Does FXIII Deficiency Impair Wound Healing after Myocardial Infarction?

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1371/journal.pone.0000048</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:4777433</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>

Does FXIII Deficiency Impair Wound Healing after Myocardial Infarction?

Matthias Nahrendorf1,2, Ralph Weissleder2, Georg Ertl1*

1 Medizinische Klinik und Poliklinik I, Universität Würzburg, Würzburg, Germany, 2 Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America

Inadequate healing of myocardial infarction may contribute to local expansion of the infarct, frequently leading to chamber dilation, heart failure, or myocardial rupture. Experimental evidence in mouse models suggests that Factor XIII might play a key role in wound healing and low persistent values lead to increased incidence of cardiac rupture following myocardial infarction. For example in heterozygous FXIII deficient mice (characterized by 50% plasma levels of FXIII) 100% die from cardiac rupture following MI (Figure 1 A-C) and FXIII replacement therapy reverses these findings [2]. Here we would like to share our initial clinical experiences with strikingly similar observations in patients with this grave disease.

REFERENCES

Figure 1.
A: Short axis high resolution, high field cardiac MRI of a FXIII−/− mouse 2 days after coronary ligation. Arrows: intrathoracic hematoma adjacent to experimental anterolateral infarction.
B: Autopsy confirms a blood clot (asterisk) originating from myocardial rupture at the border zone (arrow) of the myocardial infarct.
C: Histology of 1A shows rupture channel (arrows), filled with blood.
D: In patients with ruptured MI, FXIII levels were significantly reduced (*p<0.01).
E: Color Doppler echo of patient with new ventricular septum defect 7 days after myocardial infarction (arrow).
F: MRI after VSD repair with patch (arrows).
G–I: Explantation site of saphenous veins for CABG surgery displays delayed healing.
J: 73 days after initial surgery, 3 revisions and 2 weeks after i.v. FXIII augmentation, the wound is closed.
doi:10.1371/journal.pone.0000048.g001