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Abstract

Mutations in whirlin cause either Usher syndrome type II (USH2), a deafness-blindness disorder, or nonsyndromic deafness.
The molecular basis for the variable disease expression is unknown. We show here that only the whirlin long isoform,
distinct from a short isoform by virtue of having two N-terminal PDZ domains, is expressed in the retina. Both long and short
isoforms are expressed in the inner ear. The N-terminal PDZ domains of the long whirlin isoform mediates the formation of a
multi-protein complex that includes usherin and VLGR1, both of which are also implicated in USH2. We localized this USH2
protein complex to the periciliary membrane complex (PMC) in mouse photoreceptors that appears analogous to the frog
periciliary ridge complex. The latter is proposed to play a role in photoreceptor protein trafficking through the connecting
cilium. Mice carrying a targeted disruption near the N-terminus of whirlin manifest retinal and inner ear defects, reproducing
the clinical features of human USH2 disease. This is in contrast to mice with mutations affecting the C-terminal portion of
whirlin in which the phenotype is restricted to the inner ear. In mice lacking any one of the USH2 proteins, the normal
localization of all USH2 proteins is disrupted, and there is evidence of protein destabilization. Taken together, our findings
provide new insights into the pathogenic mechanism of Usher syndrome. First, the three USH2 proteins exist as an
obligatory functional complex in vivo, and loss of one USH2 protein is functionally close to loss of all three. Second, defects
in the three USH2 proteins share a common pathogenic process, i.e., disruption of the PMC. Third, whirlin mutations that
ablate the N-terminal PDZ domains lead to Usher syndrome, but non-syndromic hearing loss will result if they are spared.
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Introduction

Usher syndrome manifests as both retinal degeneration and

hearing loss [1,2]. It is classified into type I, II, and III based on

clinical features of the hearing defects [3–8]. Usher syndrome type

I (USH1) presents with profound congenital deafness and

vestibular dysfunction. USH2 is the most common form and is

characterized by moderate non-progressive hearing loss without

vestibular dysfunction. USH3 is distinguished from USH2 by the

progressive nature of its hearing loss and occasional vestibular

dysfunction. There is further genetic heterogeneity within each

clinical type of Usher syndrome. For example, three distinct gene

loci, referred to as USH2A, USH2C and USH2D, are known to

underlie USH2. These three genes encode the USH2A protein

(also known as usherin), Very Large G protein-coupled Receptor-1

(VLGR1) and whirlin, respectively. Among these, mutations in

USH2A account for over 70% of USH2 patients whereas USH2C

and USH2D are responsible for the remainder. A previously

proposed USH2B locus was subsequently shown to be in error and

has been withdrawn [9].

Genetic defects in the whirlin gene have long been known as a

cause of nonsyndromic deafness DFNB31 [10,11] and, more

recently, were found to underlie USH2D [12]. Whirlin R778X

and c.2423delG mutations (Figure 1A) that truncate the protein

close to its C-terminus cause profound prelingual hearing

impairment in humans. In the naturally occurring whirler mouse,

from which the name whirlin was derived, a large deletion was

found in the middle of the whirlin gene (Figure 1A). Similar to

human patients with DFNB31, the whirler mouse suffers from

inner ear defects [10]. Neither patients with DFNB31 nor the

whirler mouse manifest any retinal deficits. The whirlin gene

defect underlying USH2D arises from compound heterozygosity

of a Q103X mutation and a c.837+1G.A mutation [12], which

are positioned in the first and second exon of the whirlin gene,
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respectively (Figure 1A). Therefore, different mutations of the

whirlin gene account for a spectrum of hearing and vision defects

although the mechanism underlying the variable disease expres-

sion of different mutations in the whirlin gene is not known.

Multiple whirlin transcript variants were found in the inner ear

[10,13,14]. They are conceptually translated into two groups of

proteins, the long and short isoforms (Figure 1A). The whirlin long

isoform contains two N-terminal PDZ domains, a proline-rich

domain and a third PDZ domain near the C-terminus.

Heterogeneity in the whirlin short isoform arises from use of

alternative transcriptional start sites and/or splicing sites of the

whirlin gene, which generates several variants with different N-

termini. The short isoform has no N-terminal PDZ domains but

retains the proline-rich region and the third C-terminal PDZ

domain. Both the PDZ domain and proline-rich region are

modular protein interaction domains. PDZ domains bind to a

short conserved sequence, known as a PDZ-binding motif, present

at the C-terminus of proteins or found as an internal motif [15]. A

proline-rich region usually binds to WW and SH3 domains [16].

With these two types of protein interaction domains, whirlin is

believed to be engaged in the assembly of supramolecular

complexes at specific subcellular locations. A series of in vitro

Figure 1. Whirlin knockout mice were generated. (A) A schematic diagram illustrating the long and short isoforms of whirlin. The dashed lines
indicate the deletion regions of the whirlin gene in whirlin knockout (whirlin2/2) and whirler (whirlinwi/wi) mice. The asterisks indicate the mutations of
the whirlin gene in humans. The bottom solid lines indicate the antigen regions of various whirlin antibodies. PDZ, postsynaptic density 95/discs large/
zonula occludens 1; PR, proline-rich region. (B) Targeting strategy for disrupting the whirlin gene. PCR primers for identification of the mutant and wild-
type alleles are shown as arrowheads. E1, exon 1; neo, neomycin, the positive selective marker; DTA, diphtheria toxin expression cassette, the negative
selective marker. (C) Identification of the mutant allele by genomic PCR using primers G1, G5r and 3A. (D) RT-PCR analysis shows loss of the first exon of
whirlin transcripts in the homozygous mutant retina. Whirlin mRNA transcripts were reverse transcribed and amplified using primers located on exon 1
and 6 (top panel), exon 2 and 6 (middle panel), and exon 11 and 12 (bottom panel). Exon 12 is the last exon of the whirlin gene. NC, negative controls
with water instead of DNA samples. (E) The whirlin long isoform was completely knocked out in the retina of homozygous mutants as shown by
immunoblotting. c–tubulin served as a loading control. +/+, wild-types; 2/2, whirlin knockout homozygotes; +/2, whirlin knockout heterozygotes.
doi:10.1371/journal.pgen.1000955.g001

Author Summary

Usher syndrome is a devastating genetic disorder affecting
both vision and hearing. It is classified into three clinical
types. Among them, type II (USH2) is the predominant
form accounting for about 70% of all Usher syndrome
cases. Three genes, USH2A, USH2C, and USH2D, underlie
the development of USH2; and they encode usherin, Very
Large G protein-coupled Receptor-1 (VLGR1), and whirlin,
respectively. In this study, we show that the long whirlin
isoform organizes the formation of a multi-protein
complex in vivo that includes usherin and VLGR1. Targeted
disruption of whirlin long isoform abolishes the normal
cellular localization of the two partner USH2 proteins in
the retina and in the inner ear and causes visual and
hearing defects. We present the first definitive evidence
that the USH2 proteins mark the boundary of the
periciliary membrane complex, which was first described
in frog photoreceptors and is thought to play a role in
regulating intracellular protein transport. We propose that
defects in all USH2 proteins share a common pathogenic
pathway by disrupting the periciliary membrane complex
in photoreceptors.

Whirlin Defect Disrupts USH2 Protein Complex
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analyses have found that whirlin is able to interact with usherin

[17] and VLGR1 [14], the two causative proteins for other forms

of USH2 [18–20]. A recent report demonstrates that these

interactions probably exist at the ankle-link complex in developing

hair cells [21].

A few reports have been published which examined the localization

of whirlin in photoreceptors [14,22,23]. Whirlin has been reported to

localize to the apical inner segment collar, the ciliary apparatus, the

adherens junctions and the synaptic region of photoreceptors [14,23].

However, there is no consensus from these reports on where the

whirlin protein is localized in photoreceptors. As the photoreceptors

are highly polarized neurons and are well organized into stratified

layers of the retina, whether a protein is localized to the apical inner

segment vs. the synaptic layer has completely different implication for

its putative functions. More importantly, there has been no in vivo study

of any kind on the association among the three USH2 proteins in

photoreceptors. To fill in this knowledge gap, we carried out targeted

disruption of the whirlin gene in mice at the 59-terminal region. This

disruption abolishes the long isoform and simulates the human

mutations that cause USH2D. This mutant line of mice reiterated the

vision and hearing defects of human USH2 patients. Using this mouse

line and the Ush2A and Ush2C mutant mouse lines that had been

previously generated, we analyzed the expression, localization and

function of whirlin in the retina and compared them with those in the

inner ear cochlea. We further analyzed the interaction among the

USH2 proteins using those mouse lines as in vivo model systems. Our

data provide new insight into the function of whirlin and other USH2

proteins and point to a possible disease mechanism for USH2. The

data also help to explain the molecular basis for the variable disease

expression caused by mutations in different regions of the whirlin

gene.

Results

Whirlin knockout mice do not express the whirlin long
isoform at the RNA and protein levels

A whirlin mutant mouse line was generated by replacing a

portion of exon 1, which included the translation start codon for

the whirlin long isoform, with a Neor expression cassette

(Figure 1B). The targeted allele was confirmed by amplifying the

genomic DNA fragments containing the junctional sequences

between the whirlin gene and the Neor expression cassette. To

determine if expression of whirlin was abolished in the mutant

mice, we conducted RT-PCR and western blotting analyses in the

retina. RT-PCR analysis verified that the first exon of whirlin

transcripts was absent in the homozygotes (Figure 1D). Western

blotting analysis showed that the whirlin long isoform, normally

migrating at an apparent molecular weight of about 110 kDa, was

completely absent in the retina of homozygous mice (Figure 1E).

Thus, this targeted allele of whirlin is a null allele for the whirlin

long isoform. To distinguish it from the existing whirler mice, we

refer to this line of mutant mice as the whirlin knockout mouse.

Whirlin knockout mice appeared viable and comparable to their

wild-type littermates in growth characteristics, reproductive

performance and general health.

The whirlin long isoform, but not the short isoform, is
expressed in the retina

To examine the normal expression of whirlin isoforms at the

protein level in the retina, we generated a series of antibodies

against whirlin and used two whirlin mutant mouse lines, whirlin

knockout and whirler mice, as negative controls. In whirlin

knockout mice, deletion of the first exon ablates the long isoform,

while mutation in whirler mice eliminates the short isoform [10]

(Figure 1A). Rabbit PDZIE, chicken PDZIE, and CIP98 [24]

antibodies are directed against epitopes common in both the

whirlin long and short isoforms (Figure 1A). Western blotting using

these antibodies detected only the whirlin long isoform in the wild-

type (WT) retina (Figure 2A), suggesting that the short isoform was

either not expressed or was expressed at such a low level that was

beneath the threshold of detection by this assay. To confirm this

result, we enriched the whirlin protein(s) from the retinal lysate by

immunoprecipitation using the rabbit PDZIE antibody, and then

performed western blotting analysis of the precipitates using the

chicken PDZIE antibody. While we found significant enrichment

of the whirlin long isoform, we again did not detect the short

Figure 2. Whirlin expresses its long isoform in the retina. (A) Western blotting analysis of retinal lysates. All CIP98, RbPDZIE, and ChPDZIE
antibodies detected only the whirlin long isoform. The lower bands on the blots of RbPDZIE and ChPDZIE are nonspecific, because the bands on
these two blots have different molecular weights and they are present in the retina of whirlin knockout and whirler mice. (B) Western blotting of
immunoprecipitates from the retina (left) and the inner ear (right). The ChPRZIE antibody detected only the whirlin long isoform in the RbPDZIE
immunoprecipitate from the retina, but detected both the long and short isoforms from the inner ear. The ChPDZ320 antibody detected only the
whirlin long isoform but not an N-terminal whirlin fragment in the RbPDZ320 immunoprecipitate from the retina. RbPDZIE and ChPDZIE, the rabbit
and chicken PDZIE (Figure 1A) antibody, respectively; RbPDZ320 and ChPDZ320, the rabbit and chicken PDZ320 (Figure 1A) antibody, respectively;
RbIgG, rabbit immunoglobulin, a negative control. WT, wild-types; whirlin2/2, whirlin knockout mutants; whirlinwi/wi, whirler mutants.
doi:10.1371/journal.pgen.1000955.g002

Whirlin Defect Disrupts USH2 Protein Complex
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isoform. As a positive control, we found both isoforms were

enriched and readily detectable in the cochlear immunoprecipitate

(Figure 2B). Therefore, the whirlin short isoform in the retina is a

rare variant if expressed at all. In addition to the long and short

variants reported previously, we found a distinct N-terminal

transcript of whirlin in the retina by screening a mouse retinal

cDNA library. This transcript terminates in the middle of the

second PDZ domain such that if translated, it would produce a

whirlin protein that includes only the first N-terminal PDZ

domain. This transcript is therefore not affected by the whirler

mutation or by the corresponding human mutations causing

DFNB31 (Figure 1A). To examine whether this N-terminal whirlin

isoform was abundant at the protein level in the retina, we

performed immunoprecipitation using the rabbit PDZ320 anti-

body, whose antigen is the N-terminal 320 amino acids of whirlin

(Figure 1A). Again only the whirlin long isoform was detected by

western blotting using the chicken PDZ320 antibody (Figure 2B),

suggesting this N-terminal whirlin isoform is not an abundant

variant either. Nevertheless the presence of an N-terminal whirlin

variant may be of functional significance. Taken together, these

results clearly demonstrate that the whirlin long isoform is the

predominant variant expressed in the retina.

Whirlin is localized at the periciliary membrane complex
(PMC) in mouse photoreceptors

Photoreceptors are highly polarized sensory neurons consisting

of three major subcellular compartments, the outer segment, the

inner segment and the synaptic terminus. Linking the light sensing

outer segment and the biosynthetic inner segment is a thin bridge

known as the connecting cilium. By immunofluorescence whirlin

was found at the vicinity of the connecting cilia (Figure 3A and 3B)

but not in the photoreceptor synaptic layer (the outer plexiform

layer, data not shown). RPGR (retinitis pigmentosa GTPase

regulator) and RP1 (retinitis pigmentosa 1) are proteins known to

be localized at the connecting cilia and at the axonemal

microtubules distal to the connecting cilia, respectively [25] (see

Discussion). Double staining of whirlin with either RPGR or RP1

showed whirlin to localize adjacent to RPGR (Figure 3A) but

proximal to RP1 (Figure 3B). However, unlike RPGR, RPGRIP1

and other ciliary proteins, immunostaining of dissociated photo-

receptors, which include the outer segments and the connecting

cilia, could not detect any whirlin signals at the connecting cilia

(data not shown). This indicated that whirlin was not a core

component of the connecting cilia. Immunoelectron microscopy

from both longitudinal (Figure 3C) and cross (Figure 3D) sections

found the immunogold labels of whirlin at a plasma membrane

microdomain in the apical inner segment, which wraps around the

connecting cilium and is usually destroyed in the dissociated

photoreceptors. Thus, data from immunofluorescent staining and

immunoelectron microscopy were consistent with whirlin localiz-

ing to a membrane microdomain that surrounds the connecting

cilia, a location that is identical to that of usherin [26] (see

Discussion).

The distribution pattern of whirlin in mouse photoreceptors was

reminiscent of a structure called the periciliary ridge complex

(PRC) found in frog photoreceptors [27]. The PRC was defined by

a morphological feature, which includes a set of ridges and grooves

with a nine-fold symmetry, seen by scanning electron microscopy.

It marks a specialized domain on the plasma membrane of the

inner segment that surrounds the base of the connecting cilium.

To examine whether whirlin was localized at this structure in

frogs, we generated an antibody against the C-terminus of frog

whirlin. Double staining of whirlin with c–tubulin and acetylated

a–tubulin, markers of basal bodies and axonemal microtubules,

respectively, showed that whirlin was localized immediately above

the basal bodies (Figure 3E) and beneath the axonemal

microtubules (Figure 3F). This is similar to the findings in mouse

photoreceptors. In a cross sectional view, the signals of whirlin

appeared as circles surrounding the basal bodies (Figure 3G). The

diameter of these circles was approximately 2 mm, which is in the

range of the previously determined diameter of the PRC [27].

Both rod and cone photoreceptors had the same distribution of

whirlin (Figure 3F and 3H). These data suggest that whirlin is a

resident protein at the PRC in frogs. The PRC as a

morphologically distinct structure is not present in mammalian

photoreceptors [28]. However, the conserved whirlin distribution

in frog and mouse photoreceptors suggests that a functionally

equivalent structure, delineated by the presence of whirlin, exists

in the latter. We refer to this PRC-homologous membrane

microdomain as the periciliary membrane complex (PMC). Thus,

whirlin is a marker of the mammalian photoreceptor PMC.

Whirlin assembles a multi-protein complex with two
known USH2 proteins at the PMC

The distribution of whirlin in photoreceptors was similar to that

of USH2A protein (usherin), which was previously reported by our

laboratory [26]. Usherin is predicted to have a PDZ-binding motif

at its C-terminus [19]. We investigated whether whirlin and the

cytoplasmic C-terminus of usherin interacted with each other.

Yeast two-hybrid analysis demonstrated their interaction and the

involvement of the first and second PDZ domains of whirlin in this

protein binding (Figure 4A). We then sought further confirmation

of their interaction by performing GST pull-down assays. We

generated frog and mouse usherin-GST fusion protein constructs

using either intact or mutant versions of the usherin C-terminal

(intracellular) domain. The mutant usherin C-terminal domain

lacked a functioning PDZ-binding motif. The expressed GST

fusion proteins were incubated with mouse retinal lysate in an

attempt to pull down whirlin. The results showed that the intact

but not the mutant usherin C-termini were able to pull down

endogenous whirlin from retinal lysate (Figure 4B). Therefore, our

studies demonstrated that whirlin and usherin directly interacted

with each other through the two N-terminal PDZ domains of

whirlin and the C-terminal PDZ-binding motif of usherin. Our

data support the findings of others reported in recent publications

[14,17].

We next evaluated the in vivo interaction between whirlin and

usherin by double labeling immunofluorescence. In WT mouse

photoreceptors, these two proteins colocalized fully at the PMC

(Figure 5A). Examination of their distribution in the retinas of

whirlin knockout, whirler and Ush2a knockout mice revealed

profound perturbation of their localization pattern. In Ush2a

knockout mice whirlin disappeared from the PMC. In whirlin

knockout mice, usherin signals was largely absent from the PMC.

In whirler mice, usherin staining was greatly reduced though not

extinguished; trace amount of usherin staining was seen uniformly

distributed at the PMC of all photoreceptors (Figure 5B). These

results suggest that the normal localization of whirlin and usherin

at the PMC depends on each other. Thus, ablation of usherin

disrupts the normal localization of whirlin, and vice versa. The

observation that usherin localization at the PMC was only partially

disrupted in whirler mice is consistent with the lack of an overt

retinal phenotype in these mice, and can be explained on the basis

that the N-terminal PDZ domains of whirlin is not disrupted by

the whirler mutation (see Discussion). Loss of binding partners also

appeared to destabilize these two proteins. Western blotting

analysis showed a reduction in the amount of usherin by 80% in

Whirlin Defect Disrupts USH2 Protein Complex
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the whirlin knockout mice (Figure 5C), and a reduction in whirlin

by 50% in the Ush2a knockout mice (Figure 5D).

VLGR1 is the third known protein to be implicated in the

USH2 etiology, and was previously reported to interact with

whirlin in vitro [14]. Therefore, we studied whether VLGR1 was in

the complex of whirlin and usherin in photoreceptors. Double

staining of VLGR1 with either whirlin or usherin in the retina

found VLGR1 to colocalize with both whirlin and usherin at the

PMC in photoreceptors (Figure 6A and 6B). VLGR1 localization

at the PMC in mouse rod and cone photoreceptors was further

verified by immunoelectron microscopy (Figure 6C). Moreover,

immunostaining demonstrated a decrease in VLGR1 signals at the

PMC in whirlin and Ush2a knockout retina (Figure 6F), and an

absence of whirlin (Figure 6D) and usherin (Figure 6E) proteins at

the PMC in the Vlgr1 knockout retina. These results indicate that

whirlin, VLGR1 and usherin form a multi-protein complex in vivo

at the PMC in photoreceptors and that functional deficits in any of

these three known USH2 proteins destabilize this complex and

disrupt its function.

Whirlin, usherin, and VLGR1 are in the same multi-protein
complex at the stereocilia of hair cells

Along the cochlear spiral, there are one row of inner hair cells

and three rows of outer hair cells. The inner hair cells are

responsible for mechanoelectric transduction, whereas the

electromotile outer hair cells also perform an electromechanical

transduction, thereby amplifying the sound-evoked vibrations of

the entire sensory epithelium. Both types of hair cells have

stereocilia on their apical surfaces, which are modified microvilli

filled with bundles of actin filaments. The tips of the stereocilia

are for the sites of the mechanoelectric transduction channels.

Because of the involvement of USH2 proteins in hearing

impairment in humans, we studied their localization in the

cochlea. Double staining of the cochleas from mice aged at

postnatal day (P) 3–6 showed VLGR1 colocalized with whirlin

and usherin in the stereocilia bundles of both inner (data not

shown) and outer hair cells (Figure 7A and 7B). The three USH2

proteins are localized to the ankle-link complex of the hair cell

stereocilia [21]. This ankle-link complex appears as fine

extracellular fibers at the base of the stereocilia bundle during

development (P2–P12) [29]; however, its exact function is not

clear. To study whether the three USH2 proteins are interde-

pendent at the ankle-link complex as at the PMC, we examined

their distribution in hair cells in whirlin and Ush2a knockout mice

at P3–P6. The signals of whirlin and VLGR1 were decreased in

Ush2a knockout mice and the signals for usherin and VLGR1

were decreased in whirlin knockout mice (Figure 7C). These data

are consistent with the reported findings of mislocalization of

USH2 proteins in whirler mice and one line of the Vlgr1 mutant

mice [21], and support the notion that whirlin, usherin and

VLGR1 also form a multi-protein complex at the ankle-link

complex of the stereocilia in hair cells, and the normal subcellular

localizations of these three proteins are, to some extent,

dependent on one another in the cochlea.

Disruption of the N-terminal PDZ domains of whirlin
leads to both vision and hearing defects in mice

Retinal function tested by electroretinogram (ERG), a

recording of the retinal electrical response to flashes of light,

and histology examined by light microscopy did not reveal overt

Figure 4. Whirlin directly interacts with usherin. (A) A yeast two-
hybrid analysis demonstrates that mouse whirlin, through its N-terminal
two PDZ domains (whirlin N-term), interacts with the C-terminal
fragment of mouse usherin. The ‘‘+’’ sign denotes growth of large, white
yeast colonies and ‘‘2’’ denotes absence of colonies. This experiment
was conducted in two orientations. (B) A GST pull-down assay
demonstrates that the intact C-terminal fragments of mouse and frog
usherin, but not the mutant ones, which lack the PDZ-binding motif,
were able to pull down the endogenous whirlin from the retinal lysate,
indicating that the PDZ-binding motif of usherin is involved in the
interaction between whirlin and usherin. The arrows on the GST blot
indicate the positions of mouse and frog GST-fused usherin fragments
and GST. The multiple bands below the mouse and frog GST-fused
usherin fragments are their degraded products.
doi:10.1371/journal.pgen.1000955.g004

Figure 3. Whirlin is localized at the PMC and at the PRC. Whirlin is localized at the PMC in mouse photoreceptors (A–D) and at the PRC in frog
photoreceptors (E–H). (A) Whirlin (red, arrowheads) was localized closely next to the connecting cilia, marked by RPGR (green), between the inner and
outer segments in the mouse retina. The corresponding phase contrast image is attached on the right. (B) Whirlin (red, arrowheads) was localized
obliquely below the signals of RP1 (green) in mouse photoreceptors. The corresponding phase contrast image is attached on the right. (C,D) Gold
labels of whirlin (arrowheads) are present on the plasma membrane of inner segments facing the connecting cilia as shown by the longitudinal (C)
and transverse (D) views of immunoelectron microscopy. (E–H) Whirlin (green) was localized above the basal bodies marked by c-tubulin (red, E,H)
and below the axonemal microtubules marked by acetylated a-tubulin (red, F) in the longitudinal views of frog photoreceptors. It appears as circles
surrounding the basal bodies in the transverse view (G). The distribution of whirlin is same in both rod and cone photoreceptors (F,H). The merged
images on the right (E–H) are superimposed immunofluorescent images and their corresponding phase contrast images. OS, outer segments; CC,
connecting cilia; IS, inner segments; DIC, differential interference contrast image; BB, basal body. Scale bars, 5 mm (A,B,E–H), 200 nm (C,D).
doi:10.1371/journal.pgen.1000955.g003
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retinal degeneration in whirlin knockout mice up to 24 months of

age (data not shown). However, morphological defects were

evident at the ultrastructural level as early as 5 months of age.

Examination by electron microscopy found membrane fusion

between the apical inner segment and the connecting cilium and

accumulation of vacuoles next to the PMC in the apical inner

segment (Figure 8). The synaptic terminus of photoreceptors

appeared normal (data not shown). Further analysis of whirlin

knockout mice aged from 28 to 33 months found that the

amplitudes of both a- and b-waves of dark-adapted ERG

recordings significantly decreased compared to their heterozy-

gous littermate controls. The light-adapted ERG amplitudes also

decreased although the difference did not reach statistical

significance (Figure 9A and Table 1). Histological examination

of the eyes from this cohort of animals found that the

photoreceptor nuclear layer was significantly thinner and the

outer segments shortened in the whirlin knockout mice (Figure 9B

and 9D), which are signs for retinal degeneration. Thus both

Figure 5. Whirlin and usherin are colocalized in photoreceptors. (A) Whirlin (green) and usherin (red) were colocalized at the PMC in
mouse photoreceptors. The bottom panels are the enlarged view of the region marked by the frame in the merged image on the top. (B) The
signals of usherin (red, top) and whirlin (green, bottom) were mislocalized from the PMC in whirlin knockout (whirlin2/2), whirler mutant
(whirlinwi/wi) and Ush2a knockout (Ush2a2/2) mice (see results section for details). OS, outer segments; CC, connecting cilia; IS, inner segments.
Scale bars (A,B), 5 mm. (C) The amount of usherin was reduced by about 80% in the retina of whirlin knockout mice as analyzed by
immunoblotting. (D) The amount of whirlin was reduced by about 50% in the retina of Ush2a knockout mice as analyzed by immunoblotting.
The images on the top of the bar charts in (C,D) are the representative western blots of usherin and whirlin, respectively. The signals of a-tubulin
were used as a loading control. Error bars in (C,D) represent the standard error of the mean. The numbers in the bottom of each bar (C,D) are
the numbers of animals analyzed.
doi:10.1371/journal.pgen.1000955.g005
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functional and morphological assays indicate that the whirlin

knockout mice develop late-onset retinal degeneration. In

contrast, histological examination of the whirler mouse retina

from 28 to 33 months of age did not find any abnormalities

compared with age-matched wild-type controls (Figure 9C and

9E).

We measured distortion product otoacoustic emissions

(DPOAE) to assay cochlear function in two groups of whirlin

knockout mice at 2 and 9 months of age, respectively

(Figure 10A). At both ages, knockouts showed no cochlear

responses (i.e. thresholds were above the measurement ceiling at

which the system produces its own distortion components), thus

demonstrating a profound congenital hearing loss across all

cochlear frequencies. Light microscopic evaluation of whirlin

knockout ears at 2 months of age (data not shown, n = 2) showed

only sporadic loss of hair cells in the mid-basal turn. All other

accessory structures of the inner ear, including spiral ligament

and stria vascularis, appeared normal. There did not appear to be

a substantial loss of cochlear neurons. Scanning electron

microscopy was performed to examine the morphology of

Figure 6. VLGR1 is colocalized with the complex of whirlin and usherin at the PMC in photoreceptors. VLGR1 (red) was colocalized with
whirlin (green, A) and usherin (green, B) at the PMC in mouse photoreceptors. Immunoelectron microscopy (C) demonstrated that the gold labels of
VLGR1 were present at the plasma membrane of the apical inner segment facing the connecting cilium, the PMC, in both mouse rod and cone
photoreceptors (arrowheads). The signals of whirlin (D) and usherin (E) disappeared at the PMC in Vlgr1 knockout photoreceptors. The signals of
VLGR1 diminished in whirlin and Ush2a knockout mice (F). The staining of VLGR1 in wild-type (WT) and Vlgr1 knockout mice serves as a positive and
negative control, respectively. OS, outer segments; CC, connecting cilia; BB, basal bodies; Rt, the rootlet; IS, inner segments; CP, calycal processes.
Scale bars, 5 mm (A,B,D–F) and 200 nm (C).
doi:10.1371/journal.pgen.1000955.g006
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cochlear stereocilia. Throughout the cochlear spiral, hair bundles

on outer hair cells were abnormally compressed in the spiral

dimension, i.e. the angle between the two limbs of the ‘‘V’’

shaped formation was smaller in the knockout ears (Figure 10B).

In general, the hair bundle formation exhibits a ‘‘U’’ shape,

which is a morphological defect characteristic of USH2 mutant

mice [21,26,30]. Closer examination (Figure 10C) showed that,

although some outer hair cell stereocilia bundles were normal

with obvious interstereocilia links, many showed a patchy loss of

stereocilia from the innermost (shortest) row of stereocilia. The

inner hair cell stereocilia were normal in appearance throughout

the cochleas. Given the critical role of outer hair cells in cochlear

amplification and the production of DPOAEs, these stereocilia

abnormalities in whirlin knockouts could explain the cochlear

dysfunction.

Discussion

The whirlin knockout mice characterized in this study have a

late-onset retinal degeneration and a congenital, non-progressive

hearing impairment. This phenotype reiterates the clinical features

of USH2D disease in humans [12]. Therefore, this whirlin

knockout mouse line is an appropriate animal model for studying

the pathogenesis of this disease. In this study, we have provided

definitive evidence on the in vivo interaction of whirlin with usherin

and VLGR1 in both the retina and the inner ear. Because these

Figure 7. Whirlin, usherin and VLGR1 are colocalized in stereocilia of inner ear hair cells at postnatal day 4. Whirlin (green, A) and
usherin (green, B) were colocalized with VLGR1 (red) in stereocilia in the mouse cochlea. Signals of whirlin (green, top row in C) and usherin (green,
middle row in C) diminished in hair cell stereocilia (phalloidin, red) in the Ush2a and whirlin knockout cochleas, respectively. Signals of VLGR1 (green,
bottom row in C) diminished at the hair cell stereocilia in both whirlin and Ush2a knockout cochleas. OH, outer hair cells; IH, inner hair cells. Scale
bars, 5 mm.
doi:10.1371/journal.pgen.1000955.g007
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three proteins are all involved in USH2, this finding suggests that

the USH2 proteins function coordinately as a multi-protein

complex in vivo. Usherin and VLGR1 are proteins with an

extremely large extracellular region containing multiple repeats of

a number of known cell adhesion motifs. It is believed that usherin

and VLGR1 may participate in the linkage to various extracellular

matrix proteins and/or cell adhesion proteins. Thus, it is essential

that they be anchored at specific plasma membrane microdomains

Figure 8. Whirlin knockout mice have morphological defects around the PMC in photoreceptors revealed by electron microscopy.
(A) A representative image showing the normal ultrastructure around the PMC in the wild-type photoreceptor (whirlin+/+). (B–F) In whirlin knockout
mice (whirlin2/2), abnormal distance (E) and membrane fusion (empty arrows, B–E) between the apical inner segment and the connecting cilium
were found. In addition, a large amount of vacuoles (filled arrows, D–F) were accumulated around the PMC. (D,D9) show the same cell at different
sectioning levels. OS, outer segments; CC, connecting cilia; IS, inner segments. Scale bars, 200 nm. (G) All the above abnormalities exist in a small
fraction of photoreceptors randomly distributed in the retina of whirlin knockout mice. The number of mice analyzed in each group is indicated in the
bottom of each bar. Mean 6 SEM; **, p,0.01.
doi:10.1371/journal.pgen.1000955.g008
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of the cells to fasten these linkages. Their interaction with whirlin

appears to provide this anchorage by binding them to a

submembrane protein supramolecular complex. Moreover, the

localization of the protein supramolecular complex at the plasma

membrane of the PMC requires binding of whirlin to usherin and

VLGR1. As a result, the three proteins are interdependent for

their normal subcellular localization and stability in photorecep-

tors (Figure 11) and hair cells. In the absence of one USH2

protein, the other two USH2 partner proteins are dispersed and

destabilized, and are presumed to no longer function normally.

This observation has important implications for understanding the

disease mechanisms of USH2. First, all three USH2 subtypes,

despite their genetic heterogeneity, affect the same subcellular

target in photoreceptors and hair cells. Second, loss of one USH2

gene function is predicted to be functionally close to loss of all

three. Third, the photoreceptor degeneration in USH2 disease

arises from dysfunction of the PMC, a subcellular structure that is

conserved from amphibian to mammalian photoreceptors.

Figure 9. Retinal degeneration becomes apparent in whirlin knockout mice at 28–33 months of age. (A) Representative dark-adapted
ERG tracings show reduced a- and b-waves in response to a series of white light stimuli in whirlin knockout mice at this age. (B) Representative 1-mm
retinal sections stained with toluidine blue show shortened OS and reduced ONL in whirlin knockout mice. Scale bars, 5 mm. (C) Representative 1-mm
retinal sections stained with toluidine blue show comparable thickness of OS and ONL between whirler mice and age-matched WT (whirlin+/+) mice.
Scale bars, 5 mm. (D) Measurement of OS length and ONL thickness at different locations along the vertical meridian in whirlin knockout retinas. The
number of mice measured at each location in each group is indicated above or below the lines. The error bar represents the standard error of the
mean. *, p,0.05. Whirlin heterozygous littermates were used as a control in these studies. (E) Measurement of OS length and ONL thickness at
different locations along the vertical meridian in whirler retinas. The numbers of mice measured at each point in whirler and age-matched wild-type
cohorts are indicated below and above the lines, respectively. The error bar represents the standard error of the mean. RPE, retinal pigment
epithelium; OS, outer segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer.
doi:10.1371/journal.pgen.1000955.g009

Table 1. ERG analysis in whirlin knockout mice at 28–33
months of age.

Control whirlin2/2

ERGs

Dark-adapted

a-wave amplitude
(mV)

169.6610.6, 4 82.4614.2, 7 (,0.004)

b-wave amplitude
(mV)

570.3647.9, 4 318.7645.4, 7 (,0.004)

Light-adapted

b-wave amplitude
(mV)

71.7611.0, 4 47.168.2, 7

Values are given as mean 6 SEM, n (p). n denotes the number of animals
analyzed. p values are given where significant.
doi:10.1371/journal.pgen.1000955.t001
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Figure 10. Whirlin knockout mice have non-progressive hearing defects. (A) DPOAE analysis demonstrates that whirlin knockout mice have
profound hearing loss at all stimulus frequencies, as measured at either 2 or 9 months of age. (B) Scanning electron microscopy shows scattered loss
of outer hair cells (arrows) in the basal turn and dysmorphology of the stereocilia bundles in all cochlear regions (e.g. open arrowheads) in whirlin
knockout mice. (C) At high magnification, in whirlin knockout mice, the inner hair cell stereocilia appear normal (left column); the outer hair cells
show patchy loss of stereocilia in the innermost (shortest) row of the hair bundle (arrowheads, middle column); the interstereocilia links of the outer
hair cells appear normal (arrowheads, right column). OH, outer hair cells; IH, inner hair cells. Scale bars, 5 mm (B) and 1 mm (C).
doi:10.1371/journal.pgen.1000955.g010
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The PRC, the analogous structure of the PMC in frog

photoreceptors, is a set of nine symmetrically arrayed ridges and

grooves, seen by scanning electron microscopy, at the apical inner

segment membrane surrounding the connecting cilium. Originally

discovered over 20 years ago [31,32], the molecular components of

the PRC had remained unknown. In the present study, we show

that whirlin is a component of the PRC, the first identified marker

for this complex in frogs. Although a morphologically apparent

PRC structure in mammalian photoreceptors has not been seen, the

similar localization pattern of whirlin in frog and mouse

photoreceptors strongly suggests that a functional equivalent

structure of the PRC exists in mammalian photoreceptors. Hence,

we propose that the mammalian equivalent of the PRC be

designated the periciliary membrane complex (PMC). Our group

was the first to propose the concept of a PRC equivalent structure in

mammalian photoreceptors based on the subcellular distribution of

whirlin [33]. Our findings in the present study of the subcellular

localization and functional interaction among whirlin, usherin and

VLGR1 in mouse photoreceptors further strengthen this argument.

In frogs, numerous rhodopsin-containing vesicles are present in the

surrounding cytoplasm of the PRC, suggesting that the PRC may be

a docking site of vesicles transporting newly synthesized rhodopsin

from the Golgi [32]. Consistent with this theory, we found

accumulation of vacuoles around the PMC in a small proportion

of photoreceptors in whirlin knockout mice. However, in both

whirlin knockout and Ush2a knockout mice [26], polarized

Figure 11. Schematic diagrams illustrate the USH2 multi-protein complex at the PMC in photoreceptors. (A) Localization of the
complex of whirlin (red), usherin (green) and VLGR1 (yellow) at the PMC in mammalian photoreceptors. On the left is a whole-cell view. On the right
are the enlarged longitudinal and cross-sectional views. (B) The interactions among whirlin, usherin and VLGR1. PR, proline-rich region; LamGL, LamG-
like jellyroll fold domain; LamNT, laminin N-terminal domain; EGF-Lam, laminin-type epidermal growth factor-like domain; FN3, fibronectin type 3
domain; LamG, laminin G domain; PBD, PDZ-binding motif; Calx-b, domains in Na-Ca exchangers and integrin-beta4; PTX, pentraxin domain; EPTP,
epitempin domain.
doi:10.1371/journal.pgen.1000955.g011
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distribution of rhodopsin to the outer segments was not measurably

disrupted as shown by immunofluorescence. This observation

suggests that either loss of these proteins is not sufficient to abolish

completely the organization and function of the PMC, or alternative

routes exist in mammalian photoreceptors for targeting rhodopsin

to the outer segments. It is also possible that the USH2 protein

complex is not involved directly in protein trafficking but plays only

a structural role. Interestingly, we have found that the spacing

between the PMC and the connecting cilium became irregular in

whirlin knockout mice and there was frequent occurrence of

membrane fusion between the PMC and the connecting cilium.

These findings indicate that the USH2 proteins are important in

maintaining the integrity of the spatial relationship between the

PMC and the juxtaposing connecting cilium.

A series of in vitro analyses have found that whirlin is able to

interact with calmodulin-dependent serine kinase [34], NGL-1

[24], SANS [23], myosin VIIa [24] as well as usherin [17] and

VLGR1 [14]. Among these proteins, SANS and myosin VIIa are

involved in human Usher syndrome type I [20,35]. They have

been reported to localize at or in the vicinity of the connecting

cilium in photoreceptors [23,36]. In inner ear hair cells,

immunostaining, biochemical and cellular analyses suggest that

the interaction between whirlin and myosin XVa through the

PDZ domains of whirlin is required for delivery of whirlin to the

tip of stereocilia [13,24,37]. Additionally, whirlin has been shown

to interact with p55 in hair cells [38]. Therefore, some of these

proteins might be candidate components of the PMC, although

further studies are necessary to verify their presence in the PMC in

vivo, Such studies could lead to a more comprehensive under-

standing of this specialized membrane domain.

In the inner ear hair cells, the interaction among whirlin, usherin

and VLGR1 plays a similar role in localizing the USH2 protein

complex at their normal subcellular location, i.e., the stereocilia.

Here, the interactions among the three proteins may be subtly

different from those in photoreceptors. The three proteins may not be

completely dependent on one another for their normal localization in

hair cells, as indicated by the incomplete loss of the complex from

stereocilia in whirlin and Ush2a single knockouts. Usherin and

VLGR1 have been demonstrated in this study and a recent study [14]

to bind to the N-terminal two PDZ domains in whirlin. In the inner

ear, the high abundance of whirlin short isoform, which lacks these

two PDZ domains, may make the interaction of whirlin long isoform

with usherin and VLGR1 partially redundant. Additionally, there

may be different proteins participating in the formation and

localization of the multi-protein complex containing whirlin, usherin

and VLGR1 between photoreceptors and hair cells. For example, a

unique exon in the cytoplasmic region of usherin in hair cells, which is

missing in photoreceptors [17], may provide a platform for binding

yet unidentified proteins in hair cells.

In contrast to previous studies on the localization of USH2

proteins in photoreceptors [14,22,23], we localized whirlin and

VLGR1 only to the PMC in photoreceptors as what we have found

for usherin in one of our recent publications [26]. To further

confirm this finding, we rigorously exploited two approaches,

double immunostaining of whirlin with different subcellular

structure markers in two different species and immunoelectron

microscopy. We determined the specificity of our antibodies of

USH2 proteins in western blotting and immunostaining using

USH2 mutant mice as valid negative controls. Additionally,

ultrastructural examination of whirlin knockout mice found various

defects only around the PMC but not in other regions, such as the

synaptic terminus, in photoreceptors. Therefore, our study presents

strong evidence that the USH2 proteins are only located at the

PMC in photoreceptors.

Comparison of whirlin knockout mice generated in this study

with the whirler mice demonstrates that whirlin long isoform plays

an essential role in photoreceptors. In our whirlin knockout mice,

whirlin long isoform including the first and second PDZ domains,

which bind to usherin, have been disrupted. By immunofluores-

cence, usherin is lost from the PMC (Figure 5B). Since usherin is

required for maintaining the long term viability of photoreceptors

[26], the absence of usherin from the PMC could be responsible, at

least in part, for the late-onset retinal degeneration in whirlin

knockout mice. In whirler mice, a large deletion in the whirlin gene

(Figure 1A) removes all predicted translational start codons of the

short isoform and a portion of the proline-rich region. This

mutation, therefore, is believed to completely ablates the short

isoform and truncates the long isoform leaving only the N-terminal

PDZ domains intact. Furthermore, an N-terminal whirlin transcript

that we have found in abundance by cDNA library screening is

predicted to produce a protein that retains the first PDZ domain.

These N-terminal whirlin protein variants appeared to partially

compensate for the loss of the intact whirlin long isoform. Indeed, in

whirler mice a reduced amount of usherin is still found at the PMC

in photoreceptors (Figure 5B). This residual whirlin/usherin

function appears to be sufficient in maintaining photoreceptor

viability, and hence no photoreceptor degeneration was found in

whirler mice. Our finding that whirlin long isoform protein alone is

expressed in the retina further supports the notion that the long but

not the short variant of whirlin is required in photoreceptors.

The differences in hearing and vestibular dysfunction and in hair

cell stereocilia defects between whirlin knockout and whirler mice

suggest that whirlin long and short isoforms may function differently

in hair cells. In whirlin knockout mice, only the outer hair cell

stereocilia exhibit an abnormal ‘U’ shape formation, while the inner

hair cell stereocilia appear normal. These whirlin knockout mice are

partially deaf and have no circling behavior (no vestibular defect).

But in whirler mice, besides the abnormal ‘U’ shape stereocilia

formation in the outer hair cells, the inner hair cells have

significantly shortened stereocilia [10,39,40]. These mice are

completely deaf and exhibit a vestibular balance problem.

The position-dependent outcome of whirlin gene mutations

observed in mice is also apparent in humans. In a German USH2

family, compound heterozygosity of a nonsense mutation

p.Q103X and a mutation in the splice donor site, c.837+1G.A,

which are in the 59-terminal region of the whirlin gene, was found

to cause USH2 [12]. In addition, a nonsense mutation, p.R778X,

and a single nucleotide deletion, c.2324delG, leading to a deletion

of the C-terminus of the whirlin protein were found responsible for

deafness DFNB31 [10,11]. Therefore, in both humans and mice,

mutations at the N-terminus of the whirlin protein cause both

vision and hearing impairments (our study and [12]), while

mutations at the C-terminus of the whirlin protein cause more

severe hearing defects only [10,11]. These data support our

conclusion that the long isoform plays an essential role in

photoreceptors, while the short isoform functions primarily in

hair cells. In summary, this study provides strong evidence that

USH2 proteins form a multi-protein complex in which the whirlin

long isoform plays a key role. This complex is localized at the

PMC in photoreceptors and the stereocilia in hair cells. Disruption

of this USH2 protein complex could be the common pathogenic

mechanism underlying all three subtypes of human USH2 disease.

Materials and Methods

Generation of whirlin knockout mice
Two genomic DNA fragments (2.8 and 6 kb) flanking the 39

portion of the first exon of whirlin were amplified from 129/Sv
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mouse genomic DNA by PCR, and inserted separately as the short

and long arm into a modified pGT-N29 vector, which contained a

diphtheria toxin expression cassette as a negative selection marker

(Figure 1B). The targeting vector was linearized and electroporat-

ed into R1 embryonic stem (ES) cells. An ES clone was found to

have the partial replacement of the first exon of whirlin by the

Neor gene, and was microinjected into C57BL/6 blastocysts. The

resulting chimeras were crossed with C57BL/6 mice. Heterozy-

gous and homozygous knockout mice were identified with respect

to the targeted allele by PCR (Figure 1C). The MEEI institutional

guidelines were followed on all animal procedures.

Isolation of genomic DNA and total RNA, PCR, and RT–
PCR reactions

A tiny piece of the mouse tail (about 2 mm long) was lysed by

proteinase K at 50uC overnight in tissue lysis buffer (100 mM Tris-

HCl pH 8.0, 200 mM NaCl, 5 mM EDTA, and 0.2% SDS). The

genomic DNA was precipitated from the resulting lysate by adding

the same volume of isopropanol and centrifugation. The pellet was

finally dissolved in TE buffer. The total RNA was isolated using

TRIzol Reagent (Invitrogen) according to the manufacturer’s

instruction. RT (ThermoScriptTM RT-PCR system, Invitrogen)

and PCR (Expand long template PCR system, Roche Diagnostics)

reactions were performed following the manufacturer’s instructions.

Antibodies
Mouse whirlin cDNA fragments (PDZ320, 1–320 aa; PDZIE,

315–580 aa, accession number, NP_082916) and frog whirlin

cDNA fragment (analogous to mouse whirlin 816–907 aa) were

inserted into the expression vector pET28 (Novagen). Recombi-

nant proteins were expressed as His-tagged fusion proteins in

Escherichia coli host BL21-CodonPlus (DE3)-RIPL. The recombi-

nant proteins were purified through a Ni2+-charged nitriloacetic

acid agarose column and were used to immunize rabbits and

chickens. Whirlin-specific antibodies were affinity-purified from

antisera or egg yolk extracts. Usherin antibodies used in this study

were raised against the N-terminal and C-terminal domains of the

protein [26]. RP1, RPGR and CIP98 antibodies were as described

previously [25,34,41,42]. VLGR1 antibody was kindly provided

by Dr. Perrin C. White (University of Texas Southwestern

Medical Center, Dallas, Texas). Mass1 (C20) antibody was

purchased from Santa Cruz Biotechnology, Inc. Monoclonal

anti-c-tubulin and anti-acetylated a-tubulin antibodies were

obtained from Sigma-Aldrich. Alexa fluorochrome-conjugated

phalloidin and secondary antibodies, and Hoechst dye 33342 were

obtained from Molecular Probes, Inc.

Yeast two-hybrid analysis
Mouse whirlin and its fragments (full-length, 3–907 aa; N-

terminus, 3–472 aa; C-terminus, 438–907 aa, accession number,

NP_082916) and mouse usherin fragment (5053–5193 aa,

accession number, NP_067383) were amplified from the retina

and individually cloned into both pGBKT7 and pGADT7 vectors.

Yeast two-hybrid analysis was performed as described previously

[43]. Briefly, a protein/peptide in pGBKT7 vector was co-

transformed with its putative interacting protein/peptide in

pGADT7 vector. Empty pGBKT7 and pGADT7 vectors were

used as negative controls. Co-transformants were grown on both

SD-4 (-Leu, -Trp, -Ade, and -His) and SD-2 (-Leu and -Trp)

plates. The growth on SD-4 plates indicated an existence of

interaction between the two co-transformed proteins/peptides. In

our experiments, all co-transformants were able to grow on SD-2

plates indicating a successful co-transformation.

GST pull-down assay, immunoprecipitation, and western
blotting

GST pull-down assay: cDNA fragments of intact (mouse: 5053–

5193 aa, NP_067383; frog: analogous to mouse usherin 5053–

5193 aa) and mutant (without PDZ-binding domain, mouse:

5053–5186 aa, NP_067383; frog: analogous to mouse usherin

5053–5189 aa) C-terminal usherin were amplified from frog and

mouse retinas and cloned into the pGEX4T-1 vector. The GST-

fused intact and mutant usherin were expressed in BL21-

CodonPlus (DE3)-RIPL cells and then incubated with mouse

retinal lysate and glutathione sepharose beads for 2 hours at 4uC.

Subsequently, the sepharose beads were washed with lysis buffer

(50 mM Tris-HCl pH8.0, 150 mM NaCl, 0.5% TritonX-100,

5 mM EDTA, 0.5 mM PMSF, 16protease inhibitor, and 1 mM

DTT) for three times and boiled in Laemmli sample buffer for

10 minutes. All the procedures were performed at 4uC. Retinal

lysates incubated with glutathione sepharose beads and GST or

only with GST were used as negative controls.

Immunoprecipitation: Dissected retinal or inner ear tissues were

homogenized and incubated for about 60 minutes in lysis buffer.

After centrifugation at 18,000 g for 10 minutes, the supernatants

were precleared by incubation with protein G sepharose

(Amersham Biosciences) for 1 hour. Subsequently, they were

incubated with the primary antibodies for 3 hours and then

centrifuged at 18,000 g for 10 minutes. The resulting supernatants

were incubated with protein G sepharose for an additional 1 hour.

After a brief centrifugation at 2000 g, the pellets were washed with

lysis buffer for four times and then boiled in Laemmli sample

buffer. All the procedures were performed at 4uC. A non-immune

rabbit IgG served as a negative control. Western blotting was

carried out as described previously [43].

Immunofluorescence, immunoelectron microscopy,
transmission electron microscopy, and scanning electron
microscopy

Immunofluorescence: Eyes were enucleated, frozen immediate-

ly and sectioned at 10-mm thick. Sectioned tissues were fixed in 4%

formaldehyde/PBS for 10 minutes (for usherin staining, 2%

formaldehyde/PBS for 5 minutes), and permeabilized by 0.2%

Triton X-100/PBS for 5 minutes at room temperature. Pup heads

on postnatal day 3–6 were fixed in 4% formaldehyde/PBS for

about 36 hours, switched to 30% sucrose/PBS for several days,

and sectioned at 30-mm thick. The subsequent steps of blocking

and incubation with primary and secondary antibodies were as

described previously [43]. Alexa 488- and 594-conjugated

secondary antibodies were routinely used for tissue double-

labeling. Stained sections were viewed and photographed on a

fluorescent microscope (Olympus, model 1X70) equipped with a

digital camera (Carl Zeiss MicroImaging, Inc.) or on a confocal

laser scanning microscope (Leica, model TCS SP2).

Immunoelectron microscopy: Eyes were enucleated. Their

anterior segments and lens were removed. Dissected retina was

fixed with 4% formaldehyde/PBS (whirlin) or 2% formaldehyde/

0.1% glutaraldehyde/PBS (VLGR1) for 30 minutes, washed with

TTBS buffer (Tween/Tris-buffered saline), blocked in 5% goat

serum/TTBS for 1 hour, and incubated with the primary

antibodies at 4uC overnight. After rinses, the retina was incubated

with Nanogold goat anti-rabbit antibody (Aurion, Wageningen,

The Netherlands), post-fixed sequentially with 1% formaldehyde/

2.5% glutaraldehyde/0.1 M cacodylate buffer and 2% osmium

tetroxide. Later, it was silver-enhanced, dehydrated, embedded in

Epon, and sectioned at 70 nm thickness. In an alternative

protocol, the retina was fixed in 2% formaldehyde/0.1%
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glutaraldehyde/PBS for 30 minutes, frozen and cut to 10 mm

sections prior to staining with primary and secondary antibodies.

Staining was done while floating in a dish. After final wash, the

sections were post-fixed and processed for immunoEM as above.

ImmunoEM for whirlin were studied with both methods which

yielded the same results. ImmunoEM for VLGR1 used the

alternative protocol.

Transmission electron microscopy and scanning electron

microscopy was performed as described previously [26,43].

Morphological analyses of the retina
Measurements of photoreceptor outer segment length and outer

nuclear layer thickness were made along the vertical meridian

(superior to inferior) at five locations to each side of the optic nerve

head separated by approximately 600 mm each. Measurements

began at approximately 200 mm from the optic nerve head and

ended at approximately 200 mm from the retinal periphery. For

the analysis in the whirlin knockout mice, seven whirlin knockouts

and five whirlin heterozygous littermates from 28–33 months of

age were included. For the analysis in the whirler mice, three

whirler mice aged from 28–33 months and two age-matched wild-

type mice were included.

Photoreceptors with abnormal morphology around the PMC

were counted at the retinal mid-periphery. Abnormal morphology

was defined as membrane fusion between the apical inner segment

and the distal connecting cilium or vacuole accumulation in the

apical inner segment around the PMC. The presence of at least 3

large vacuoles (diameter is larger than 200 nm) or 4 small vacuoles

(diameter is about 100 nm) was considered as vacuole accumu-

lation. Four wild-type and six whirlin knockout mice at the age

from 5 to 24 months were included in this experiment.

The Student’s t-test was conducted to compare the measured

values of whirlin knockout and control mice. A P value of less than

0.05 was considered to indicate a significant difference between

the two groups.

ERG and DPOAE measurements
ERG and DPOAE recordings were performed as described

previously [26,44].
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