising the role of excessive lung stretch in contributing to aberrant repair mechanisms would assist in developing strategies to hasten recovery from ARDS.

Methods Male Sprague–Dawley rats were anaesthetized, orotracheally intubated and subjected to injurious ventilation until a defined worsening of compliance was noted. The rats were then recovered and extubated. The level of ongoing injury/repair was characterised at time periods of 6, 24 and 48 hours and at 4, 7 and 14 days. Systemic oxygenation, lung compliance, wet/dry ratio, BAL total protein, cytokines and cell count and histological analysis was carried out at each time point.

Results The results demonstrated a time-course-dependent improvement in compliance and oxygenation, together with clearance of neutrophil infiltration at 96 hours. TNFa, and IL-1β, IL-6 and IL-10 were significantly elevated in BAL fluid early post injury. Although total lung collagen remained similar at all time points, evidence of an early fibroproliferative response was present in the form of transforming growth factor-β activation and pro-collagen I and III peptide mRNA levels. Matrix metalloproteinase 3 and 9 zymography demonstrated increased levels of these matrikines. Histologic assessment of injury revealed increased alveolar tissue fraction up to and including 96 hours post injury. Myofibroblasts were present in a smooth muscle actin stained sections in significantly increased numbers post injury.

Conclusions This rat model of repair of VILI demonstrates some of the mechanisms by which excessive lung stretch can contribute to fibroproliferation in ARDS and will serve to improve our knowledge of aberrant lung tissue remodelling as well as provide a useful paradigm for testing strategies to hasten recovery in ALI.

References

P181 Effects of severe hemorrhage on pulmonary mechanics in ventilated pigs with ARDS
N Siegenthaler1, R Giraud1, MO Meade1, AS Slutsky2, DJ Cook2, L Brochard2, JC Richard2, F Lamontagne3, T Stewart6, GH Guyatt2
1Hôpital Cantonal Universitaire, Genève, Switzerland; 2University Hospital Angers, France; 3Johns Hopkins University, Baltimore, MD, USA; 4Harvard Medical School, Boston, MA, USA; 5University of Toronto, Canada; 6University of Toronto, Canada; 7University Hospital Charles Nicolle, Rouen, France; 8University of Sherbrooke, Canada

Introduction The effects of hemorrhagic shock on respiratory system mechanics have rarely been investigated and published data are controversial. Pulmonary compliance depends in part on intrapulmonary blood and interstitial fluid volume. When compliance is severely reduced, serial modification of these components (compliance, oxygenation parameters etc) and the present analysis explored the effect of hemorrhagic shock on respiratory system mechanics and oxygenation parameters in a model of pigs with ARDS.

Methods We evaluated the dynamic respiratory system compliance (Crs = VT / (inspiratory airways pressure – PEEP)) of 14 domestic pigs. Animals were mechanically ventilated (tidal volume (VT) set at 10 ml/kg, respiratory rate at 15 bpm, PEEP at 0 cmH2O. Animals were separated into a control group (n = 9) and an ARDS group (n = 5). ARDS was induced by lung lavage with NaCl 0.9%. During hemorrhage 40% of the total blood volume was removed. The blood was then infused during the re-transfusion phase.

Results In the control group, Crs (ml/cmH2O) did not change during hemorrhage or re-transfusion (Figure 1). In the ARDS group, Crs decreased with lung lavage (31.2 ± 5.7 (baseline) to 16.4 ± 3.0, *P < 0.01). After hemorrhage Crs increased (21.5 ± 2.9, **P < 0.001 compared with lavage) and then decreased again after re-transfusion (18.7 ± 2.7, ***P < 0.05).

In the same group PaO2/FiO2 (mmHg) decreased after ARDS (469 ± 50 (baseline) to 105 ± 38, *P < 0.001), increased during hemorrhage (218 ± 105, P < 0.05) and did not change after re-transfusion (207 ± 125, P = 0.82). The shunt fraction (%) decreased during hemorrhage in the ARDS group (26.2 ± 14.9 (lavage) to 6.4 ± 6.6, P < 0.05) but did not change significantly after re-transfusion (13.9 ± 17.0, P = 0.3).

Conclusions Acute reduction of blood volume is associated with an increase in respiratory system compliance and oxygenation parameters. Reduction of intrapulmonary blood and interstitial fluid volume or thoracic cage compliance could be responsible for this effect.

P182 Higher versus lower positive end-expiratory pressure in acute lung injury and acute respiratory distress syndrome: systematic review and individual patient data meta-analysis
MB Briel1, MO Meade1, A Mercat2, RG Brower4, D Talbot4, AS Slutsky2, DJ Cook2, L Brochard2, JC Richard2, F Lamontagne3, T Stewart6, GH Guyatt2
1University Hospital Basel, Switzerland; 2McMaster University, Hamilton, Canada; 3University Hospital Angers, France; 4Johns Hopkins University, Baltimore, MD, USA; 5Harvard Medical School, Boston, MA, USA; 6University of Toronto, Canada; 7University of Toronto, Canada; 8Paris 12 University, Creteil, France; 9University Hospital Charles Nicolle, Rouen, France; 10University of Sherbrooke, Canada

Introduction Trials comparing higher versus lower levels of positive end-expiratory pressure (PEEP) in adults with acute lung injury or acute respiratory distress syndrome (ARDS) were underpowered to detect small but important effects on mortality, overall or in any subgroups.

Methods We searched MEDLINE, Embase, and the Cochrane Central Register for trials randomly assigning adults with acute lung injury or ARDS to higher versus lower levels of PEEP (minimal difference of 3 cmH2O over first 3 days), while using low tidal volume ventilation, and comparing mortality. Data from 2,299 individual patients in three trials
were analyzed using uniform outcome definitions. We tested prespecified effect modifiers using multivariable hierarchical regression, adjusting for important prognostic factors and clustering effects.

Results Overall, there were 374 hospital deaths (52.9%) in the higher PEEP group and 409 (35.2%) in the lower PEEP group (adjusted relative risk, 0.86; 95% confidence interval (CI), 0.81 to 1.00; P = 0.049) and 1.37 (95% CI, 0.98 to 1.92, P = 0.065), respectively. Patients with ARDS were more likely to achieve unassisted breathing earlier (hazard ratio, 1.16 (95% CI, 1.03 to 1.30; P = 0.001); whereas the hazard ratio for time to unassisted breathing was 0.79 (95% CI, 0.62 to 0.99, P = 0.04) in patients without ARDS at baseline. Rates of pneumothorax and the use of neuromuscular blockers, vasopressors and corticosteroids were similar.

Conclusions Higher levels of PEEP are likely to improve survival for patients with ARDS, but not for patients with less severe acute lung injury.

P183
Effect of different recruitment maneuvers on bacterial translocation
P Ergin Özcan, I Edipoğlu, IO Akıncı, E Senturk, S Baylan, AA Cagatay, F Esen, L Telci, N Cakar
Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey

Introduction Experimental and clinical studies have shown beneficial effects of recruitment maneuvers (RMs) (sustained inflation (SI) or SIGH) on ventilatory and gas exchange parameters. In this study we investigated the effect of different RMs on bacterial translocation from lung to blood.

Methods Thirty-two rats were anesthetized, after tracheotomy was performed, a baseline blood culture was taken and rats were randomly divided into three groups according to the RM as follows: G1; SIGH was performed as 40 cmH2O Paw, 3 mH2O PEEP for four times in an hour (15-minute intervals), G2; SI was performed as 20 cmH2O PEEP and 0 cmH2O PEEP, 40 seconds, four times in an hour (15-minute intervals), G3; SIGH was performed four times in 1 hour (15-minute intervals) as 40 cmH2O PEEP for 60 seconds, G4; control group that was ventilated, PaO2 100 mmHg as proposed by Hickling [1]. Thiotiapental, and the lungs were extirpated; the left lung was taken for culture and the right lung was taken for blood culture. Bacterial translocation from lung to blood was defined as a positive blood culture after a negative baseline blood culture. The amount of positive blood culture was statistically higher in G3 at early study periods.

Conclusions SIGH as a recruitment maneuver causes a high probability of bacterial translocation from the lung to the bloodstream.

P184
Nonlinear recruitment model with viscoelastic component fit respiratory mechanics in ARDS
C Schrara1, J Guttmann2, K Möller1
1Department of Biomedical Engineering, Furtwangen University, Villingen-Schwenningen, Germany; 2Section of Experimental Anesthesiology, University Hospital Freiburg, Germany

Introduction Alveolar recruitment/de-recruitment (R/D) seems to play an important role in the development of VILI [1]. Many clinicians base their determination of PEEP settings during mechanical ventilation of ARDS/ALI patients on an estimate of alveolar recruitability [2]. This project aims to establish an online tool that provides estimates of R/D in patients at the bedside.

Methods In volume-controlled ventilated piglets as ARDS models, the airway pressure P_{aw} (SI-Special Instruments, Nördlingen, Germany) and the flow rate Q (F + G GmbH, Hechingen Germany) were continuously recorded at 200 Hz. The pressure curve shows high nonlinearity being a suspect of recruitment effects during inspiration and a relaxation process during the end inspiratory pause. Based on the obtained data, the parameters of the linear viscoelastic model [3] are calculated by a LSE fitting process. Since the nonlinear model has far more variable parameters to fit, the estimated values of R_1, R_2, C_2 from the linear model (Figure 1 left) are used as starting values for fitting the nonlinear model. Therefore, the estimated parameters of the linear model fit can be used as starting values for fitting the nonlinear model where the focus can be put on the recruitment phenomena. With the new nonlinear model, using the estimated values of R_1, R_2, C_2 from the linear model (Figure 1 left), it is now possible to reproduce the nonlinear characteristics (Figure 1 right).

Conclusions Using this new model it is possible to fit nonlinear behavior due to alveolar recruitment separately from viscoelastic effects with minimized error.