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Micro-Environmental Mechanical Stress Controls Tumor
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Abstract

Background: Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor
spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or
the molecular pathways involved.

Methodology/Principal Findings: We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and,
using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in
micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive
stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid
shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical
stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that
mechanical stress-induced apoptosis occurs via the mitochondrial pathway.

Conclusions/Significance: Our results provide detailed, quantitative insight into the role of micro-environmental
mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the
level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by
compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis
and proliferation.
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Introduction

The growth of solid tumors is strongly influenced by its

microenvironment. Besides well-studied microenvironmental pa-

rameters, such as hypoxia [1,2] and angiogenesis [3–5], mechanical

stresses also play an important role. For a solid tumor to grow in a

confined space defined by the surrounding tissue, it must overcome

the resulting compressive forces. It has been shown that tumors and

their associated stroma are mechanically stiffer than the corre-

sponding normal host tissue [6], and that mechanical compression

in such an environment can collapse blood and lymphatic vessels

[7]. However, our understanding of how this compression directly

influences tumor growth is limited. Various hypotheses have been

proposed regarding the involvement of mechanical stresses in tumor

development [8–11], and Helmlinger et al. [12] conducted the first

quantification of spheroid growth inhibition in agarose gels. They

found that human colon carcinoma spheroids can grow to a

maximum size of 400 mm (diameter) in 0.5% (w/v) agarose, but

only 50 mm in 1.0% agarose (which is less compliant). This was

associated with an increase in cell packing and a decrease in cell

proliferation. They also showed that such inhibition of tumor

growth can be reversed by releasing the spheroids from the gel. Yet

several key questions remain unanswered, including: (1) What is the

nature of the stress field around growing tumor spheroids? (2) Can

local solid stress distribution affect the shape of tumor spheroids? (3)

Does solid stress distribution also affect cell phenotype in different

regions of individual spheroids? (4) What is the intracellular

pathway that regulates the solid stress-induced phenotypic chang-

e(s)? These questions are critical for a fundamental understanding of

solid tumor growth dynamics.

In this study, we show that the accumulating solid stress in agarose

gels around growing tumor spheroids (non-metastatic murine

mammary carcinoma 67NR cells unless stated otherwise) can be

measured using co-embedded fluorescent micro-beads (diame-

ter = 1 mm) as markers for strain in the gel: agarose gels are resistant

to degradation by cancer cell proteinases [13], and thus allow studies

of solid stress accumulation independent of cell invasion. We

demonstrate that the shape of the solid stress field dictates the shape

of tumor spheroids and that this effect is due to suppression of cell

proliferation and induction of cell apoptosis in regions of high solid

stress. Finally, we elucidate the molecular mechanism for the solid

stress-induced apoptosis.
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Results

Growing tumor spheroids progressively compress the
surrounding matrix

Fig. 1A shows the growth of a typical tumor spheroid (green) co-

embedded with micro-beads (red) in 0.5% agarose gel for 30 days

(see experimental setup in Supplementary Fig. S1A). Analysis via

3D confocal microscopy revealed that the agarose gel was

progressively compressed by the growing spheroid (Fig. 1B). At

early time points, there was much fluctuation in the micro-bead

density (rbeads), mainly because the spheroid was still fairly small

and, as a result, the sampling volume for measuring rbeads was

limited. Significant increases in rbeads started to appear at day 17

when the spheroid diameter (Dsphd) was only ,150 mm. By day 30,

Dsphd had reached ,250 mm and rbeads in the first 10 mm-thick

shell of agarose gel (rbeads,1) was ,1.6 times that of unstressed gels,

corresponding to a 37.5% strain (egel,1). Significant strain was

limited to the immediate vicinity of the spheroid: rbeads decreased

to its control level within ,50 mm from the spheroid surface

(Fig. 1B, day 30 curve). The relationship between spheroid growth

and the resulting strain in the agrose gel is linear in the range of

Dsphd measured in our study (Fig. 1C). From published mechanical

properties of 0.5% agarose gel [14], we estimated that the spheroid

in Fig. 1A imposed ,28 mmHg of solid stress on the immediately

adjacent matrix at day 30, similar to the value estimated

theoretically by Helmlinger et al. [12]. For spheroids grown in

1.0% gel, the sampling volume for the quantification of micro-

bead density was too small because most spheroids could not grow

larger than 50 mm in diameter.

Tumor spheroid shape correlates strongly with the shape
of local solid stress field

In the vicinity of some spheroids, the gel failed under the tension

produced by the spheroid growth. This resulted in micro-scale

planar cracks in the gel (Fig. 2A, arrowheads). Although the

spheroids selected for analysis in Fig. 1 did not reside within such

cracks and were all nearly spherical in shape, spheroids that did

exist within cracks adopted oblate shapes (i.e., flattened spheres,

Fig. 2A; also see Movie S1 for 3D rendering). Quantification of

micro-bead density around typical spherical and oblate spheroids

revealed a strong correlation between spheroid shape and the

shape of the local mechanical stress field (Fig. 2B, 2C). This was

further confirmed by the results from similar analysis on ,25

spheroids of various shapes (Figs. 2D). Helmlinger et al. observed a

similar phenomenon by growing spheroids in 1-mm capillary glass

tubes: the spheroids elongated along the tube axis, presumably in

response to the local stress field [12].

High solid stress suppresses cell proliferation and induces
apoptotic cell death in tumor spheroids

To investigate potential phenotypic changes that solid stress

induces in cancer cells, we evaluated cell proliferation and

apoptosis in the spheroids. Cell division near regions of higher

stress (i.e., in the direction of the minor axis of oblate spheroids)

was reduced compared to regions of lower stress (Fig. 3). To check

how compressive stress affects cell viability, we examined apoptosis

and necrosis in live spheroids cultured in 0.5% (Fig. 4) or 1.0%

agarose gels (Supplementary Fig. S3). In the 0.5% gel, apoptosis

and necrosis appeared when the spheroids were only ,50 mm in

diameter (Fig. 4A, day 12) and continued to increase, becoming

extensive by day 28. Subsequently, the apoptotic areas were

gradually replaced by necrosis until, by day 45, necrosis had

almost reached the surface of the spheroid. In 1.0% agarose gel,

the spheroid could not grow larger than ,30 mm in diameter, and

apoptosis and necrosis were detected even in these small spheroids

(Supplementary Fig. S3). These observations in live spheroids were

confirmed by immunohistochemical staining of fixed samples

(Fig. 4B). Furthermore, there was a strong correlation between the

local fraction of cell death in spheroids and the local strain in the

agarose gel (Fig. 5).

To verify that limitations of nutrients, growth factors or oxygen

were not responsible for the apoptotic cell death in Fig. 4, we

assessed apoptosis in spheroids grown to similar sizes in free

suspension (hanging droplets). The free suspension cultures had no

external confining matrix and little apoptosis (Fig. 6A, Condition

1). To check whether cell-agarose interactions contributed to cell

death, we transferred free suspension spheroids into 0.5% agarose

gels where they were allowed to acclimate for 3 days. As opposed

to spheroids grown from single cells in agarose gel (Fig. 6A,

Condition 3), the transferred spheroids did not have time to

accumulate significant levels of solid stress, and they had much less

cell death (Fig. 6A, Condition 2). Thus, it is unlikely that gel

toxicity or limitations of nutrients, growth factors or oxygen were

responsible for the apoptosis observed in the stressed spheroids.

Externally-applied compression mimics growth-induced
stress

If compressive stress causes apoptotic cell death in tumor

spheroids, it should not matter whether it is growth-induced or

externally-applied. Therefore, to quantify the effect of solid stress

on cell apoptosis under controlled conditions, we first compressed

monolayers of cancer cells for 17 hr with pressures ranging from

0 mmHg to 60 mmHg (see experimental setup in Supplementary

Fig. S1B) and observed increased apoptosis with increased stress

level (Fig. 7A). We then transferred spheroids approximately

300 mm in diameter from free suspension into 1% agarose gel and

cultured them under three conditions: normal medium without

external compression, starvation medium (no glucose, no serum

and 1% oxygen) without compression or normal medium with

external compression (see experimental setup in Supplementary

Fig. S1C). Caspase-3 activity was evaluated at 1 hr, 3 hr, 5 hr and

7 hr (Fig. 7B, 7C; the relatively short compression times were

chosen to minimize potential complication of nutrient/growth

factor/oxygen limitations in the 3D culture). Compression

dramatically increased caspase-3 activity, which leveled off after

5 hr. Spheroids that were starved but un-stressed had much less

apoptosis than those in the compressed samples, again indicating

that limitations of glucose, serum and oxygen alone do not account

for the levels of cell death demonstrated in Fig. 4.

The mitochondrial pathway regulates mechanical stress-
induced cell apoptosis in tumor spheroids

Finally, we investigated which of the two major apoptotic

pathways [15] regulates the solid stress-induced cell apoptosis. We

transduced cancer cells to overexpress crmA which inhibits

initiator caspases including caspase-1 and caspase-8 in the death-

receptor pathway [16], or Bcl-2, a well-known inhibitor of multiple

caspases in the mitochondrial pathway [17]. Free suspension

spheroids of wild-type or transduced cells grown to ,300 mm in

diameter were transferred into 1% agrose gel and compressed as

described before. Fig. 7D shows that Bcl-2 overexpression

significantly reduces compression-induced cell death in the

spheroids while crmA over-expression has little effect. Similarly,

overexpression of crmA in a highly metastatic murine breast

carcinoma cell line EMT6, which has a high level of endogenous

Bcl-2 expression [18], did not further protect from compression-
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induced caspase-3 activity (data not shown), suggesting that the

mitochondrial pathway regulates solid stress-induced apoptosis.

Discussion

The present study addressed several remaining questions

concerning the effect of compressive stress on the growth dynamics

of solid tumors. Although empirical mathematical models such as

the well-known Gompertzian growth curve [19] and the more

recent ‘‘universal growth law’’ [20–22] can predict the enlarge-

ment of many solid tumors with good accuracy, they do not

explicitly consider cell dynamics inside the tumors. In particular,

the invariable emergence of a plateau phase after tumors have

reached a certain size has never been satisfactorily explained. As

most solid tumors larger than 1 mm in diameter induce

angiogenesis [3], nutrient or oxygen depletion should not limit

tumor growth. Our study shows that growth-induced solid stress

can affect cell phenotype, and suggests that there may be a

‘‘dynamic equilibrium’’ of proliferation and apoptosis that

maintains tumor size in the plateau phase, as proposed by

Holmgren et al [23].

The apoptotic cell death caused by such stress is of particular

interest. Apoptosis during development is generally thought to be

triggered by growth factors and other environmental cues [24,25],

and the role of mechanical stress in this process has only recently

been considered [26,27]. Our results suggest that inhomogeneities

in the mechanical properties of the confining tissue can guide

morphological changes in tumor growth, independent of cell

migration, by inducing apoptosis in regions of high compressive

stress and allowing proliferation in regions of low stress.

Furthermore, the compression-induced apoptosis occurs via the

mitochondrial pathway, a regulatory control mechanism that

cancer cells with elevated Bcl-2 activity might escape to produce

more malignant tumors.

Materials and Methods

Cell culture
Non-metastatic murine mammary carcinoma cells 67NR were

obtained from the American Type Culture Collection (ATCC,

Rockville, MD) and were used for most of the experiments in this

study. Metastatic murine mammary carcinoma cells EMT6 were

generously provide by Dr. James Freyer (Los Alamos National

Laboratory, Los Alamos, NM). 67NR cells were maintained in

high-glucose (4.5 mg/ml) Dulbecco’s Modified Eagle’s Medium

(DMEM, Sigma, St. Louis, MO) supplemented with 1% non-

essential amino acids (Invitrogen, Carlsbad, CA) and 10% fetal

bovine serum (FBS). EMT6 cells were maintained in alpha-

minimal essential medium (Mediatech, Manassas, VA) supple-

mented with 10% FBS. For experiments requiring glucose-free,

serum-free and hypoxic environment (denoted the ‘‘starvation

medium’’), spheroids were cultured in glucose-free DMEM

(Invitrogen) not supplemented with FBS, and in 5% CO2-1%

O2-N2 biomedical air (Airgas East, Salem, NH).

Anti-apoptotic transduction with Bcl-2 and crmA
One million cancer cells were seeded into a 10 cm-diameter

Petri dish and transfected via addition of Lipofectamine 2000

(Invitrogen) and plasmid DNA containing the full-length murine

Bcl-2 (ATCC) or cytokine response modifier A (crmA, generous

gift from Dr. Brian Seed at Massachusetts General Hospital,

Boston, MA) cDNA and the puromycin selectable marker.

Twenty-four hours after transfection, the cells were passaged

and selection medium containing 20.0 mg/ml puromycin was

added. After 7–10 days of culturing in this medium, only a few

colonies remained; these were pooled together and propagated in

the presence of selection-level puromycin. Expression of Bcl-2 and

crmA in the transfected cells was determined by quantitative real-

time PCR (Bcl-2) or PCR (crmA) with appropriate primers. Once

a stable transfected cell line was established, the cells were

maintained in the presence of selection-level puromycin.

PCR assays
Quantitative real-time PCR (ABI Prism 7300, Applied Biosystems,

Foster City, CA) was used to determine the mRNA level of Bcl-2 gene

transfected into cancer cells. The thermal cycling conditions consisted

of 35 cycles of PCR amplification (denaturation: 95uC 30 sec,

annealing/extension: 68uC, 1 min). The mRNA level of crmA gene

was evaluated using conventional PCR assay. The following sense

and antisense primers were designed using Primer2 software (Applied

Biosystems): Bcl-2: 59-GGGATGCCTTTGTGGAACTATATG

and CTGAGCAGGGTCTTCAGAGACA-39; crmA: 59-AAGCT-

TATGGATATCTTCAG and GCCTGCCGCTTAATTA-

GTTGT-39; and GAPDH: 59-ACAGCCGCATCTTCTTGTG-

CAGTG and GGCCTTGACTGTGCCGTTGAATTT-39.

Culture of tumor spheroids co-embedded with micro-
beads in agarose gels

To monitor spheroid growth and stress accumulation, appropri-

ate amounts of GFP- or RFP-labeled single cancer cells, 1 mm

(diameter) carboxylate-modified fluorescent beads (Molecular

Probes, Eugene, OR), 2.0% (w/v) agarose (Type VII, low gelling

temperature, Sigma, St. Louis, MO) stock solution (1X PBS) and

cell culture medium were mixed so that the final concentrations of

cells, micro-beads and agarose were 3.56103 cells/ml, 4.56105

beads/ml and 0.5% or 1.0%, respectively. The bottom of a

10 mm62 mm (diameter6depth) cylindrical well in a 5 mm thick

glass slide (custom made) was first coated with 50 ml of 1.0% cell-

free agarose gel to prevent cell attachment. 300 ml of the cell/micro-

beads/agarose mixture was then added to the well and allowed to

polymerize for 10 minutes at room temperature. The glass slide was

then placed in a 100 mm625 mm Petri dish filled with 40 ml cell

culture medium (see experimental setup in Supplementary Fig.

S1A). The medium was replenished every 5 days.

Imaging and quantification of matrix compression
around growing spheroids

We measured the volume of growing spheroids and the 3D

distribution of their surrounding micro-beads every 5–7 days using

an Olympus FlouView 500 confocal microscope system (Olympus,

Center Valley, PA). At each time point, a volume of

638 mm6638 mm6250 mm was imaged so that the equator of

the spheroid was centered at the volume’s bottom surface; the step

size in Z was 1 mm. Three control image stacks of micro-beads

were then acquired using the same procedure, but in nearby

Figure 1. Mechanical stress accumulates around growing tumor spheroids. (A) A growing spheroid (green) and its surrounding micro-beads
(red). Scale bar = 100 mm. (B) Quantification of relative micro-bead density (rbead) in 10-mm thick shells of agarose gel around the growing spheroid
shown in A as a function of the distance of the shell from spheroid center (dist). (C) Correlation between spheroid diameter (Dsphd) and the strain in
the first 10-mm thick shell of agarose gel (egel,1) around spheroids. R is the linear regression coefficient; slope of the regression line is significantly
greater than zero (p,0.0001).
doi:10.1371/journal.pone.0004632.g001
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Figure 2. Mechanical stress distribution controls tumor spheroid shape. (A) Agarose gel can fail under tension from growing tumor
spheroids (green). Red arrowheads indicate the edge of planar cracks in the agarose gel (BF: bright-field image taken in Nomarski mode). Scale
bar = 50 mm. (B) Spheroids (green) of different shapes and their surrounding stress fields visualized by micro-beads (red). Scale bar = 150 mm. (C)
Relationship between local strain in agarose gel (egel,1,local) and local spheroid deformation (lsphd,local) for the spheroids (green, inset) shown in A.
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spheroid-free areas at least 500 mm away from any spheroid (so

that the bead density was not affected by growth-induced

compression). To determine the local micro-bead density as a

function of distance from the spheroid, a Matlab (Mathworks,

Natick, MA) routine calculated the minimum distance from each

micro-bead to the spheroid surface and, subsequently, the relative

density of micro-beads in 10-mm thick ‘‘shells’’ around the

spheroid (rbeads, normalized to the micro-bead density in the

control image stacks). The strain of agarose gel in those shells is

then calculated as egel = 121/rbeads. This procedure preserved the

effect of microscopic variation in spheroid surface shape on matrix

deformation.

Culture of tumor spheroids in hanging droplets
To create tumor spheroids for the externally-applied compres-

sion experiments, we used the hanging droplet method. Briefly,

20 ml droplets of cancer cell suspension (3.06105 cells/ml for

67NR and 2.06105 cells/ml for EMT6) were added to the inside

of a 10 cm-diameter Petri dish cover. After placing the cover back

on the dish filled with 10 ml of culture medium, the dish was

placed in the incubator (5% CO2, 37uC) to allow spheroid growth

within each droplet. Spheroids usually reached about 300 mm in

diameter after 3 days of culture.

Compression of monolayers of cancer cells and tumor
spheroids

For compression of monolayers of cancer cells, the cells were

seeded on the membrane of a 6-well transwell insert with 0.4 mm

pores (Corning, Lowell, MA). 1.5 ml and 2.5 ml cell culture medium

were added to the upper and lower chambers of the well, respectively.

After overnight incubation (for cell adhesion to the membrane), a

layer of 2 mm-thick 1% agarose gel was placed on top of the cells and

pistons of desired weight were then applied on the agarose gel for

compression (see experimental setup in Supplementary Fig. S1B).

distseg is the distance of spheroid segments from spheroid center normalized over the length of the major axis. (D) Correlation between the
asymmetry in spheroid shape and in the corresponding strain in the surrounding agarose gel, showing that spheroids are more deformed along the
direction of higher stress. Each data point is for one spheroid. R is the linear regression coefficient; slope of the regression line is significantly greater
than zero (p,0.0001). Methods for image analysis in C and D are described in Supplementary Methods S1, Supplementary Fig. S2, Movie S2 and
Movie S3.
doi:10.1371/journal.pone.0004632.g002

Figure 3. Cancer cell proliferation (green) in tumor spheroids (red) is suppressed in the direction of higher mechanical stress (i.e., in
the direction of the minor axis of oblate spheroids). Arrowheads indicate the regions with more cell proliferation. Scale bar = 50 mm.
doi:10.1371/journal.pone.0004632.g003
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During the compression, the pores in the transwell insert membrane

allowed convection of fluid out of the gel and also diffusion of

nutrients, growth factors and oxygen to the spheroids. For

compression of tumor spheroids, the spheroids grown in hanging

droplets were collected and re-suspended in 1.0% agarose solution.

1 ml of the solution was then added into a 6-well transwell insert with

0.4 mm pores in its membrane, making the gel thickness ,2 mm.

The spheroid-agarose mixture was allowed to gel for 20 min at room

temperature, after which 1.5 ml and 2.5 ml cell culture medium were

added to the upper and lower chambers of the well, respectively. The

spheroid-gel construct was then compressed with a piston of desired

weight (see experimental setup in Supplementary Fig. S1C).

Staining and imaging of proliferation, caspase-3 activity
and necrosis in tumor spheroids

Proliferating cells in spheroids were detected with a Cell

Proliferation Fluorescence Kit (Amersham Biosciences, Buckin-

Figure 4. Mechanical stress induces apoptotic cell death in tumor spheroids. (A) The development of apoptosis (green) and secondary
necrosis (red) in a growing spheroid embedded in 0.5% agarose gel. Scale bar = 100 mm. (B) Immunohistochemical staining (TUNEL and hematoxylin)
confirming the results in A. Image in the lower panel shows detail of the area within the dashed line in the image in the upper panel. Scale
bar = 50 mm.
doi:10.1371/journal.pone.0004632.g004
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Figure 5. Mechanical stress distribution correlates strongly with the distribution of cell death in tumor spheroids. (A) Live spheroids
(green) of different shapes, their internal cell death (red), and their surrounding stress fields visualized by micro-beads (gray). The green line in the
right column shows the edge of spheroids. Scale bar = 100 mm. (B) Relationship between local strain in agarose gel (egel,1,local) and local necrotic
fraction in spheroids (dsphd,local) for the two spheroids shown in A. (C) Correlation between the asymmetry in spheroid necrotic fraction and in the

Stress and Tumor Morphology
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ghamshire, UK) per the manufacture’s protocol. Briefly, spheroids

were labeled with a BrdU labeling reagent, fixed (1% formalin,

0.1% Triton in PBS), incubated with an anti-BrdU/Nuclease

reagent and finally incubated with Cy5 labeled goat anti mouse

IgG. Caspase-3 activity and necrosis in cancer cells or spheroids

were detected with Nucview 488 Caspase-3 Assay Kit for live cells

(Biotium, Hayward, CA) and propidium iodide (PI, Molecular

Probes, Eugene, OR), respectively. Monolayers of cells were

stained for 15 min and spheroid-gel constructs stained for

45 minutes at 4 uC and rinsed twice with fresh medium. The

labeled cells were imaged using an Olympus FlouView 500

confocal microscope system (Olympus, Center Valley, PA). The

corresponding strain in the surrounding agarose gel, showing that there is more cell death along the direction of higher compressive stress. Each
data point is for one spheroid. R is the linear regression coefficient; slope of the regression line is significantly greater than zero (p,0.0001). Methods
for image analysis in B and C are described in Supplementary Methods, Supplementary Fig. S2, Movie S3 and Movie S4.
doi:10.1371/journal.pone.0004632.g005

Figure 6. Agarose gel toxicity or limitations of nutrients, growth factors and oxygen is not responsible for the apoptosis observed
in spheroids under high levels of compressive stress. (A) Caspase-3 activity (green) in tumor spheroids (red) cultured in free suspension
(Condition 1), transferred to 0.5% agarose gel for 3 days after reaching plateau-phase in free suspension (Condition 2), or cultured from single cells in
0.5% agarose gel (Condition 3). Scale bar = 100 mm. (B) Quantification of the fraction of apoptotic cells in tumor spheroids cultured under the 3
conditions in A.
doi:10.1371/journal.pone.0004632.g006
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results were quantified as the percentage of caspase-3/PI positive

cells in the population.

Immunohistochemical assays for apoptotic in tumor
spheroids

Spheroids were fixed in 4% paraformaldehyde for 4 hr and

then embedded in paraffin. 5 mm sections were cut from the

paraffin blocks and the cancer cells were stained for apoptosis with

ApopTagH (CHEMICON International, Temecula, CA). Cells

were counter-stained with hematoxylin.

Statistics
Values were characterized by arithmetic mean and standard

error of the mean (SEM). Significant differences between different

Figure 7. Mechanical stress-induced cell death in tumor spheroids acts via the mitochondrial pathway. (A) Caspase-3 activity increases
in monolayers of cancer cells in response to higher external stress. Cells were compressed for 17 hr. (B) Caspase-3 activity in spheroids made from two
different cancer cell lines in response to different external stress (0 mmHg or 15 mmHg) and nutrient conditions (Normal: normal medium; Starvation:
no glucose, no serum and 1% oxygen). (C) Typical caspase-3 activity (green) in spheroids (red) cultured in 3 of the conditions in B. Scale bar = 100 um.
(D) Bcl-2 over-expression inhibits stress-induced apoptosis, but crmA transduction does not. Spheroids were compressed with 15 mmHg for 7 hr
while being supplied with normal medium.
doi:10.1371/journal.pone.0004632.g007
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populations of data were tested with Student t-test for unpaired

observations.

Supporting Information

Supplementary Methods S1

Found at: doi:10.1371/journal.pone.0004632.s001 (0.05 MB

DOC)

Figure S1 Experimental setups. (A) Culturing tumor spheroids

co-embedded with micro-beads in agarose gel. (B) Applying

exogenous, well-defined compressive stress to a monolayer of

cancer cells. (C) Applying exogenous, well-defined compressive

stress to tumor spheroids grown to a desired size in hanging

droplets.

Found at: doi:10.1371/journal.pone.0004632.s002 (14.63 MB

TIF)

Figure S2 Analysis of 2D images. (A–G) Quantifying local

deformation in a tumor spheroid (green, GFP transduction) and

the corresponding local strain in the agarose gel using micro-beads

(red). (H–K) Quantifying local fraction of necrotic area (red,

propidium iodide staining) in a spheroid (green, GFP transduc-

tion). (L) Correlating the asymmetries in spheroid shape and in gel

strain. (M) Correlating the asymmetries in spheroid necrosis and in

gel strain.

Found at: doi:10.1371/journal.pone.0004632.s003 (5.25 MB TIF)

Figure S3 The development of caspase-3 activity (green, left

column) and necrosis (red, central column) in growing tumor

spheroids (transmitted image superimposed with the caspase-3 and

necrosis images, right column) in 1% agarose. Scale bar = 20 mm.

Found at: doi:10.1371/journal.pone.0004632.s004 (7.48 MB TIF)

Movie S1 3D rendering of an oblate tumor spheroid cultured in

0.5% agarose gel.

Found at: doi:10.1371/journal.pone.0004632.s005 (3.13 MB

MOV)

Movie S2 Image analysis to quantify local tumor spheroid

deformation

Found at: doi:10.1371/journal.pone.0004632.s006 (0.45 MB

MOV)

Movie S3 Image analysis to quantify local strain in agarose gel

caused by tumor spheroid growth.

Found at: doi:10.1371/journal.pone.0004632.s007 (0.56 MB

MOV)

Movie S4 Image analysis to quantify local cell death in tumor

spheroid.

Found at: doi:10.1371/journal.pone.0004632.s008 (0.31 MB

MOV)
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