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Heritable Stochastic Switching
Revealed by Single-Cell Genealogy
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The partitioning and subsequent inheritance of cellular factors like proteins and RNAs is a ubiquitous feature of cell
division. However, direct quantitative measures of how such nongenetic inheritance affects subsequent changes in
gene expression have been lacking. We tracked families of the yeast Saccharomyces cerevisiae as they switch between
two semi-stable epigenetic states. We found that long after two cells have divided, they continued to switch in a
synchronized manner, whereas individual cells have exponentially distributed switching times. By comparing these
results to a Poisson process, we show that the time evolution of an epigenetic state depends initially on inherited
factors, with stochastic processes requiring several generations to decorrelate closely related cells. Finally, a simple
stochastic model demonstrates that a single fluctuating regulatory protein that is synthesized in large bursts can
explain the bulk of our results.
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Introduction

Inheritance is more than the faithful copying and
partitioning of genomic information. When cells divide, the
mother cell passes numerous other cellular components to
the freshly born daughter, including nucleosomes, tran-
scription factors, mitochondria, and substantial fractions of
its proteome and transcriptome. In this way, an entire
pattern of gene expression can be passed from mother to
daughter, a phenomenon known as epigenetic or non-
Mendelian inheritance. Classic examples permeate the
literature and include the sex-ratio disorder in Drosophila
[1], the yellow-tip phenotype in melons [2], the telomere
position effect in yeast [3] and mouse [4], and prions such as
Psiþ in yeast [5].

The time scale over which epigenetic phenotypes may
persist spans many orders of magnitude and depends strongly
on the physical mechanism used by the cell [6]. In general,
however, epigenetic phenotypes are substantially less stable
than chromosomally inherited ones are [6,7], and can change
reversibly in single cells [3,8,9] during development [10,11], or
in mature organisms [12].

Beginning with landmark studies on the lac operon in the
1950s, positive transcriptional feedback loops have emerged
as a means to store cellular memory [13–15]. Such epigenetic
inheritance systems are frequently described as ‘‘bistable,’’
meaning that transcriptional activity of genes in the network
tends to become fixed in single cells around one of two stable
levels (ON and OFF), each of which is able to stably persist for
many generations [8,16,17]. Stochastic fluctuations in the
creation or decay of the proteins involved [18–34], or changes
in external cues (e.g., a changing environment), are respon-
sible for causing transitions between the two states
[8,13,16,17].

This flexible strategy, which is present in both prokaryotes
and eukaryotes, allows genetically identical cells to diversify
their population, possibly allowing them to exploit new
environmental niches or to survive in a fluctuating external

environment [35]. Feedback-based cellular memories show an
exceptional range of stability; depending on the strength of
the feedbacks, cells may display memory of a previous
expression state as short as a single generation to as far back
as many thousands of generations [17]. However, quantitative
measurements of phenotype stability, switching, and herit-
ability are rare, both because detailed genealogical relation-
ships are challenging to produce in single cells [36] and
because reporters indicating degree of inheritance are not
always available.
To measure how a dynamic gene expression state is

inherited, we focused on an engineered version of the
galactose utilization (GAL) pathway in the yeast Saccharomyces
cerevisiae (Text S1). We disrupted the pathway’s major negative
feedback loop and grew cells in conditions where only a
single positive-feedback loop was operational (see Materials
and Methods). Under these conditions, cells stochastically
transition between two distinct expression states even in the
absence of an extracellular trigger. These infrequent switch-
ing events therefore likely arise from fluctuations in concen-
trations of regulatory proteins within the individual cells [37].
We are able to monitor transitions between ON and OFF
using a fluorescent reporter (see Materials and Methods,
Figure S3). Together, these attributes make our network an
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ideal model system that is well suited to study the heritability
of an entire dynamic gene expression state.

In this work, we find that not only is the epigenetic
phenotype itself heritable, but that the stability of this
phenotype is likewise a heritable quantity. In other words,
when cells divide, the nascent daughter cell assumes both the
expression state of the mother cell as well as its tendency to
switch epigenetic states at a similar time in the future. This is
surprising, especially considering that individual cells viewed
outside their genealogical context appear to switch com-
pletely at random. We resolve this apparent contradiction
using a simple stochastic model.

Results

Heterogeneous Populations Are Generated from Single
Progenitors that Spontaneously Switch between Two
Phenotypes

We first set out to quantify, using fluorescence microscopy,
the infrequent switching events that occur at random times.
All experiments began with a single cell confined between a
cover slip and a thick agar pad. Over a period of about 920
min (.15 h) each cell grew and divided to eventually form a
small colony of 50–100 cells. Throughout the measurement
period, these cells diverged in behavior, with some increasing
in fluorescence and others decreasing. We repeated this
process with more than 100 progenitor cells, so in sum our
data represent many thousand single-cell trajectories.

We present two examples of the experimental procedure in
Figure 1. In Figure 1A, an initially bright cell develops into a
small colony with distinct subpopulations. The dim cells in
the lower subpopulation continue to diminish in fluorescence
with each successive cell division as the remaining molecules
of green fluorescent protein (GFP) dilute. In Figure 1B, an
initially faint cell likewise gives rise to a variegated colony
with cells both dim and bright. Together, these two processes
generate a broad bimodal steady-state distribution.

Individual Cells Have Exponentially Distributed Switching
Times
Narrowing our focus to initially OFF progenitor cells, we

allowed each to grow, divide, and give birth to other initially
OFF cells. We then recorded instances when cells switched
into the ON state (Figure 2A and Video S1). Because cellular
auto-fluorescence is uniformly small throughout the popula-
tion of OFF cells, these fluorescing events were generally
distinguished unambiguously from background fluctuations.
Using these data, we generated for each colony a family tree
where the detailed genealogical relationships and gene-
expression histories of corresponding family members are
shown (Figure 2B).
Because cells are continuously born throughout the

experiment, we aligned them in silico so that their birth
times were identical. In this context, it is natural to define
the marginal switch time, sX, a parameter that describes the
interval between the birth of a cell X and the moment it
eventually becomes fluorescent (Figure 2C). We normalized
each measurement according to its expected likelihood of
being observed (see Figures S4 and S5, Text S3) to account
for any biases caused by the cells’ exponentially dividing
throughout our measurement period. The resulting data fit
well to an exponential curve with an effective transition rate
of 0.12 switches per generation (Figure 3A, cyan line). The
slight discrepancy between data and exponential fit is likely
the result of some cells growing out of the focal plane. The

Figure 1. Cells Switch between Expressing and Nonexpressing States

Images are phase contrast micrographs (black and white) overlaid with
background-subtracted fluorescent signal (purple).
(A) Over 750 min, or between 4 and 5 generations, an initially ON cell of
strain MA0188 develops into a small variegated colony with subpopu-
lations of ON and OFF cells.
(B) An initially OFF cell likewise grows into a mixed colony with both ON
and OFF cells. The sharp interface between ON and OFF cells in both
(A,B) indicates that cell-cell communication does not play a major role in
defining cell expression state.
a.u., arbitary units.
doi:10.1371/journal.pbio.0050239.g001
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Author Summary

When cells divide, not only DNA but an entire pattern of gene
expression can be passed from mother to daughter cell. Once cell
division is complete, random processes cause this pattern to
change, with closely related cells growing less similar over time.
We measured inheritance of a dynamic gene-expression state in
single yeast cells. We used an engineered network where individual
cells switch between two semi-stable states (ON and OFF), even in a
constant environment. Several generations after cells have physi-
cally separated, many pairs of closely related cells switch in near
synchrony. We quantified this effect by measuring how likely a
mother cell is to have switched given that the daughter cell has
already switched. This yields a conditional probability distribution
that is very different from the exponential one found in the entire
population of switching cells. We measured the extent to which this
correlation between switching cells persists by comparing our
results with a model Poisson process. Together, these findings
demonstrate the inheritance of a dynamic gene expression state
whose post-division changes include both random factors arising
from noise as well as correlated factors that originate in two related
cells’ shared history. Finally, we constructed a model that
demonstrates that our major findings can be explained by burst-
like fluctuations in the levels of a single regulatory protein.



reverse switching distribution, composed of ON cells switch-
ing into the OFF state, could not be obtained in this simple
way, because in this scenario the long life of the fluorescent
proteins makes it difficult to determine the exact moment
cells cease production of yellow fluorescent protein (YFP).

Apparently Random Switches Are Heritable
This exponentially distributed switching pattern applies to

cells chosen at random without regard to genealogy. How-
ever, measuring cells instead on the basis of their family
history paints a very different picture. To demonstrate this
difference, we asked how likely a mother and a daughter cell
were to have both switched within a small window of time
after the cells divided. We selected all daughter cells with
marginal switch times below some value T, and then we
measured what percent of their mothers had also switched at
or before that time. The results, summarized in Figure 3B
(open circles), show that when a daughter switches shortly
after cell division, its mother cell is overwhelmingly likely to
do the same. For example, of the daughters who switch within
400 min of cell division (about two generations), their
mothers have approximately a 50% chance of switching in
that same period. This represents a 2-fold increase in the
switching rate for a typical unrelated cell. As T grows to
encompass an ever-larger fraction of all daughter cells, the
corresponding percent of switching mother cells asymptoti-
cally approaches the marginal switch distribution of Figure
3A (reproduced in black), which represents the limit of no
genealogical relationship. As in the marginal switch case
above, we are careful to weigh each of these mother-daughter

pairs according to how likely we were to experimentally
observe them.
To measure the underlying rates governing this process, we

examined the possible switching events diagrammed in
Figure 3A. In this simplified view, we assume cell pairs can
either switch together into the ON state together at a rate c(t),
or independently of one another at a rate r� c(t). In this way,
the total switch rate for any given cell sums to r at all times, as
required by the marginal switch distribution. We assume that
the correlations decay with a rate cðtÞ[ r � e�

maxðt�20;0Þ
Tc , which is

reminiscent of an Ornstein-Uhlenbeck process (Figure 3A)
[16,28]. The fixed delay of 20 min is included to account for
slow chromophore (YFP) maturation as observed in our data
(daughters that switch within the first 20 min after cell
division have mothers that always switch). This model
includes two free parameters: r, the overall switch rate, and
Tc, the characteristic time for the correlation to decay. A
global least-squares fit to both curves (Figure 3B, red and blue
curves) simultaneously yields (r ¼ [7.0 6 0.5] � 10�4 min�1 ¼
0.12 6 0.01 gen�1) and (Tc ¼ 197 6 54 min). This
decorrelation rate is quite similar to the average cell doubling
time of 177 min (Text S2 and Figure S1), and similar
connections between doubling time and decorrelation have
been found in other protein regulatory networks [28].

Correlations of Switching Times between Cell Pairs Vary

by Genealogical Relationship
The above analysis suggests that when cell pairs do switch,

they will do so in synchrony. To demonstrate that this is

Figure 2. A Genealogical Switching History

We designate the first cell in each movie cell 1 and sequential daughters of that cell 1–1, 1–2, 1–3. These daughter cells bud in turn, giving rise to cells 1-
1-1, 1-1-2, 1-2-1, etc.
(A) As in Figure 1, an initially OFF cell grows into a variegated micro-colony. Beginning at 600 min, or 4 generations, several cells fluoresce almost
simultaneously. This includes the mother-daughter pairs (1,1–2) and (1-1-1,1-1-1–1). Conspicuously, cell 1–1 does not switch for the duration of our
observation, even though its mother, daughter, and closest sibling all do.
(B) The family tree for colony in (A). Black lines indicate cells in the OFF state, whereas pink lines represent cells after they have switched to the ON state.
(C) Fluorescent time courses for mother cell 1 and her daughter 1–2, showing each as they switch into the ON state. The marginal switch times s1 and
s1–2, run from cell birth until the beginning of the increase in fluorescence and do not depend on any other cells. The period labeled s1j1–2 runs between
the birth of cell 1–2 and the fluorescence of cell 1 and is an example of a conditional switch time.
doi:10.1371/journal.pbio.0050239.g002
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indeed the case, we turned our focus to the further subset of
cell pairs where both cells are observed to switch during the
experiment (and therefore ignoring cases where only one cell
in a pair switches). More specifically, we concentrated on
three cell relationships: mothers with daughters (henceforth
M-D), grandmothers with granddaughters (GM-GD), and
older siblings with younger siblings (S1-S2). Instead of
marginal switching times, which are measured relative to
each individual cell’s time of birth, we chose instead to
compute the switch times of both cells relative to the moment
when their two respective branches of the family tree first
broke apart. Put another way, this quantifies the amount of
time between a switching event and the last moment that
these cell lines shared cytoplasm. The purpose of this
approach is to allow us to compare cells that were born at
very different times on equal footing, ensuring that switching
events are measured relative to the same point for both cells.
For M-D pairs, the time we use is simply the birth of the
daughter; for GM-GD pairs, however, it is the birth of the
intervening daughter; and for S1-S2 pairs, it is the older
sibling’s birth. Formally we define the conditional switch
time, sXjY, as the time elapsed between the fluorescing of cell
X and the birth of cell Y. When X and Y both refer to the same
cell, we recover the marginal switch time (i.e., sXjX ¼ sX).

Comparing M-D conditional switch times (Figure 4A), we
observe nearly synchronous switching that extends at least
300 min and yields a correlation coefficient of qMD¼0.87 (p ,

10�45). GM-GD and S1-S2 pairs (Figure 4B and 4C) show
somewhat lower correlation coefficients of qGMGD¼ 0.74 (p ,

10�9) and qSS¼0.60 (p , 10�7), respectively, although the total
coefficient for all data combined remains a robust qTOT¼ 0.8
(p , 10�62). The strength and duration of these correlations
are surprising and were not found in bacterial [16,25] and
mammalian [38] studies, except in context of morphological
traits [39]. Like the marginal switch data, these scatter plots
should be viewed in the context of finite experimental
viewing times, giving weights to points that are inversely

proportional to the number of experimental opportunities to
have seen them (Text S3, Figures S6 and S7).

Memory of Switching Persists for Several Generations
One dynamic measure for the randomness associated with

the distribution is the average square difference of switch
times for pairs of cells with comparable mean switch times
(Figure 4D, blue curve). This curve rises rapidly at first, but at
longer times it flattens out. This flattening is likely due, at
least in part, to the limited duration of our experiments (on
average 920 min), which constrains the scatter distribution to
reside in the box shown in Figure 4A–4C.
To understand what this means, it is helpful to compare

our results to those obtained using a stochastic Poisson model
[40], where closely related cells are assumed to switch
independently of one another and with constant probability
in time (Text S3, Figures S2 and S8). To compare directly with
our data, we ran the simulation for the same duration as our
experiment and included all cell-pair relationships, giving the
more complicated curve shown in Figure 4D (red curve).
The ratio of the data’s mean square variation to that of the

Poisson simulation (Figure 4E, green curve) is a measure for
how correlated cells remain after a given period of time has
passed. Points below a value of one (Figure 4E, dashed line)
represent correlated switching behavior, whereas points
above it would signify anticorrelated behavior. For over 600
min, the distribution remains distinctly sub-Poissonian. Only
for the longest measured times are there indications that the
cells switch independently of their history, and even this is
with large uncertainty. Put another way, pairs of cells often
remain on approximately the same trajectory for several cell
divisions, even though cell growth has diluted many of the
relevant proteins to a fraction of their original level.

Stochastic Model
To examine our results at a microscopic level, we

constructed a simple model that allows us to probe how the
rich correlated switching dynamics arise from a simple

Figure 3. Single-Cell Fate

(A) The cumulative percentage of cells that have switched is plotted against their marginal switch time. The black squares represent 251 switching cells,
and the blue line is an exponential fit. The cyan dashed line is a result of our stochastic simulation (see Figure 5). Error bars are derived from a bootstrap
analysis. The fits are consistent with the idea that a constant-rate process may underlie the network. The inset shows ways that mother-daughter pairs
may switch, either dependently via the center route or independently of one another via the outer routes.
(B) Gray circles describe the likelihood that a mother cell has switched given that its daughter cell is known to have switched before this time. The solid
red line describes a two-parameter least-squares fit simultaneously to both curves with parameters described in the inset and main text. The dashed
dark red line shows the fit resulting from the stochastic simulation. Black squares and blue lines are reproduced from (A) for comparison.
doi:10.1371/journal.pbio.0050239.g003
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regulatory network. Specifically, we asked whether the
stochastic fluctuations of a single regulatory protein in our
system could simultaneously explain the observed Poisson
switching behavior that is expected for randomly selected
individuals and subsequent long–timescale correlations. One
key protein, Gal80p, functions to regulate the expression of
all other genes in the network (Text S1). When it is present in
the nucleus, Gal80p binds in a highly cooperative manner to
the transcription factor Gal4p and represses the expression
of Gal2p, Gal3p, and YFP (Volfson et al., for example, assume
a Hill number of 8 between Gal4p and transcription at the
GAL1 promoter [33]).

Such high levels of cooperativity frequently give rise to
steep transfer functions, which can result in switch-like
behavior. This means that even a small decrease in the
concentration of Gal80p can cause the transcription rate of
downstream genes to increase dramatically from a very small
basal rate to a large maximal rate. Once the downstream
protein, Gal3p, begins to be produced, it will lead to

sequestering of Gal80p to the cytoplasm, completing the
feedback loop and causing the cell to completely switch from
the OFF to the ON state.
We constructed a simple model that captures the essential

properties of this process. In our cells, Gal80p is present in
very low numbers, and we therefore account for the effects of
stochastic production and degradation for this protein.
Protein bursting invariably increases noise levels by amplify-
ing rare events such as changes in promoter activation or
mRNA creation and destruction [18,22,41]. We assumed that
the burst-size distribution was exponential in shape with a
mean consistent with the results of Bar-Even et al., who found
an average of 1,200 proteins per burst [30]. We further
assumed that the decay rate of the protein is dominated by
dilution and therefore set by the division time of the cell.
Finally, we included in our model a nonzero chromophore
maturation time of 20 min, as observed in our data. To
account for the cooperativity between Gal80p and Gal4p, we
assumed that when Gal80p levels drop below a threshold

Figure 4. Cell-Pair Behavior

The conditional switch times for closely related cells are compared.
(A) The daughter switch time is compared to the mother switch times for 141 cell pairs. For times extending past 350 min (about two cell divisions), a
strong correlation in times is observed. The other cell pair relationships, shown again in (B, C), are shadowed in grey.
(B, C) The more distant relationships of GM-GD (n¼ 55) continue to show significant correlation, while the S1-S2 relationships (n¼74) shows somewhat
less. The notable asymmetry of the S1-S2 distribution reflects the tendency for older siblings to sometimes switch before the younger sibling is even
born.
(D) In blue, the mean squared difference of the switch times from the combined relationships in (A–C), binned according to their average switch time. In
red, a computer-generated Poisson simulation sets a bound for switching correlation in the limit of correlation tends to zero. The mean cell doubling
time is labeled tdoub.
(E) Dark green squares show the ratio of the two curves in (D), demonstrating the persistence of a correlation for at least hundreds of minutes after cell
division. In purple, the predicted fit from our stochastic simulation after fitting to the curves in Figure 3.
doi:10.1371/journal.pbio.0050239.g004

PLoS Biology | www.plosbiology.org September 2007 | Volume 5 | Issue 9 | e2391977

Single-Cell Heritable Stochastic Switching



value a cell rapidly activates gene expression and enters the
ON fluorescent state.

In total, the model has only three parameters: (1) mean
number of Gal80p molecules present per cell, (2) the
switching threshold, and (3) the Gal80p burst size estimated
from literature. We estimated the first two of these
parameters by fitting the model to the marginal and condi-
tional switching distributions shown in Figure 3B. Once the
theoretical switching rates were fit to the experimental data,
we asked if the model explained the highly correlated
switching times observed between related cells. Without any
additional fitting parameters, we predicted the mother (sMjD)
and daughter (sDjD) conditional switching times (Figure 5F,
brown squares) as well as their mean squared deviation
hðt1 � t2Þ2i (Figure 4E, purple diamonds). These predictions
matched remarkably well with the experimental data (Figure
4E, green boxes; Figure 5F, gray circles). The model therefore
predicts that related cells will remain highly correlated in
their switching times even though switching events seem to

occur in a Poisson manner. A robustness analysis (Text S3,
Figure S9) suggested a narrow range of possible values with an
optimum centered around (average, threshold) ; (2,400
proteins, 670 proteins).
Bursting events in protein production are often associated

with increases of noise in protein levels [18,22]. A counter-
intuitive aspect of our model is that the correlation observed
in cell pairs comes as a consequence of stochastic bursting. As
the burst size is ratcheted up from 12 to the experimentally
observed value of 1200, for example, keeping average protein
level and switch rate constant, correlations begin to emerge
in the cell-cell scatter plots (see Figure 5). The reason for this
effect is that the periods between bursting events are
dominated by dilution of proteins, a relatively low-noise
process. As the burst size is increased, the time between bursts
must increase commensurately, leading to long periods of
correlated behavior between cells. Two cells that start with
the same amount of protein will therefore dilute that protein
at a similar rate and switch ON (Figure 5C, black arrows) at

Figure 5. Burst-Induced Correlations

Results of our stochastic simulation.
(A–C) Fluctuations of protein concentration as a function of time are shown (gray lines). Several selected realizations are highlighted for emphasis.
Proteins are created in bursts of size ,b.¼ 12, 120, and 1,200 respectively for the three panels, with the average protein level held fixed. Thresholds
(solid black lines) are chosen to result in an average switching rate equal to our experimentally measured value. When protein levels drop below a
threshold, that cell is considered to have switched.
(D–F) The resulting M-D scatter plots. As the burst size increases, the pattern becomes markedly more correlated. Gray circles in (F) are the experimental
data reproduced from Figure 4A.
doi:10.1371/journal.pbio.0050239.g005
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similar times. Decorrelations can arise when one of the cells
experiences a burst of new protein during this decay period.
However, the cell experiencing the burst has a greatly
reduced probability of switching ON in a short period of
time. In this event, the cell will generally not be observed to
switch at all over the duration of the experiment and
consequently does not appear as a significantly decorrelated
time-point in the sMjM/sMjD scatter plot.

Discussion

In recent years, cells within isogenic populations have
become increasingly scrutinized as individuals, each with its
own original behaviors and gene expression patterns. What
make single cells distinctive, however, are not only the
stochastic chemical reactions taking place within them but
also their unique family histories. Here we have shown that a
cell’s decision to dramatically change expression states can
hinge directly on this familial background. We have separated
what, on its face, appears to be an exponentially distributed
random process into stochastic and genealogically deter-
mined subcomponents. In addition, we show that protein or
transcriptional bursting, which are processes that increase
total noise in gene expression levels, can unexpectedly create
correlated dynamic behavior between related cells, a phe-
nomenon that would be lost in deterministic descriptions.

In the engineered network we used in this study, there is no
reason to suppose that the correlations we observe provide an
evolutionary advantage to cells. However, we can speculate
that cells might use similar mechanisms to those we describe
to coordinate behavior between themselves without relying
on complex sensory machinery or physical proximity. Cells
might exploit these architectures to ensure that when a
switching event does occur, several other cells will do the
same, effectively achieving strength in numbers. For example,
a group of infectious disease–causing cells seeking to
confront a host immune system might hypothetically choose
to switch together from a slowly growing latent phenotype
into an active virulent phenotype in a coordinated but
randomly timed attack, thus enhancing their likelihood of
sustaining an infection. Likewise, cells that benefit from
cooperative metabolization could similarly benefit from
temporally coordinated cooperation. It will be interesting
to see how far similar analysis can be taken in the future and
how many other systems might be found to have behavior so
strongly influenced by family lineage.

Materials and Methods

Engineered destabilization of the GAL network. We used the well-
characterized GAL network as our model genetic network (see Text
S1). In wild-type cells, transitions between the ON (galactose
metabolizing) and OFF (unable to metabolize galactose) states is
largely determined by the levels of inducers (e.g., galactose) or
repressors (e.g., glucose) in the surrounding environment. To
generate a switching phenotype with large dynamic range, we
destabilized this in two ways. First, we removed the negative-feedback
loop altogether by replacing the endogenous GAL80 promoter with a
weakly expressing, tetracycline-inducible one, PTETO2. Second, we
grew the cells in the absence of galactose, which fully eliminates the
GAL2-mediated positive feedback and weakens the GAL3 feedback.
Even in the absence of galactose, Gal3p has constitutive activity and,
in sufficient quantities, can activate the network [42]. Considering the
lower levels of Gal80p in our construct, this constitutive activity is
likely a significant factor. Finally, the state of the network is read with
PGAL1-YFP, with fluorescing cells considered ON.

Cells engineered in this way transition between ON and OFF states
in a seemingly stochastic fashion. Cells with this genotype exhibit an
extremely broad steady-state expression histogram, with fluorescence
values that span more than two orders of magnitude, and the
histogram has peaks on both the high and low expression limits,
suggesting a bistable system with relatively infrequent transitions
between the two states.

Growth conditions. Before imaging, cells were grown at low optical
density overnight in a 30 8C shaker in synthetic dropout media with
2% raffinose as the sole carbon source. This neutral sugar is thought
to neither actively repress nor induce the GAL genes [43]. We grew
our cells in the absence of tetracycline, so levels of Gal80p were
determined by the basal expression level of PTETO2. Approximately 12
h later, cells were harvested while still in exponential phase, spun
down, and resuspended in synthetic defined (SD) media. Next, cells
were transferred to a chamber consisting of a thick agar pad
(composed of the appropriate dropout media and 4% agarose)
sandwiched between a cover glass and slide. The high agarose density
constrains cells to grow largely in a two-dimensional plane.

Microscopy. Fluorescent and phase-contrast images of growing
cells were taken at intervals of 20–35 min on 10 different days for
over 100 initial progenitor cells. Image collection was performed at
room temperature (22 8C) using a Nikon TE-2000E inverted micro-
scope with an automated state (Prior Scientific; http://www.prior.com)
and a cooled back-thinned CCD camera (Micromax, Roper Scientific;
http://www.roperscientific.com). Acquisition was performed with
Metamorph (Universal Imaging; http://www.photomet.com).
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Figure S6. Schematic for Weighing the GM-GD Opportunity
Windows and the Corresponding Window of Available Switch Times
for the Example Family Tree
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Figure S7. Opportunity Windows for M-D, GM-GD, and S1-S2 Cell
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S2 Cell Pairs and Overlay of the Same in the Gillespie-Based Model

Found at doi:10.1371/journal.pbio.0050239.sg008 (21 KB PDF).

Figure S9. Monte-Carlo Model Confidence Intervals

Found at doi:10.1371/journal.pbio.0050239.sg009 (7 KB PDF).

Video S1. A Single OFF Cell Grows Over 690 min into a Small Colony
of 16 Cells with Fluorescence Overlaid

Found at doi:10.1371/journal.pbio.0050239.sv001 (6.3 MB AVI).
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