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MEDICAL REVIEW

Nonlinear Systems in Medicine

John P. Higginsa
Cardiology Section, Noninvasive Cardiac Laboratories,
VA Boston Healthcare System, Boston, Massachusetts

Many achievements in medicine have comefrom applying linear theory to problems. Most current
mnethods ofdata analysis use linear models, which are based on proportionality betweeni two vari-
ables and/or relationships described by linear differential equations. However, nonlinear behavior
commonly occurs within human systems due to their complex dynamic nature; this cannot be
described adequately by linear models.

Nonlinear thinking has grown among physiologists andphysicians over the past century, and non-
linear system theories are beginning to be applied to assist in interpreting, explaining, and predict-
ing biological phenomena. Chaos theory describes elements manifesting behavior that is extremely
sensitive to initial conditions, does not repeat itself andyet is deterministic. Complexity' theory goes
one step beyond chaos and is attempting to explain complex behavior that emerges within dynamic
nonlinear systems.

Nonlinear modeling still has not been able to explain all ofthe complexity present in human systems, and
further models still need to be refined and developed. However, nonlinear modeling is helping to
explain some system behaviors that linear systems cannot and thuis will auigment our understanding
ofthe nature ofcomplex dynamic systems within the human bocdy in health and in disease states.

INTRODUCTION

A system is a collection of interacting
elements. Behavior ofthe system is distinct
from the behavior of its parts or elements
(Figure 1). These elements interact with each
other directly and indirectly to modulate the
system fmnction.

The reductionist or mechanistic view of
nature involves reducing systems into their
component parts (elements) in an attempt to
understand them [1]. This is the basis oflinear
system analysis, where output is proportional
to or can be determined through applying

simple differential equations to the input. Yet
systems within nature, including the human
body, frequently lack mechanical periodicity
or linear dynamics and thus are referred to
as nonlinear systems [2]. Within nonlinear
systems, output is usually not proportional
to input, and output for the same input value
may not be constalnt over time [3]. Further-
more, in contrast to linear systems, breaking
a nonlinear system down into its elements
(parts) and analyzing those parts under con-
trolled conditions does not accurately reflect
the complex behavior present, nor capture
the dynamic relationships operating between
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S Y S T E M

INPUT

OUTPUT

Figure 1. A system is composed of elements or parts (circle, square, rectangle, triangle,
diamond) that manifest their own behavior, and can interact with each other (arrows). In
addition, feedback loops may be present between elements (triangle output feeds back to
diamond and square). The interaction and modulation of these elements under different
conditions and different times result in a dynamic system, which can respond to the input
at a particular time under particular conditions with a specific output.

various elements [4, 5]. By analogy, know-
ing the structure ofwater (H20) gives you no
clue as to why water goes down a plughole
in a vortex [6]. Likewise, with all the
knowledge ofthe individual musicians and
their instruments in isolation, one could
never predict the high degree of interde-
pendence and harmony of an orchestra
playing Beethoven's Fifth Symphony [7].

System behavior may be simple or
complex, static or dynamic. Simple systems
follow basic rules; thus with knowledge of
the elements that make up the system and
the rules that govern them, one can accu-
rately predict the system behavior under
various conditions.

In contrast, a complex nonlinear sys-
tem has been defined as "a system or whole
consisting ofan extremely large and variable
number ofcomponent parts, where the indi-
vidual components display marked variabil-
ity over time, and are characterized by a
high degree of connectivity or interdepen-
dence between variables" [8]. Rather than
exhibiting random behavior, most complex
nonlinear systems will tend towards and
manifest certain states more often, called

"attractors." This leads to "Emergence,"
which describes the order that arises from
what on initial inspection appears to be dis-
order, firther, such emergence can arise from
local and simple rules within the system [6].

The immune system, for example, con-
sists of various elements (macrophages,
monocytes, neutrophils) that interact with
each other by means of messengers or sig-
nals (immunoglobulins, cytokines, inter-
leukins). This system is forever in a state of
flux, with complex offensive and defenses
maneuvers mounted against a foray of
invaders. Even when exposed to an identical
stimulus, this system can respond differently
and various behaviors emerge depending on
multiple external and internal influences.

Behavior of the elements (parts) ofthe
system may be periodic, chaotic, or random.
In addition, one element can exhibit one or
more types of behavior depending on the
state of the other elements of the system
and the overall system status at the time
examined.

Not only are nonlinear systems impor-
tant to the collection and interpretation of
data, but such nonlinear connectivity and
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variability within a system may be a requi-
site for health. Breakdown of these normal
nonlinear rhythms may produce "patho-
logical rhythms," which may underlie dis-
ease states [9]. Improved identification and
recognition of such rhythms may help in
diagnosing illness at an earlier stage [7]. In
addition, timely interventions may augment
healthy rhythms and suppress pathological
rhythms and so maintain health [10-13].

MATERIALS AND METHODS
In preparation for this paper, a review

ofthe English-language scientific literature
was performed primarily by searching the
MEDLINE and EMBASE databases for the
time period 1966 through 2002. Keywords
used in the search included "complex,"
"dynamic," "systems," "nonlinear," "linear,"
"chaos theory," and "complexity theory."
In addition, the bibliographies ofarticles found
were also searched for relevant articles.
Also, standard texts on nonlinear systems
and chaos theory were reviewed, as were
nonlinear and comiiplex systems web sites.

HISTORY OF NONLINEAR SYSTEMS
In attempt to understand system struc-

ture and function, different approaches have
been used. The reductionist or mechanistic
view of nature, which has been referred to
as the "Newtonian Paradigm," "Cartesian
reductionism," or simply "reductionism,"
involves reducing systems into their com-
ponent parts in an attempt to understand
them. This approach is fundamental to linear
modeling [1].

One of the first to allude to nonlinear
systems was James Clerk Maxwell, who late
in the Nineteenth Century, discussed the idea
of infinitely small variations in present states
having effects leading to future unstable and
unpredictable system behavior [14]. Further,
Henri Poincare concluded after observing
bodies within the solar system, that similar
influences on a dynamic system at different
times do not produce similar effects [15].

In the Twentieth Century, nonlinear
theory came into the spotlight by accident.
In 1961, Edward Lorenz, a mathematician-
meteorologist working at the Massachusetts
Institute of Technology, observed what he
believed was order masquerading as ran-
domness [16]. He used a simple mathemat-
ical model of weather patterns and a com-
puter capable ofperforming multiple itera-
tions (repetitions). After accidentally
inputting an incorrect decimal point in a
number, he noted that small variations in
initial conditions (temperature or atmospheric
pressure) would cascade through various
iterations into remarkably different output
(weather conditions) [12, 17].

This and other observations by Lorenz
were the earliest reference to chaos theory
[18]. Robert May wrote about chaos in
regard to deterministic nonlinear behavior in
1974, but he credits James Yorke with using
the term "chaos" to describe behavior man-
ifesting similar features to what Lorenz
had observed a decade earlier [19, 20].

After penetrating much ofthe physical
sciences, only recently has nonlinear sys-
tems theory been seriously investigated and
applied within the biological sciences.
Specifically, nonlinear systems are those
where output is not directly proportional to
input, or cannot be described by linear dif-
ferential equations; such output generally
cannot be modeled easily if at all [3, 21,
22]. A brief description of system element
behavior will be followed by a discussion of
chaos theory and complexity theory, with
examples from medicine, and concluding
remarks.

BEHAVIOR OF ELEMENTS OF A
SYSTEM

Three types of behaviors of elements
within a system have been described and
include periodic, random, and chaotic behavior.

Periodic or Orderly behavior describes
behavior that tends toward a particular
state(s), i.e., having a fixed-point or periodic
attractor (state to which the element even-
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tually settles). Over the course of time and
iterations, the element will tend towards either
one particular value (a fixed-point) or period-
ically oscillate between one or more attractors.

Random behavior is that in which each
item of the element has a certain probability
ofbeing manifest, descnrbed by a uniform or
non-uniform probability distribution, with
negligible deterministic effects, i.e., based
on current knowledge and technology, we
cannot predict the elements future behavior
or output from input.

Chaotic behavior or that behaving
according to "chaos theory" describes
dynamic behavior that is sensitive to initial
conditions, and parameter changes, deter-
ministic (described by rules), aperiodic (does
not repeat itself), and restricted within cer-
tain parameters. Chaos theory is being
applied more and more to nonlinear medical
systems and will thus be expanded on now.

CHAOS THEORY AND CHAOTIC
BEHAVIOR

A general definition of chaos is
"Chaos is defined as the quality of a deter-
ministic mathematical system in which an
extreme sensitivity to initial conditions
exists" [23]. The mathematical calculations
involved in modeling chaos theory requires
large numbers ofcalculations, often iterated
(repeated), thus this field has blossomed in
parallel with the computer revolution [3].
The main properties of chaotic behavior
are summarized in Table 1.

Important features relating to compo-
nents of the human body include the ability
to determine this behavior using mathe-
matical calculations (deterministic), as well
as that ofbeing very sensitive to initial con-
ditions. Also, elements behaving according
to chaos theory never repeat exactly and
manifest the effects ofany small perturbation.
In addition, many anatomical structures
appear to have fractal organization.

Elements that exhibit chaos behavior
often have a multiplicity of components,
functions, feedback loops, and diverse links

among variables (both micro- and macro-
level) existing across different scales of
organization [2]. Another interesting fea-
ture of chaos is that it is cumulative, such
that when two elements manifesting chaos
are coupled together, they are more likely
to manifest chaos and unpredictability than
if they remain apart [24]. Applications of
chaotic behavior in medicine occur within
the basic and clinical sciences, and exam-
ples are presented in Table 2.

Many believe that behavior governed
by chaos theory underlies many human
systems; some believe that "physiology is
chaos" [70]. In the case ofnornal physiologic
variability, this has been proven in several
examples within the human body; however,
not all physiological elements behave
chaotically. In addition, although increased
variability in many physiological systems
correlates with health, e.g., heart rate vari-
ability, this is not always the case. Impor-
tantly, Que et al. [38] and others have
demonstrated increased variability in res-
piratory impedance in patients with asthma.
Thus, increased or decreased variability are
associated with illness states.

One hypothesis regarding the impor-
tance of this variability involves uncoupling
of biological oscillators and proposes that
loss ofconnection ofelements in a complex
system removes various fine controls and
feedback loops on their behavior, thus they
revert back to an uncoupled basic, nascent or
escape rhythm [71]. This rhythm is often
periodic or orderly.

Are there therapeutic potentials from
chaos? Perhaps. Sensitivity to initial con-
ditions has been used by one group to con-
vert a chaotic pattern of arrhythmia (unsta-
ble) to a low-order periodic pattern (stable)
by single intermittent stimuli using a "pro-
portional perturbation feedback" method:
by delivering an electrical impulse at the
right time and place, it is possible to bring
about an alteration in the heart's electrical
dynamics [39, 72]. In addition, it is possi-
ble to move from non-chaos to chaos in
some systems by altering period and
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Table 1. Main properties of chaotic behavior

Property Definition

Deterministic Equations of motion, variables, and parameters are specified
exactly by some rule and can be applied to the element, e.g., by
differential equations or other mathematical formula(e).

Sensitive dependence Small variations in initial (starting) conditions result in large,
on initial conditions divergent and dynamic transformations in outputs (concluding)

events. Exemplified by the "butterfly effect," i.e., does the flap of a
butterfly's wings in Brazil set off a tornado in Texas? This curious
question is unproven in meteorology since buffer systems can
dampen out small effects.

Emergent order Have a sense of order, structure, and an emerging pattern
(even though it may appear random on casual inspection).

Fractal organization Have self-similarity (magnified images of fractals are essentially
indistinguishable from unmagnified versions) and fractal-
dimensions (follow a particular formula) e.g. The Koch
Snowflake: starting with an equilateral triangle, each side is
divided into thirds, the middle third segment is removed and a
new smaller equilateral triangle is inserted into the middle third,
and so on.

Strange attractors The tendency for nonlinear networks to occupy a limited number
of stable states out of the theoretically huge numbers of states
available to them, e.g., the "Lorenz Attractor" with a weaving
back and forth motion between its two wings.

Constrained values Constrained to a relatively narrow range of values, thus the signal
does not become infinitely large or small. This feature is char-
acterized by trajectories diverging exponentially with time, but
restricted within a finite area in phase space (an abstract math-
ematical space on a graph of two or more axes in which coor-
dinates represent the variables needed to specify the phase or
state of an element at a particular time).

amplitude modulation. This is a route to
chaos termed the "quasiperiodic transition
to chaos" first suggested by Ruelle and
Takens; such maneuvers may help to restore
chaos in systems and thus provide a new
therapeutic approach to some conditions [39].

As mathematics is frequently used to
model physiology, investigators have been
able to apply models ofchaos to living sys-
tems, some with success. Yet, this enthusi-
asm must be tempered by the knowledge
that this is still a model, and a model can
never replace the real thing, only approxi-
mate it. I will now detail a few examples of
applying chaos theory within medicine.

CYTOKINES

Cytokines are small protein or glyco-
protein messenger molecules that convey
information from one cell to another. Over
200 have been identified including the
interleukins, growth factors, chemokines, and
interferons [37]. Receptors for cytokines
are present on many cells, including
endothelial cells, neutrophils, cytotoxic T
cells, monocytes, macrophages, natural killer
cells, and others.Apanoply offeedback loops
operates within this complex cytokine-cellular
system that appears to behave in a complex
nonlinear manner [8].
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Table 2. Manifestations of chaotic behavior in medicine

Field Example [Reference]

Anatomy * Fractal structure of arteries, veins, cancellous bone tissue, nerves,
pulmonary alveoli, tracheobronchial tree [25-27].

* Regional myocardial blood flow heterogeneity follows a simple
fractal relation [28].

Cellular biology * Properties of ion channel proteins [29].
* Stem cell differentiation [30].
* Calcium oscillations and intracellular signaling [31].

Molecular biology * Fractal dimension to exon structures of DNA [32].

Oncology * Abnormal mammographic parenchymal fractal pattem to screen for
breast cancer [33].

* Fractal dimension in positron emission tomography scanning to
detect melanoma [34].

* Fractal analysis in detection of colon cancer [35].
* Fractal dimension analysis in evaluating response to chemotherapy [36].

Internal medicine * Cytokine behavior exhibiting emergent patterns [37].
* Variability in respiratory impedance in Asthma [38].

Cardiology * Atrial fibrillation can arise from a quasiperiodic stage of period and
amplitude modulation, i.e., "quasiperiodic transition to chaos" [39].
* Chaos control of arrhythmias in human subjects by stabilizing an
unstable target rhythm [40].

* Endothelial function behavior [7].
* Heart rate variability:

- Low-dimensional chaos associated with health [41, 42].
- Reduced fractal behavior associated with increase in sudden
cardiac death [43].

- Predicting mortality following myocardial infarction [44].
- Inhibition of autonomic tone modulates heart rate variability [45].
- Congestive heart failure decreases chaos and increases morbidity
[46, 47].

- Beta-blockers improve the fractal behavior in patients with
advanced congestive heart failure [48].

- Gender differences in fractal measures of heart rate behavior [49].
- Coronary artery disease can alter circadian heart rate variability [50].
- Decreased heart rate variability following heart transplantation [51].

Neonatology * Premature babies at risk for sudden infant distress syndrome have
diminished nonlinear heart rate variability, which may reflect abnor-
mal autonomic system development [52].

Pharmacology * Pharmacodynamics of drugs and their effects can alter chaos
dynamics of human systems [53, 54].

Neurology * Epilepsy:
- Epileptogenic zone location [55-57].
- Antiepileptic drug effects [58, 59].
- Predicting seizure activity [60, 61].

* EEG activity in Alzheimer's disease and vascular dementia [62].
* Neural networks manifest chaos [2].

252
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Table 2. Manifestations of chaotic behavior in medicine (continued)

Field Example [Reference]

Epidemiology * Effects of pulse vaccination in simple epidemic model [63].
* Population dynamics modeling [64].

Psychiatry * Reduced chaos on electroencephalogram may occur in altered
moods, behavior, and with alcohol consumption [65, 66].

* Treatments for depression may restore biological chaos in the
brain [67].

* Bipolar disorder- one model suggests this may result from strong
fluctuations in energies between different brain structures which
produce turbulence "chaotic attractors" which can suddenly switch
between opposite states, and create new and more complex
structures [68, 69].

Cytokines exhibit interdependence,
pleiotropy (multiple effects), redundancy
(multiple cytokines have the same effect),
and can dampen or amplify the effects of
other cytokines or cells [8]. Given their mul-
tiplicity and complexity of functions, it is
likely that their behavior follows nonlinear
dynamics. For instance, typical cytokine dose-
response curves show an initial threshold (no
effect below a certain concenitration), fol-
lowed by an exponential response, and
then a plateau maximum response [37]. In
healthy individuals, tumor necrosis factor-
alpha causes neutrophilia at low doses but
neutropenia at high doses [73]. Attractors
with great stability have also been demon-
strated in systems containing cytokines;
when cytokine concentrations were measured
within a system not in equilibrium, the sys-
tem eventually converges to an equilibrium
point. Additionally, by varying the activa-
tion levels of the cytokines and thus simu-
lating what may occur in antigenic stimulation
(such as an exposure to an inflammatory
mediator), several stable and unstable equi-
librium points have been noted experimen-
tally [37]. Thus, it has been demonstrated
that in a relatively simple system consist-
ing of four components: effector cells, reg-
ulatory cells, cytokines, and an inhibitor

nonlinear interactions manifest chaotic
behavior [37].

HEART RATE VARIABILITY

Heart rate variability (HRV)b
involves analysis of the standard deviation
of spontaneously varying interbeat inter-
vals (R-R intervals), which can be repre-
sented in the time domain, the frequency
domain, as well as recurrent pattems in
higher dimensions [74, 75].

After generation by the sinoatrial
node, the heartbeat is modulated by many
feedback circuits from various systems.
The normal heart rate displays complex
fluctuations in response to breathing (heart
rate increases with inspiration), exercise,
changes in posture, and emotion [9]. High
degrees ofHRV signify health, whereas ill-
ness is manifested by reduced variability
[5, 41, 42]. For example, decreased HRV
has been noted in patients suffering from
congestive heart failure [46, 76], and also
predicts higher arrhythmic death and total
mortality following myocardial infarction
[44, 48, 77]. Nonlinear dynamics present
in the control mechanisms of the electrical
system of the heart give rise to the com-
plex variability it manifests.

In subjects at high risk of sudden
death, including those with heart failure,
fractal organization along with certain non-
linear interactions breaks down; thus appli-
cation of fractal analysis may provide new
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approaches to assessing cardiac risk and fore-
casting sudden cardiac death [78]

Suggested etiologies for reduced HRV
include loss of neural modulation of the
sinoatrial node as well as a sympathovagal
imbalance [51, 79]. The vagal component
appears to be ofgreater importance in main-
taining variability [80]. Indirect evidence
for these etiologies comes from several
small studies. In one non-controlled study
of patients with congestive heart failure,
beta-blocker therapy (atenolol) was used
to suppress sympathetic activation and
improved HRV [48]. In another study of
ten healthy men and women, low-dimen-
sional HRV was modulated by inhibition
of autonomic tone (using propranolol and
atropine) and by exercise [45, 81].

Another reason for reduction in HRV
may be and isolation "uncoupling" of the
heart from its interaction with other organs
or "biological oscillators" [71, 82]. In other
words, increased system isolation may be
reflected by greater signal regularity [13]

Why is a reduction in HRV deleteri-
ous? Sympathetic activation and/or reduced
vagal tone may make the heart period less
adaptable, thus making the heart less able to
cope with a frequently changing hemody-
namic and autonomic environment [5, 83].

COMPLEXITY THEORY AND
COMPLEX SYSTEMS

Complexity theory or "complexity" is
a new and evolving nonlinear systems theory
that has attempted to capture what happens
beyond what chaos theory describes, into
the realm of creating new systems from
existing ones, as well as the emergence of
order from disorder [84]. One suggested
definition is that "Complexity is the property
ofa real world system that is manifest in the
inability of any one formalism being ade-
quate to capture all its properties. It requires
that we find distinctly different ways of
interacting with systems. Distinctly different
in the sense that when we make successful
models, the formal systems needed to describe

each distinct aspect are not derivable from
each other" [85].

A useful analogy for complexity is
poetry, in that poetry is the nonlinear use of
language where the meaning is more than
just the sum of the parts (the words).
Complexity involves various elements
whose collective behavior manifests at the
border between order and randomness,
termed "the edge of chaos" [4]. Whereas
chaos is predictably unpredictable, complex
behavior is unpredictably unpredictable.

Complexity science has grown out of
a general lack of satisfaction with tradi-
tional scientific practices and their failure
to capture anything but a shadow of com-
plex reality [86]. In spite of the many
impressive advances, the observations and
explanations ofbiological phenomena may
have been viewed through lenses polarized
by a mechanistic and reductionist view, with
its attendant constraints and boundaries. Com-
plexity science demands that such barriers
and constraints be removed in order to gain
a more complete view of nature [86].

Complexity often describes self-orga-
nizing systems that finction far from ther-
modynamic equilibrium and thus they
require a continuous source of external
energy, which they dissipate to create and
maintain order [87]. The development of
such order diminishes the system's entropy,
a measure of the amount of disorder and
randomness of the system; thus the energy
is used to decrease entropy, and order is
created [38].

Another feature is that out of com-
plexity come self-organization and emer-
gence, the links between order and disor-
der [4]. In other words, behaviors of many
simple parts interact in such a way that the
behavior of the entire system becomes
complex and cannot be predicted solely on
structure and function of its parts. In addi-
tion, within an entire system, complexity
at one level, e.g., atoms forming a complex
system on a planet, may manifest simplic-
ity on another level, e.g., the planet orbit-
ing the sun [88]. Paradoxically, the science
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Table 3. Main properties of complex systems

Property Example - The nervous system

Heterogeneous Nerve cells (neurons), nerve fibers, dendrites, and a supporting
elements tissue (neuroglia).

Interactions Synapses, electrochemical interactions, no characteristic
scale, no simple "on-off" switching or "all-or-none" responses.

Formation & operation Multiple steady states, highly adaptive, plasticity, nondeterminism,
dimensionality.

Diversity & variability Fast and slow neurons, changing ecosystem of supporting cells.

Environment Effected by local (e.g., calcium, caffeine) and general environment
(e.g., autonomic nervous system tone, temperature).

Activities Behavior, leaming, language, thought.

of complexity purports that the complex
patterns we see in the world are the result
of underlying simplicity [6].

The study ofcellular automata (or cel-
lular automaton) has formed a major part
of complexity research. Cellular automata
are dynamic systems that are discrete in
state, space, and time [89]. In the simplest
case, a cellular automata model consists of
a one-dimensional lattice of identical cells,
each ofwhich can be in one ofa number of
states, e.g., "on" or "off' [90]. Using vari-
ous algorithms, cellular automata can pro-
vide a way of viewing interactions that
arise within a population or system under
different conditions [91]. This modeling is
hoped to furnish new understandings of
population dynamics, evolution, as well as
system organization and function.

Within the medical field, systems that
involve many elements simultaneously
interacting are beginning to be modeled
based on complexity theory. For example,
the endothelial cell and its response to
internal and external stimuli behaves as a
complex system. Endothelial function may
be altered by neurobehavioral changes,
temperature, organ dysfunction, circadian
rhythm, host-pathogen interactions, drugs,
oxygen content, cytokines, physical stress,

thrombus, and all of the cardiovascular risk
factors. While dissecting out and examining
the individual effects of such exposures on
the endothelium (mainly in vitro) have
increased our understanding, attempts to
translate such findings to clinical manage-
ment or therapeutic manipulations have gen-
erally been unsuccessful [7], i.e., applying
linear models to complex nonlinear systems
doesn't usually work. In addition, several
researchers are discovering large numbers
of transcriptional activators that interact
with cytokines and other inflammatory
pathways in a manner suggesting complex
nonlinear system function [7].

To illustrate some of the core underly-
ing principles ofcomplexity theory, and using
the nervous system as an example, the main
properties ofcomplex systems are described
in Table 3 [7, 88].

CONCLUSIONS
While applying linear models to human

systems and their elements has improved
our understanding of their structure and
function, such models often fall short of
explaining experimental results or predicting
future abnormalities in complex nonlinear
systems. Such models may help in dissect-
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Nonlinear models

System Linear models
Understanding

Proportional Non-proportional
relationships in relationships in

System simple complex
composition single-component, multi-component,

one-dimensional, multi-dimensional,
low inertia system(s). dynamic system(s).

Figure 2. Role of linear and nonlinear models in understanding different systems. Amount
of system understanding is represented pictorially by the two-dimensional area. Linear
models may better help to explain simple proportional relationships, whereas nonlinear
models may better explain complex dynamic systems.

ing and analyzing individual components
of a system. However, by measuring these
components under specific, ideal or stan-
dard conditions, this restricts the system to
only one of its possible states and assumes
a static system and a specific output, which
may fail to reflect the true output of a
dynamic system.

In contrast, nonlinear models may bet-
ter explain how the individual components
collectively act and interact to prodtuce a
dynamic system in constant flux, whose out-
put varies depending on the system state,
element states, and complex interactions at
the time of the input.

Nonlinear models will probably help
to fill in some of the results not as yet ade-
quately explained using linear models. Yet,
not all medicine is nonlinear, so linear model-
ing should not be abandoned. Together,
both models take us closer to a complete
understanding of a systems behavior, par-
ticularly in the case of complex dynamic
systems. Thus, it is believed that linear and
nonlinear modeling will serve a comple-
mentary role in explaining simple and
complex system behavior manifest within
human systems (see Figure 2).

Chaos theory is providing new insights
into understanding normal as well as abnor-
mal behavior within systems. Applications
of chaos, especially fractals, may detect
disease in its early stages or "early waming."

Cytokine dynamics appear to behave
in a nonlinear way, and nonlinear dynamics
have a great potential for illuminating their
complex dynamic applied physiology.
Appropriate HRV that manifests chaos
behavior is associated with health, whereas
loss of this nonlinear variability portends
morbidity and mortality.

Knowledge of chaos may also prove
valuable in managing illness. Intervention
and/or modulation of a disordered system
may result in reestablishing a connection
between that system and other systems,
and a returning to its nonnal state of con-
nectivity and variability, so called "recou-
pling." Such recoupling may maintain chaos
when desirable, e.g., appropriate heart rate
variability, and eradicate it when detri-
mental, e.g., cardiac arrhythmias.

Complexity theory is attempting to
provide an explanation for the very origin of
systems as well as how complex behaviors
may arise from a relatively simple set of
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rules. Stuart Kauffman, a pioneer in the
field, believes that complexity theory will
play a major role in elucidating complex
biological systems and refers to it as "the
physics of biology" [6].

Finally, the notion of complex adap-
tive systems, "complexity theory," that is,
systems that "learn" from interactions are
being actively pursued. Genetic encryption of
the environment in the context of biological
evolution, cellular automata, and modula-
tion of protein production using biological
pulse signals are examples of ongoing
complexity theory research [6, 23, 92].

ACKNOWLEDGEMENTS
The author would like to thank Glenda Stubbs,
librarian, for her assistance with finding refer-
ences andprinting ofweb resources.

REFERENCES
1. Mikulecky, D.C. Complexity, communica-

tion between cells, and identifying the func-
tional components of living systems: some
observations. Acta Biotheor. 44:179-208,
1996.

2. Philippe, P. and Mansi, 0. Nonlinearity in
the epidemiology of complex health and
disease processes. Theor. Med. Bioeth.
19:591-607, 1998.

3. Williams, G.P. Chaos Theory Tamed.
Washington, D.C.: Joseph Henry Press;
1997.

4. Horgan, J. From complexity to perplexity.
Sci. Am. 272:104-109, 1995.

5. Lombardi, F. Chaos theory, heart rate vari-
ability, and arrhythmic mortality. Circulation
101:8-10, 2000.

6. Lewin, R. Complexity: Life at the Edge of
Chaos. Chicago: The University of Chicago
Press; 1999.

7. Aird, W.C. Endothelial cell dynamics and
complexity theory. Crit. Care Med.
30:S180-1 85, 2002.

8. Seely, A.J. and Christou, N.V. Multiple
organ dysfunction syndrome: exploring the
paradigm of complex nonlinear systems.
Crit. Care Med. 28:2193-2200, 2000.

9. Glass, L. Synchronization and rhythmic
processes in physiology. Nature 410:277-
284, 2001.

10. Curione, M., Bernardini, F., Cedrone, L.,
Proietti, E., Danese, C., Pellegrino, A.M.,
De Rosa, R., Di Siena, G., Vacca, K.,
Cammarota, C., and Cugini, P. The chaotic
component of human heart rate variability
shows a circadian periodicity as documented

by the correlation dimension of the time-
qualified sinusal R-R intervals. Clin. Ter.
149:409412, 1998.

11. Poon, C.S. and Merrill, C.K. Decrease of
cardiac chaos in congestive heart failure.
Nature 389:492-495, 1997.

12. Goldberger, A.L., Rigney, D.R., and West,
B.J. Chaos and fractals in human physiology.
Sci. Am. 262:42-49, 1990.

13. Pincus, S.M. Greater signal regularity may
indicate increased system isolation. Math.
Biosci. 122:161-181, 1994.

14. Hunt, B.R. and York, J.A. Maxwell on
chaos. Nonlinear Sci. Today 3:1-4, 1993.

15. Persson, P.B. and Wagner, C.D. General
principles of chaotic dynamics. Cardiovasc.
Res. 31:332-341, 1996.

16. Gleick, F. Chaos: the Amazing Science of
the Unpredictable. London: Minerva; 1997.

17. Lorenz, E.N. Deterministic nonperiodic
flow. J. Atmospheric Sci. 20:130-141, 1963.

18. Donahue, M.J. An introduction to mathe-
matical chaos theory and fractal geometry.
http://www.duke.edu/-mjd/chaos/chaos.html;
1997.

19. May, R.M. Biological populations with
nonoverlapping generations: stable points,
stable cycles, and chaos. Science 186:645-
647, 1974.

20. Li, T. and Yorke, J.A. Period three implies
chaos. Am. Math. Month. 82:985-992, 1975.

21. Bickel, P.J. and Buhlmann, P. What is a linear
process? Proc. Natl. Acad. Sci. U.S.A.
93:12128-12131, 1996.

22. Lippman, N., Stein, K.M., and Lerman,
B.B. Nonlinear forecasting and the dynamics
of cardiac rhythm. J. Electrocardiol.
28(suppl):65-70, 1995.

23. Skinner, J.E. Low-dimensional chaos in
biological systems. Biotechnology 12:596-
600, 1994.

24. Firth, W.J. Chaos - predicting the unpre-
dictable. Br. Med. J. 303:1565-1568, 1991.

25. Nelson, T.R., West, B.J., and Goldberger,
A.L. The fractal lung: universal and species-
related scaling pattems. Experientia
46:251-254, 1990.

26. Goldberger, A.L. and West, B.J. Fractals in
physiology and medicine. Yale J. Biol.
Med. 60:421-435, 1987.

27. Haire, T.J., Ganney, P.S., and Langton,
C.M. An investigation into the feasibility of
implementing fractal paradigms to simulate
cancellous bone structure. Comput. Methods
Biomech. Biomed. Engin. 4:341-354, 2001.

28. Bassingthwaighte, J.B., King, R.B., and
Roger, S.A. Fractal nature of regional
myocardial blood flow heterogeneity. Circ.
Res. 65:578-590, 1989.

29. Liebovitch, L.S. and Todorov, A.T. Using
fractals and nonlinear dynamics to deter-
mine the physical properties of ion channel



258 Higgins: Nonlinear systems in medicine

proteins. Crit. Rev. Neurobiol. 10:169-187,
1996.

30. Furusawa, C. and Kaneko, K. Theory of
robustness of irreversible differentiation in
a stem cell system: chaos hypothesis. J.
Theor. Biol. 209:395-416, 2001.

31. Haberichter, T., Marhl, M., and Heinrich, R.
Birhythmicity, trirhythmicity and chaos in
bursting calcium oscillations. Biophys.
Chem. 90:17-30, 2001.

32. Peng, C.K., Buldyrev, S.V., Goldberger,
A.L., Havlin, S., Sciortino, F., Simons, M.,
and Stanley, H.E Long-range correlations
in nucleotide sequences. Nature 356:168-
170, 1992.

33. Rew, D.A. Tumour biology, chaos and non-
linear dynamics. Eur. J. Surg. Oncol. 25:86-
89, 1999.

34. Dimitrakopoulou-Strauss, A., Strauss, L.G.,
and Burger, C. Quantitative PET studies in
pretreated melanoma patients: a compari-
son of 6-[1 8F]fluoro-L-dopa with 1 8F-
FDG and (15)0-water using compartment
and noncompartment analysis. J. Nucl.
Med. 42:248-256, 2001.

35. Esgiar, A.N, Naguib R.N., Sharif B.S.,
Bennett M.K., Murray A. Fractal analysis in
the detection of colonic cancer images.
IEEE Trans. Inf. Technol. Biomed. 6:54-68,
2002.

36. Omori, H., Nio, Y., Yano, S., Itakura, M.,
Koike, M., Toga ,T., and Matsuura, S. A
fractal dimension analysis: a new method for
evaluating the response of anticancer therapy.
Anticancer Res. 22:2347-2354, 2002.

37. Callard, R., George, A.J., and Stark, J.
Cytokines, chaos, and complexity.
Immunity 11:507-513, 1999.

38. Que, C.L., Kenyon, C.M., Olivenstein, R.,
Macklem, P.T., and Maksym, G.N.
Homeokinesis and short-term variability of
human airway caliber. J. Appl. Physiol.
91:1131-1141, 2001.

39. Garfinkel, A., Chen, P.S., Walter, D.O.,
Karagueuzian, H.S., Kogan, B., Evans, S.J.,
Karpoukhin, M., Hwang, C., Uchida, T.,
Gotoh, M., Nwasokwa, O., Sager, P., and
Weiss, J.N. Quasiperiodicity and chaos in
cardiac fibrillation. J. Clin. Invest. 99:305-
314, 1997.

40. Christini, D.J., Stein, K.M., Markowitz,
S.M., Mittal, S., Slotwiner, D.J., Scheiner,
M.A., Iwai, S., and Lerman, B.B. Nonlinear-
dynamical arrhythmia control in humans.
Proc. Natl. Acad. Sci. U.S.A. 24:24, 2001.

41. Braun, C., Kowallik, P., Freking, A.,
Hadeler, D., Kniffki, K.D., and Meesmann,
M. Demonstration of nonlinear components
in heart rate variability of healthy persons.
Am. J. Physiol. 275:H1577-1584, 1998.

42. Glass, L. Chaos and heart rate variability. J.
Cardiovasc. Electrophysiol. 10:1358-1360,
1999.

43. Makikallio, T.H., I-Iuikuri, HIV., Makikallio,
A., Sourander, L.B., Mitrani RD., Castellanos,
A., and Myerburg, R.J., Prediction of sud-
den cardiac death by fractal analysis of
heart rate variability in elderly subjccts. J.
Am. Coll. Cardiol. 37:1395-1402, 2001.

44. Tapanainen, J.M., Thomsen, P.E., Kober,
L., Torp-Pedersen, C., Makikallio, T.H.,
Still, A.M., Lindgren, K.S., and Huikuri,
H.V, Fractal analysis of heart rate variabil-
ity and mortality after an acute myocardial
infarction. Am. J. Cardiol. 90:347-352, 2002.

45. Hagerman, I., Berglund, M., Lorin, M.,
Nowak, J., and Sylven, C. Chaos-related
deterministic regulation of heart rate vari-
ability in time and frequency domains:
effects of autonomic blockade and exercise.
Cardiovasc. Res. 31:410-418, 1996.

46. Butler, G.C., Ando, S., and Floras, J.S.
Fractal component of variability of heart
rate and systolic blood pressure in conges-
tive heart failure. Clin. Sci. (Colch).
92:543-550, 1997.

47. Guzzetti, S., Mezzetti, S., Magatelli, R.,
Porta, A., Dc Angelis, G., Rovelli, G., and
Malliani, A. Linear and non-linear 24 h
heart rate variability in chronic heart fail-
ure. Auton. Neurosci. 86:114-119, 2000.

48. Lin, L.Y., Lin, J.L., Du, C.C., Lai, L.P.,
Tseng, Y.Z., and Huang, S.K. Reversal of
deteriorated fractal behavior of heart rate
variability by beta-blocker therapy in
patients with advanced congestive heart
failure. J. Cardiovasc. Electrophysiol.
12:26-32, 2001.

49. Pikkujamsa, S.M., Makikallio, T.H.,
Airaksinen, K.E., and Huikuri, H.V.
Determinants and interindividual variation
of R-R interval dynamics in healthy mid-
dle-aged subjects. Am. J. Physiol. Heart
Circ. Physiol. 280:H1400-1406, 2001.

50. Otsuka, K., Cornelissen, G., and Halberg,
F. Circadian rhythmic fractal scaling of
heart rate variability in health and coronary
artery disease. Clin. Cardiol. 20:631-638,
1997.

51. Guzzetti, S., Signorini, M.G., Cogliati, C.,
Mezzetti, S., Porta, A., Cerutti, S., and
Malliani, A. Non-linear dynamics and
chaotic indices in heart rate variability of
normal subjects and heart-transplanted
patients. Cardiovasc. Res. 31:441-446, 1996.

52. Mrowka, R., Patzak, A., and Persson, P.B.
The complexity of heart rate in its postnatal
development. I.E.E.E. Eng. Med. Biol.
Mag. 20:88-91, 2001.

53. Ragazzi, E. Hidden fractals in pharmacody-
namics. Pharmazie. 50:66-68, 1995.



Higgins: Nonlinear systems in medicine 259

54. Yambe, T., Nanka, S., Kobayashi, S., Tanaka,
A., Owada, N., Yoshizawa, M., Abe, K.,
Tabayashi, K., Takeda, H., Nishihira, T.,
and Nitta, S. Detection of the cardiac func-
tion by fractal dimension analysis. Artif.
Organs 23:751-756, 1999.

55. Jing, H., Takigawa, M., and Benasich, A.A.
Relationship of nonlinear analysis, MRI
and SPECI' in the lateralization of temporal
lobe epilepsy. Eur. Neurol. 48:11-19, 2002.

56. Andrzejak, R.G., Widman, G., Lehnertz,
K., Rieke, C., David, P., and Elger, C.E. The
epileptic process as nonlinear deterministic
dynamics in a stochastic environment: an
evaluation on mesial temporal lobe epilep-
sy. Epilepsy Res. 44:129-140, 2001.

57. Lehnertz, K. Non-linear time series analysis
of intracranial EEG recordings in patients
with epilepsy an overview. Int. J.
Psychophysiol. 34:45-52, 1999.

58. Kim, J.M., Jung, K.Y., and Choi, C.M.
Changes in brain complexity during val-
proate treatment in patients with partial
epilepsy. Neuropsychobiology 45:106-112,
2002.

59. Lehnertz, K. and Elger, C.E. Neuronal com-
plexity loss in temporal lobe epilepsy:
effects of carbamazepine on the dynamics of
the epileptogenic focus. Electroencephalogr.
Clin. Neurophysiol. 103:376-380, 1997.

60. Navarro, V., Martinerie, J., Le Van Quyen
M., Clemenceau, S., Adam, C., Baulac, M.,
and Varela, F. Seizure anticipation in
human neocortical partial epilepsy. Brain
125:640-655, 2002.

61. Elger, C.E., Widman, G., Andrzejak, R.,
Armhold, J., David, P., and Lehnertz, K.
Nonlinear EEG analysis and its potential
role in epileptology. Epilepsia 41(suppl)3:
S34-38, 2000.

62. Jeong, J., Chae, J.H., Kim, S.Y., and Han,
S.H. Nonlinear dynamic analysis of the
EEG in patients with Alzheimer's disease
and vascular dementia. J. Clin. Neuro-
physiol. 18:58-67, 2001.

63. Earn, D.J., Rohani, P., and Grenfell, B.T.
Persistence, chaos and synchrony in ecolo-
gy and epidemiology. Proc. R Soc. Lond.
B. Biol. Sci. 265:7-10, 1998.

64. Petrovskii, S.V and Malchow, H. Wave of
chaos: new mechanism of pattern formation
in spatio-temporal population dynamics.
Theor. Popul. Biol. 59:157-174, 2001.

65. Ehlers, C.L. Chaos and complexity. Can it
help us to understand mood and behavior?
Arch. Gen. Psychiatry 52:960-964, 1995.

66. Ehlers, C.L., Havstad, J., Prichard, D., and
Theiler, J. Low doses of ethanol reduce evi-
dence for nonlinear structure in brain activ-
ity. J. Neurosci. 18:7474-7486, 1998.

67. Toro, M.G., Ruiz, J.S., Talavera, J.A., and
Blanco, C. Chaos theories and therapeutic

commonalities among depression, Parkinson's
disease, and cardiac arrhythmias. Compr.
Psychiatry 40:238-244, 1999.

68. Krystal, A.D. and Greenside, H.S. Low-
dimensional chaos in bipolar disorder?
Arch. Gen. Psychiatry 55:275-276, 1998.

69. Sabelli, H.C., Carlson-Sabelli, L., and
Javaid, J.L. The thermodynamics of bipo-
larity: a bifurcation model of bipolar illness
and bipolar character and its psychothera-
peutic applications. Psychiatry 53:346-368,
1990.

70. Rossler, O.E. and Rossler, R. Chaos in
physiology. Integr. Physiol. Behav. Sci.
29:328-333, 1994.

71. Godin, P.J. and Buchman, T.G. Uncoupling
of biological oscillators: a complementary
hypothcsis concerning the pathogenesis of
multiple organ dysfunction syndrome. Crit.
Care Med. 24:1107-1116, 1996.

72. Garfinkel, A., Spano, M.L., Ditto, W.L.,
and Weiss, J.N. Controlling cardiac chaos.
Science 257:1230-1235, 1992.

73. van der Poll, T., van Deventer, S.J., Hack,
C.E., Wolbink, G.J., Aarden, L.A., Buller,
H.R., and ten Cate, J.W. Effects on leuko-
cytes after injection oftumor necrosis factor
into healthy humans. Blood 79:693-698,
1992.

74. Makikallio, T.H., Tapanainen, J.M., Tulppo,
M.P., and Huikuri, H.V. Clinical applicability
of heart rate variability analysis by methods
based on nonlinear dynamics. Card. Electro-
physiol. Rev. 6:250-255, 2002.

75. Skinner, J.E., Molnar, M., Vybiral, T., and
Mitra, M. Application of chaos theory to biol-
ogy and medicine. Integr. Physiol. Behav.
Sci. 27:39-53, 1992.

76. Hedman, A.B., Poloniecki, J.D., Camm,
A.J., and Malik, M. Relation of mean heart
rate and heart rate variability in patients
with left ventricular dysfunction. Am. J.
Cardiol. 84:225-228, 1999.

77. Lotric, M.B., Stefanovska, A., Stajer, D.,
and Urbancic-Rovan, V. Spectral compo-
nents of heart rate variability determined by
wavelet analysis. Physiol. Meas. 21:441-
457, 2000.

78. Goldberger, A.L., Amaral, L.A., Hausdorff,
J.M., Ivanov, P., Peng, C.K., and Stanley,
H.E. Fractal dynamics in physiology: alter-
ations with disease and aging. Proc. Natl.
Acad. Sci. U. S. A. 99 Suppl 1:2466-2472,
2002.

79. Schwartz, P.J., Vanoli, E., Stramba-Badiale
M., De Ferrari, G.M., Billman, G.E., and
Foreman, R.D. Autonomic mechanisms and
sudden death. New insights from analysis
of baroreceptor reflexes in conscious dogs
with and without a myocardial infarction.
Circulation 78:969-979, 1988.



260 Higgins: Nonlinear systems in medicine

80. Wagner, C.D. and Persson, P.B. Chaos in
the cardiovascular system: an update.
Cardiovasc. Res. 40:257-264, 1998.

81. Tulppo, M.P., Hughson, R.L., Makikallio,
T.H., Airaksinen, K.E., Seppanen, T., and
Huikuri, H.V. Effects of exercise and pas-
sive head-up tilt on fractal and complexity
properties of heart rate dynamics. Am J
Physiol. Heart Circ. Physiol. 280:H1081-
1087, 2001.

82. Ellenby, M.S., McNames, J., Lai, S., et al.
Uncoupling and recoupling of autonomic
regulation of the heart beat in pediatric sep-
tic shock. Shock 16:274-277, 2001.

83. Goldbcrger, A.L. Non-linear dynamics for
clinicians: chaos theory, fractals, and com-
plexity at the bedside. Lancet 347:1312-
1314, 1996.

84. Gallagher, R. and Appenzeller, T. Beyond
reductionism. Science 284:79, 1999.

85. Mikulecky, D.C. Definition of Complexity:
Medical College of Virginia Commonwealth
University, http://www.people.vcu.edu/
-mikuleck/courses/COMPLEXMENU.htm;
2001 .

86. Mikulecky, D.C. The emergence of com-
plexity: science coming of age or science
growing old? Comput. Chem. 25:341-348,
2001.

87. Kauffman, S.A. The Origins ofOrder. New
York: Oxford University Press; 1993.

88. Bar-Yam, Y. Dynamics ofComplex Systems.
Reading, Massachusetts: Addison-Wesley;
1997.

89. Bemaschi, M., Succi, S., and Castiglione, F.
Large-scale cellular automata simulations
of the immune system response. Phys. Rev.
E. Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Topics. 61:1851-1854, 2000.

90. Kier, L.B., Cheng, C.K., and Seybold, P.G.
Cellular automata models of chemical sys-
tems. SAR QSAR Environ. Res. 11:79-102,
2000.

91. Keymer, J.E., Marquet, P.A., and Johnson,
A.R. Pattern formation in a patch occupancy
metapopulation model: a cellular automata
approach. J Theor Biol. 194:79-90, 1998.

92. Wu, S., He, K., and Huang, Z. Suppressing
complexity via the slaving principle. Phys.
Rev. E. Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Topics. 62:4417-4420, 2000.


