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Abstract
Parkinson's disease is the most common movement disorder characterized by dopaminergic
dysfunction and degeneration. Loss-of-function mutations in the DJ-1 gene have been linked to
autosomal recessive forms of early-onset familial Parkinson's disease. DJ-1 is thought to play roles
in protection of cells against oxidative stress and in maintenance of the normal dopaminergic
function in the nigrostriatal pathway. Here we investigate the consequence of both DJ-1
inactivation and aging in mice. We found that DJ-1-/- mice at the age of 24–27 months have normal
numbers of dopaminergic neurons in the substantia nigra and normal levels of dopamine and its
major metabolites in the striatum. The number of noradrenergic neurons in the locus coeruleus is
also unchanged in DJ-1-/- mice. Moreover, there is no accumulation of oxidative damage or
inclusion bodies in aged DJ-1-/- brains. Together, these results indicate that loss of DJ-1 function
alone is insufficient to cause nigral degeneration and oxidative damage in the life span of mice.

Background
Parkinson's disease (PD) is an age-related movement dis-
order characterized clinically by bradykinesia, rigidity,
resting tremor and postural instability, and neuropatho-
logically by the selective loss of dopaminergic (DA) neu-
rons and the presence of Lewy bodies in the substantia
nigra (SN). Although most PD cases are sporadic, muta-
tions in parkin (PARK2), PINK1 (PARK6), and DJ-1
(PARK7) have been linked to recessively inherited forms
of parkinsonism, which resemble idiopathic PD clinically
[1-3]. To investigate how DJ-1 deficiency causes PD, we
have previously generated a mouse model bearing a tar-
geted germline disruption of DJ-1, and our multidiscipli-
nary analysis has uncovered an essential role for DJ-1 in
DA physiology and dopamine D2 receptor-mediated
functions [4].

Besides the importance of DJ-1 in DA neurotransmission
and signaling, DJ-1 has been reported to have multiple
functions associated with PD pathogenesis. First, several
cysteine residues in DJ-1 can be oxidized in response to
oxidative stress, and wild-type but not mutant DJ-1 pro-
tects cells from oxidative stress [5-11]. Furthermore, DJ-1
has been shown to stabilize the antioxidant transcription
master regulator Nrf2 (nuclear factor erythroid 2-related
factor) [12]. Second, DJ-1 has chaperone activity and
inhibits α-synuclein aggregation, which is thought to be a
key event in Lewy body formation [13]. Third, it has been
suggested that DJ-1 might be involved in transcriptional
regulation of neuroprotective or anti-apoptotic genes
[14].

DA neurons are likely to be exposed to increased levels of
oxidative stress caused by the metabolic products of
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dopamine in comparison to other types of neurons in the
brain. It is thought that reactive oxygen species (ROS) oxi-
dizes lipids, proteins and nucleic acids, resulting in cellu-
lar dysfunction or death [15,16]. Evidence has shown that
products of lipid, protein and DNA oxidation accumulate
in PD brains [17,18]. It has been shown that levels of DJ-
1 protein are significantly increased in PD brains and cer-
ebrospinal fluids, and DJ-1 is oxidatively damaged in the
brains of patients with sporadic PD [19-21]. Therefore, it
has been hypothesized that DJ-1 plays a critical role in
antioxidant mechanisms and preventing cellular dysfunc-
tion or death in DA neurons. Consistent with this notion,
DJ-1 deficiency induces an increased sensitivity to oxida-
tive stimuli, including hydrogen peroxide, 6-hydroxy-
dopamine, and 1-methyl-4-phenyl 1,2,3,6-
tetrahydropyridine (MPTP), and overexpression DJ-1 pro-
tects neurons from various oxidative stimuli [5,10,22-25].
Furthermore, Drosophila DJ-1 mutants showed accumu-
lation of ROS and are sensitive to oxidative stress includ-
ing paraquat, rotenone or hydrogen peroxide [9,26]. DJ-1-
/- mice showed increased sensitivity to MPTP and oxida-
tive stress [23]. It however remains unclear whether DJ-1
deficiency would lead to accumulation of oxidative dam-
age in aging mouse brains in the absence of environmen-
tal oxidative stressors.

Results
Our previous study showed that DJ-1-/- mice displayed
hypoactivity in the open field at the age of 3 months [4].
To examine whether aged DJ-1-/- mice display reduced
locomotor activity, we assessed the locomotor abilities of
aged DJ-1-/- mice using a battery of well-established
behavioral tests. Recording of spontaneous, voluntary
movements during 15 min in the open field test revealed
a significant reduction in the horizontal activity and fewer
instances of stereotyped behavior of DJ-1-/- mice (n = 15)
compared to wild-type littermates (n = 17) at the age of
18–25 months (Fig. 1A–H). We also assessed involuntary
movement using the rotarod and acoustic startle reflex
paradigms. Rotarod test revealed that DJ-1-/- (n = 8) and
wild-type littermate (n = 9) mice at the age of 22–25
months had similar latency before falling off the rotating
rod during three independent trials (Fig. 1I). DJ-1-/- (n =
6) and control (n = 9) mice at the age of 22–25 months
displayed similar acoustic startle reflex, measured by the
force with which the mouse jumped in response to a pulse
of loud noise (Fig. 1J). Acoustic startle response can be
inhibited by a preceding weaker stimulus, a process
termed prepulse inhibition (PPI), which is thought to be
modulated by the central noradrenergic neurotransmis-
sion [27-29]. Aged DJ-1-/- mice displayed also normal PPI
(Fig. 1K).

To investigate the consequence of DJ-1 inactivation and
aging on the survival of DA neurons, we performed quan-

titative histological analysis on DJ-1-/- mice at the age of
24–27 months. Immunohistochemical analysis of DJ-1-/-
mice using an antibody against DJ-1 confirmed the
absence of DJ-1 protein in the brain of DJ-1-/- mice (Fig.
2A, B). Nissl staining revealed normal brain morphology
in aged DJ-1-/- mice (data not shown). Though the most
prominent neuropathological feature of PD is the selec-
tive loss of DA neurons in the substantia nigra (SN),
immunohistochemical analysis of aged DJ-1-/- mice using
an antibody specific for tyrosine hydroxylase (TH)
revealed normal TH staining in the SN and normal mor-

Aged DJ-1 -/- mice exhibit reduced spontaneous activity in the open fieldFigure 1
Aged DJ-1 -/- mice exhibit reduced spontaneous 
activity in the open field. (A-H) Evaluation of DJ-1-/- mice 
and wild-type controls at the age of 18–25 months (+/+: n = 
17, -/-: n = 15) in the open field for 15 min. Two arrays meas-
ured horizontal movements (A-D), and one array measured 
vertical movements (rearing on hind legs) (E-G). Repeated 
sequential breakings of the same beam are scored as occur-
rences of stereotyped behaviors (scratching, grooming, etc.) 
(H). DJ-1-/- mice show significantly reduced horizontal activ-
ity, horizontal movements and stereotypy (p < 0.05). (I) DJ-
1-/- and wild-type control mice at the age of 22–25 months 
show similar latencies to fall off an accelerating rotating rod 
during 3 trials (+/+: n = 9, -/-: n = 8, p > 0.05). (J and K) DJ-1-
/- and wild-type mice at the age of 22–25 months show simi-
lar acoustic startle responses to 100 dB noise alone (+/+: 
33.5 ± 6.7, n = 9, -/-: 48.5 ± 15.1, n = 6, p > 0.05), 100 dB 
noise with 80 dB PPI (+/+: 13.7 ± 3.1, n = 9, -/-: 22.8 ± 7.5, n 
= 6, p > 0.05) and %PPI (+/+: 52.9 ± 9.9, n = 9, -/-: 38.2 ± 
16.1, n = 6, p > 0.05). Data in all panels are expressed as 
mean ± SEM. Asterisk denotes statistical significance (*p < 
0.05).
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phology of DA neurons at the age of 24–27 months (Fig.
2C–F). Quantification of the number of DA neurons in
the SN of DJ-1-/- (n = 4) and control mice (n = 4) using
unbiased stereological methods revealed similar numbers
of TH-positive neurons in the SN of DJ-1-/- and wild-type
mice (+/+: 10140 ± 812, -/-: 9960 ± 972, n = 4 per geno-
type, p > 0.05) (Fig. 2K). Since DJ-1 protein is also present
in astrocytes [30,31], and increased glial fibrillary acidic
protein (GFAP) immunoreactivity is a good marker for
inflammatory responses and neurodegeneration, we also
performed GFAP immunostaining. No difference in GFAP
immunoreactivity and morphology of astrocytes was
detected in the SN between DJ-1-/- and wild-type mice
(Fig. 2G–J). These findings indicate that there is no DA
neuronal degeneration in DJ-1-/- mice during the life span
of mice.

Since DA neurons in the SN project processes to the stria-
tum, we next examined the striatum. Immunohistochem-
ical studies confirmed the absence of DJ-1 protein in the
striatum of DJ-1-/- mice (Fig. 3A, B) and there was no sig-
nificant difference in TH staining of DA nerve terminals in
the striatum (Fig. 3C, D). Furthermore, there was no dif-
ference in GFAP immunoreactivity in the striatum
between DJ-1-/- and control mice (Fig. 3E–H). Western
analysis also showed unchanged levels of TH protein in
the DJ-1-/- brain (Fig. 3I). HPLC analysis revealed that
striatal levels of dopamine and its major metabolites,
dihydroxyphenylacetic acid (DOPAC) and homovanillic
acid (HVA) are similar between DJ-1-/- and control mice
at the age of 24–27 months (Fig. 3J) (dopamine: +/+; 9.8
± 0.6 ng/mg, n = 7, -/-; 10.5 ± 0.4 ng/mg, n = 5, p > 0.05;
DOPAC: +/+; 2.0 ± 0.1 ng/mg, n = 7, -/-; 2.0 ± 0.2 ng/mg,
n = 5, p > 0.05; HVA: +/+; 1.4 ± 0.2 ng/mg, n = 7, -/-; 1.2
± 0.1 ng/mg, n = 5, p > 0.05). These findings indicate that
levels of striatal dopamine are unchanged in DJ-1-/- mice
during the life span of mice.

Lewy bodies are protein aggregates containing α-synu-
clein and ubiquitin and are considered a pathological
hallmark of PD. Therefore, we examined DJ-1-/- brains for
deposits of α-synuclein and ubiquitin. Immunohisto-
chemical analysis of DJ-1-/- brains using antibodies spe-
cific for α-synuclein and ubiquitin showed no inclusions
in any brain sub-regions, including the SN at the age of
24–27 months (data not shown).

Oxidative damage is thought to contribute to the degener-
ation of DA neurons in PD [17]. DJ-1 is thought to play a
role in anti-oxidative stress by scavenging ROS. It has been
reported that oxidative DNA or RNA damage, such as 8-
oxoguanine, accumulates in the SN in both PD patients
and mouse models [32,33]. Several lipid peroxides, espe-
cially 4-hydroxy-2-nonenal (4HNE), are highly reactive,
avidly form adducts with many proteins and have been

No DA neuron loss in the SN in aged DJ-1 -/- miceFigure 2
No DA neuron loss in the SN in aged DJ-1 -/- mice. (A 
and B) The lack of the expression of DJ-1 protein in the SN 
in DJ-1-/- mice is indicated by the presence of DJ-1 immuno-
reactivity in the SN of wild-type controls and the absence of 
DJ-1 immunoreactivity in DJ-1-/- mice. (C-F) Normal mor-
phology of DA neurons in aged DJ-1-/- mice is indicated by 
similar TH staining in the SN of DJ-1-/- mice and wild-type 
controls at the age of 24–27 months. Panels (E, F) indicate 
enlarged view of panels (C, D), respectively.(G-J) Similar 
GFAP staining in the SN of DJ-1-/- mice and wild-type con-
trols suggesting that there is no inflammatory or neurode-
generative changes in the SN of DJ-1-/- mice. Panels (I, J) 
indicate enlarged view of panels (G, H), respectively. Scale 
bars; A-J, 0.1 mm.(K) Similar numbers of TH-positive neu-
rons are present in the SN of DJ-1-/- and wild-type mice at 
the age of 24–27 months (+/+: 10140 ± 812, -/-: 9960 ± 972, 
n = 4 per genotype, p > 0.05). All data are expressed as mean 
± SEM.
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detected in Lewy bodies [34]. Lewy bodies are also immu-
noreactive for 3-nitrotyrosine, an index of protein damage
by ROS [35]. Immunohistochemical analysis of DJ-1-/-
brains using these oxidative stress markers revealed there
was no significant increase in these immunoreactivities in
the SN at the age of 24–27 months (Fig. 4A–F), indicating
that there is no accumulation of oxidative damage in aged
DJ-1-/- brains.

In addition to DA degeneration, brains of PD patients also
show degeneration of noradrenergic neurons in the locus
coeruleus (LC). It was reported that parkin-deficient mice
have a loss of catecholaminergic neurons in the LC [36].
Therefore, we examined whether aged DJ-1-/- mice would
exhibit loss of noradrenergic neurons in the LC. Immuno-
histochemical analysis showed substantial levels of DJ-1
in the LC of wild-type mice (Fig. 5A, B). TH staining
revealed normal morphology of noradrenergic neurons in
the LC of DJ-1-/- mice at the age of 24–27 months (Fig.
5C, D). Immunohistochemical analysis using antibodies
specific for α-synuclein and ubiquitin showed no inclu-
sions in noradrenergic neurons (data not shown). 4HNE
staining revealed that there was no significant difference
in the immunoreactivity between DJ-1-/- mice and wild-
type controls (Fig. 5E, F). The TH-positive noradrenergic

No increased oxidative damage in the brains of DJ-1 -/- miceFigure 4
No increased oxidative damage in the brains of DJ-1 -
/- mice. (A and B) Similar staining of DNA and RNA oxida-
tive damage in the SN of DJ-1-/- mice and wild-type controls 
at the age of 24–27 months showing no abnormal accumula-
tion of DNA and RNA oxidative damage in aged DJ-1-/- mice. 
(C and D) Similar 4HNE staining in the SN of DJ-1-/- mice 
and wild-type controls showing no abnormal accumulation of 
lipid peroxidation products in aged DJ-1-/- mice. (E and F) 
Similar nitrotyrosine staining in the SN of DJ-1-/- mice and 
wild-type controls showing no abnormal accumulation of oxi-
dative protein damage in aged DJ-1-/- mice. Scale bars; A-F, 
0.1 mm.
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No DA neuron terminal loss and normal dopamine content in the striatum in aged DJ-1 -/- miceFigure 3
No DA neuron terminal loss and normal dopamine 
content in the striatum in aged DJ-1 -/- mice. (A and 
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striatum in DJ-1-/- mice is indicated by the presence of DJ-1 
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striatum of aged DJ-1-/- brains and wild-type controls at the 
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neurons were counted in sections spanning the rostral-
caudal extent of the nucleus at the age of 24–27 months.
There was no significant difference in the total number of
TH-positive noradrenergic neurons in the LC between DJ-
1-/- mice and wild-type controls (+/+: 1145 ± 87, -/-: 1073
± 151, p > 0.05; n = 8 per genotype; Fig. 5G). These find-
ings indicate that there is no noradrenergic neuron loss in
the LC of aged DJ-1-/- mice.

Discussion
Mutations in parkin (PARK2), PINK1 (PARK6), and DJ-1
(PARK7) are associated with autosomal recessive PD, in
which loss of function of each of these gene products
leads to degeneration of DA neurons and clinical manifes-
tations of PD. We previously reported that DJ-1-/- mice
display significant motor abnormalities and nigrostriatal
DA functional deficits, though the number and morphol-
ogy of DA neurons are normal up to the age of 12 months
[4]. Since aging is a major risk factor for PD, we analyzed
older DJ-1-/- mice to determine whether aged DJ-1-/- mice
developed PD-like pathology, such as degeneration of
nigrostriatal DA neurons in the SN or noradrenergic neu-
rons in the LC. Our quantitative analysis failed to detect
any significant loss of DA neurons or noradrenergic neu-
rons in aged DJ-1-/- mice at 24–27 months. We found that
levels of striatal dopamine and its metabolites were nor-
mal. Additionally, there were no other neuropathological
changes such as gliosis or protein aggregation in aged DJ-
1-/- brains. Furthermore, we found no accumulation of
oxidative damage in aged DJ-1-/- brains.

Despite the fact that multiple important functions associ-
ated with the pathogenesis of PD have been attributed to
DJ-1, surprisingly, we found that loss of DJ-1 function in
mice even at the age of 2 years did not cause significant
loss of DA neurons. First, DJ-1 has been reported to func-
tion as an anti-oxidative stress agent through scavenging
ROS [5-7]. However, we failed to find increases in immu-
noreactivities of oxidative damage markers in DJ-1-/-
brains at the age of 24–27 months, suggesting the lack of
accumulation of ROS in aged DJ-1-/- brains. It has been
reported that expression of DJ-1 is induced in cells that
have been subjected to oxidative stresses [5]. Therefore, it
is possible that DJ-1 plays a critical role in an environment
with elevated oxidative stress; however, under normal
conditions, DJ-1 is not required for nigral neuron survival.
To examine whether DJ-1-/- mice have increased suscepti-
bility to oxidative stress under oxidative conditions is an
important question to be addressed in future studies. Sec-
ond, it was reported that DJ-1 had chaperone activity and
inhibited α-synuclein aggregation [13]. Immunohisto-
chemical studies in aged DJ-1-/- mice did not show any
inclusions immunoreactive for α-synuclein or ubiquitin,
indicating that loss of DJ-1 function is not enough to
result in formation of these protein inclusions. It has been

Normal morphology of noradrenergic neuron and no noradrenergic neuron loss in LC in aged DJ-1 -/- miceFigure 5
Normal morphology of noradrenergic neuron and no 
noradrenergic neuron loss in LC in aged DJ-1 -/- mice. 
(A and B) A substantial level of expression of DJ-1 in LC in 
control mice is indicated by the presence of DJ-1 immunore-
activity in the LC of wild-type controls and the absence of 
the immunoreactivity in DJ-1-/- mice. Any immunoreactivity 
in DJ-1-/- mice indicates non-specific staining. (C and D) 
Similar TH staining in the LC of DJ-1-/- mice and wild-type 
controls showing normal morphology of noradrenergic neu-
rons in LC in aged DJ-1-/- mice at the age of 24–27 months. 
(E and F) Similar 4HNE staining in the LC of DJ-1-/- mice 
and wild-type controls showing no abnormal accumulation of 
lipid peroxidation products in aged DJ-1-/- mice. Insets in 
panels indicate enlarged view of each section. Scale bars; A-F, 
0.02 mm; insets, 0.02 mm. (G) The total numbers of TH-
positive LC neurons of both sides in all sections from rostral 
to caudal showing similar numbers of TH-positive neurons in 
the LC of DJ-1-/- mice and wild-type controls at the age of 
24–27 months (+/+: 1145 ± 87, -/-: 1073 ± 151, p > 0.05) (n 
= 8 per genotype). All data are expressed as mean ± SEM.
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reported that these inclusions have been found in animal
models treated with oxidative stimuli such as rotenone or
MPTP [37,38] and that the chaperone activity of DJ-1 can
be stimulated by oxidation [13]. Therefore, investigation
of whether DJ-1 inactivation would accelerate protein
aggregation under conditions of oxidative stimuli is nec-
essary to understand the role of DJ-1 in chaperone activity
and formation of Lewy bodies. Third, it has been sug-
gested that DJ-1 might be involved in transcriptional reg-
ulation. DJ-1 transcriptionally up-regulates human TH by
inhibiting the sumoylation of pyrimidine tract-binding
protein-associated splicing factor (PSF) [39]. We however
failed to detect reduced TH expression in DJ-1-/- mice
even at the age of 2 years indicating that DJ-1 is not
required in the transcriptional regulation of TH expres-
sion in mice.

In summary, despite the fact that loss of function muta-
tions in DJ-1 cause PD and presumably nigral degenera-
tion in humans, our current study failed to find DA
neurodegeneration in DJ-1-/- mice during the life span of
mice. In addition, although DJ-1 has been shown to pro-
tect cells from environmental oxidative stimuli, absence
of DJ-1 did not cause accumulation of oxidative damage
in aged DJ-1-/- mice under normal conditions. These
results are consistent with our prior report showing that
loss of parkin function alone in mice is also insufficient to
cause loss of DA neurons up to the age of 2 years [40].
Other possibilities, including shorter life span of mice,
well-controlled mouse housing environment, may con-
tribute to the absence of profound nigral degeneration
that is characteristic of PD brains.

Methods
Behavioral tests
Open field: Male DJ-1-/- mice and wild-type littermates
were tested in the open field using two acrylic animal
cages. Each pair of both genotypic groups were placed into
two cages at a time for 15 min during which their horizon-
tal and vertical movements were monitored using 3 arrays
of 16 infrared light beam sensors (AccuScan Instruments).
The total number of movements, the distance traveled, the
time spent moving and the total number of infrared beam
breaks in both the horizontal plane and along the vertical
axis were recorded and analyzed using AccuScan Versa-
Max software. Statistical differences between the two gen-
otypes were assessed by Student's t-test. Rotarod: Male DJ-
1-/- mice and wild-type littermates were also tested on the
rotarod. Two pairs of both genotypic groups were placed
at one time on the Economex accelerating rotarod
(Columbus Instruments) equipped with individual timers
for each mouse. Mice were initially trained to stay on the
rod for 2 min at a constant rotation speed of 5 rpm. After
a 2 min rest, mice were returned to the rotating rod at an
accelerating speed of 0.2 rpm/sec, and the time of the

mice remaining on the rotating rod was measured as
latency to fall. A total of 3 trials were performed for each
mouse. Acoustic Startle Reflex: Noise and prepulse genera-
tion were controlled by a computer. Each pair of both gen-
otypic groups were placed in the two calibrated startle
cylinders (Med Associates) and received a 5-min acclima-
tion period without background noise before the startle
stimuli. The testing session contained 50 trials and lasted
25 minutes, which consisted of twenty five pulses at 100
dB alone or twenty five 100 dB pulses preceded (100 ms)
by prepulses of 80 dB in a semi-random order with a 30-
second interval. The stimulation duration was 600 ms,
while the duration of 100 dB pulses was 50 ms at frequen-
cies of 5–40 kHz and the duration of the prepulses at 80
dB was 10 ms at a frequency of 10 kHz. Their responses
were measured with a transducer that was attached to the
underside of the platform and connected to the computer.
Averages of peak values resulting from 100 dB pulses
alone or 100 dB pulses coupled with 80 dB prepulses were
calculated. %PPI was calculated using the following for-
mula; 100 – (startle amplitude with PPI/startle amplitude
alone) × 100. The data was evaluated with Student's t-test.

Histology and neuron counting
Mouse brains were dissected, formalin fixed for 2 h, proc-
essed for paraffin embedding, and sectioned in the coro-
nal plane at 16 μm or 20 μm thickness. Each paraffin
block contained 4 DJ-1-/- and 4 wild-type brains. Depar-
affinized sections were immersed in a solution of 3%
H2O2/methanol for 15 min. The sections were incubated
in 10% normal goat serum (NGS)/phosphate buffered
saline (PBS) for 1 h, and then were incubated with each
appropriately diluted primary antibodies against DJ-1
(rabbit polyclonal; Signet), tyrosine hydroxylase (TH)
(rabbit polyclonal; Chemicon), glial fibrillary acidic pro-
tein (GFAP) (mouse monoclonal; Sigma), α-synuclein
(Syn-1; mouse monoclonal; BD Transduction Labs.),
ubiquitin (rabbit polyclonal, DAKO), Michael adducts of
4HNE (rabbit polyclonal, Calbiochem), nitrotyrosine
(rabbit polyclonal, Upstate) or DNA/RNA oxidative dam-
age (mouse monoclonal, QED Bioscience) in 10% NGS/
PBS at 4°C overnight. Rinsed sections were processed by
Vectastain ABC kit (Vector Labs.) with the correct bioti-
nylated secondary antibody, and the peroxidase reaction
product was detected using DAB peroxidase substrate
(Vector Labs.). The number of DA neurons in the SN was
determined by counting TH immunoreactive neurons in
coronal sections of four brains per genotype using the
fractionator and optical dissector methods of unbiased
stereology [41] under a Leica DMRB microscope equipped
with a CCD camera connected to a computer running Bio-
quant image analysis software. The counting of the
number of TH-positive cells in LC was performed by
counting the cells in every 4 coronal sections (16 μm
thickness) from the rostralmost to caudalmost limits of
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the LC [42,43]. A TH-positive cell was defined as an
immunoreactive somata with a clearly visible unstained
nucleus, or a piece of a soma of comparable size. The cells
were counted bilaterally in all sections per animal with a
power (200X) using a light microscope. The total number
of TH-positive LC neurons per animal was calculated by
summing the bilateral TH-positive LC neurons in all sec-
tions from rostral to caudal. The experimenter was blind
to the genotypes of mice. Values are reported as means ±
SEM. Statistical differences were assessed by Student's t
test.

Striatal dopamine and metabolites measurements by 
HPLC
Striata were dissected, weighed and stored at -80°C. Fro-
zen striata were sonicated in ice-cold solution (0.1 N per-
chloric acid, 0.2 mM sodium bisulfite) and centrifuged for
20 min at 20,000 × g at 4°C. For dopamine measurement,
the supernatant was filtered (0.2 μm) and applied to a
C18 reverse phase HPLC column connected to an ESA
model 5200A electrochemical detector with a 5014B
microdialysis cell with potentials set to -175 mV and +200
mV using MD-TM mobile phase (ESA, Inc.) with isocratic
elution. For metabolites measurement, the supernatant
was applied to a 150 × 2.1 mm ID, C18 reverse phase
HPLC column connected to an Alexys LC-100 system
(Antec-Leyden) with electrochemical detection (DECADE
II) and a VT-03 electrochemical flow cell using a detection
potential of 590 mV and isocratic elution (50 mM phos-
phoric acid, 50 mM citric acid, 400 mg/ml OSA, 0.1 mM
EDTA, 8 mM KCl, pH 3.75, 3% methanol) flowing at 0.2
ml/min.

Western blotting
The dorsal striata were dissected out and sonicated in 500
μL of 150 mM NaCl, 50 mM Tris, pH 7.4, 2 mM EDTA, 1%
Nonidet P-40, 1% sodiumdeoxycholate, 1% sodium
dodecylsulfate, protease inhibitors (Roche) and phos-
phatase inhibitors (Calbiochem). The protein content was
analyzed by BCA assay (Pierce), and 10 μg of protein per
lane was resolved on 4–12% gradient gels (Invitrogen),
transferred to nitrocellulose membrane, blocked with 5%
milk in TBST (50 mM Tris, pH 7.4, 150 mM NaCl, 0.1%
Tween-20), and incubated with a primary antibody (TH,
Chemicon) at 4°C overnight. The membrane was then
incubated with a peroxidase-conjugated anti-rabbit anti-
body (Biorad), treated with chemiluminescence reagent
(PerkinElmer Life Sciences) and exposed to film. Sample
was reprobed with a primary antibody against α-tubulin
(mouse monoclonal; Sigma) to confirm equal protein
loading.
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