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Abstract
Background:  The p53 protein is activated by genotoxic stress, oncogene expression and during
senescence, p53 transcriptionally activates genes involved in growth arrest and apoptosis. p53
activation is regulated by post-translational modification, including phosphorylation of the N-
terminal transactivation domain. Here, we have examined how Glycogen Synthase Kinase (GSK3),
a protein kinase involved in tumorigenesis, differentiation and apoptosis, phosphorylates and
regulates p53.

Results:  The 2 isoforms of GSK3, GSK3α and GSK3β, phosphorylate the sequence Ser-X-X-X-
Ser(P) when the C-terminal serine residue is already phosphorylated. Several p53 kinases were
examined for their ability to create GSK3 phosphorylation sites on the p53 protein. Our results
demonstrate that phosphorylation of serine 37 of p53 by DNA-PK creates a site for GSK3β
phosphorylation at serine 33 in vitro. GSK3α did not phosphorylate p53 under any condition.
GSK3β increased the transcriptional activity of the p53 protein in vivo. Mutation of either serine 33
or serine 37 of p53 to alanine blocked the ability of GSK3β to regulate p53 transcriptional activity.
GSK3β is therefore able to regulate p53 function in vivo. p53's transcriptional activity is commonly
increased by DNA damage. However, GSK3β kinase activity was inhibited in response to DNA
damage, suggesting that GSK3β regulation of p53 is not involved in the p53-DNA damage response.

Conclusions:  GSK3β can regulate p53's transcriptional activity by phosphorylating serine 33.
However, GSK3β does not appear to be part of the p53-DNA damage response pathway. Instead,
GSK3β may provide the link between p53 and non-DNA damage mechanisms for p53 activation.

Background
The p53 tumor suppressor gene is activated during sev-
eral cellular processes. These include DNA damage
caused by Ionizing Radiation and genotoxic agents [1],
by expression of activated oncogenes such as ras or myc
[2], or during progression of primary cells to senescence
[3]. The activation of p53 by these diverse stimuli can in-

itiate either growth arrest or apoptosis depending on the
cellular context [1,2,3]. p53 posses sequence-specific
DNA binding activity and functions in the cell as a tran-
scriptional regulator. Many p53 regulated genes have
been identified [3,4,5], and the majority of the cellular
effects of p53 activation can be attributed to the activa-
tion of these p53 target genes.
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The mechanism of p53 activation in response to either
DNA damage or oncogene expression occurs through
stabilization of the p53 protein. In unstimulated cells,
the mdm2 protein binds to the N-terminal transactiva-
tion domain of p53 and targets it for ubiquitin-depend-
ent degradation [6,7]. Activation of p53 requires
disruption of the mdm2-p53 interaction to allow p53 ac-
cumulation in the cell. 2 distinct mechanisms for p53 ac-
tivation have so far been elucidated. The expression of
oncogenes such as ras in untransformed cells stimulates
transcription of the p14Arf gene [2]. p14Arf binds to and
sequesters mdm2, allowing free p53 protein to accumu-
late in the cells [8]. Activation of p53 by DNA damage is
also brought about by inhibition of p53-mdm2 interac-
tion. The product of the Ataxia Telangiectasia gene, the
ATM protein kinase [9], directly phosphorylates serine
15 of the p53 protein in response to Ionizing Radiation
[10,11]. In addition, ATM phosphorylates and activates
chk2 kinase [12]. Activated chk2 can then directly phos-
phorylate serine 20 of p53 [13,14]. ATM therefore con-
trols the phosphorylation of serines 15 and 20 of p53. In
addition, DNA damage increases the phosphorylation of
serines 33 and 37 of p53 through an ATM-independent
mechanism [15,16,17,18]. These DNA damage-induced
phosphorylations of p53 block the binding of mdm2 to
the N-terminal of the p53 protein [18]. Thus phosphor-
ylation of the p53 protein in response to DNA damage or
expression of p14Arf prevents mdm2 binding and p53
protein then accumulates in the cell.

Although stabilization of the p53 protein is the initial
step in p53 activation, subsequent steps, including acti-
vation of p53's DNA binding activity and changes in
p53's transcriptional activity, are also involved. For ex-
ample, p53's DNA binding activity is increased by the
DNA damage-induced acetylation of the C-terminal of
p53 [16,19], and this acetylation requires the prior phos-
phorylation of the N-terminal of p53 [16]. In addition,
phosphorylation of the N-terminal transactivation do-
main of p53 may be required to stimulate transcriptional
activation of p53 target genes. Multiple phosphorylation
sites have been detected in the N-terminal of p53, includ-
ing serines 6, 9, 15, 20, 33, 37 and 46 [10,11,12,13,14,
20,21,22]. While phosphorylation of serines 15 and 20 of
p53 are clearly dependent on the ATM and chk2 protein
kinases [10,11,12,13,14], the kinases responsible for
phosphorylation of the remaining serine residues in vivo

is not clear.

The activation of p53 by DNA damage or oncogenes such
as ras results in either growth arrest or apoptosis of the
affected cell. In this study, we have examined how Glyco-
gen Synthase Kinase 3β (GSK3β), a protein kinase in-
volved in tumorigenesis, differentiation and apoptosis,
regulates the function of p53 [23,24]. GSK3β phosphor-

ylates several transcription factors, including NFATc and
HSF1 [24,25,26,27]. GSK3β is constitutively active in
resting cells but is inhibited when cells are exposed to
growth factors [24,28].

GSK3 inhibition occurs when the p110-PI 3-kinase/Pro-
tein Kinase B (PKB) pathway is activated by growth fac-
tors [23,24,25,29]. Activated PKB then phosphorylates
GSK3β, inhibiting GSK3 kinase activity [29]. This activa-
tion of the p110-PI 3-kinase/PKB pathway, and inhibi-
tion of GSK3, delivers a strong anti-apoptotic signal to
the cell [23,24,25]. Given the well characterized role of
p53 in apoptosis [3,4,5], we examined if GSK3p partici-
pates in the regulation of the p53 protein.

GSK3 phosphorylates the consensus sequence Ser-X-X-
X-Ser(P), where the C-terminal serine residue is already
phosphorylated [24,28]. Thus GSK3 only phosphor-
ylates target proteins which have already been phospho-
rylated by a separate, priming kinase. p53 contains 5
potential GSK3 phosphorylation sites, 3 in the N-termi-
nal transactivation domain and 2 in the C-terminal regu-
latory domain. Here, we show that GSK3β, but not
GSK3α, can phosphorylate serine 33 of p53 in vitro when
serine 37 is already phosphorylated. Further, GSK3β can
increase p53's transcriptional activity in vivo, and this
activation is lost when serine 33 is mutated to alanine.

Results
The p53 protein contains several serine residues which
are located within potential GSK3 phosphorylation sites.
Protein kinases which can phosphorylate p53 within
these predicted GSK3 sites include MAP kinase, Protein
Kinase A, Protein Kinase C, Casein Kinase II, Jun kinase
(JNK) and DNA-dependent Protein Kinase (DNA-PK)
[30,31,32,33,34,35]. These kinases were examined to de-
termine if they can act as the priming kinase for either of
the 2 isoforms of GSK3, GSK3α and GSK3β. The general
protocol was to incubate purified priming kinases with
p53-GST fusion protein and ATP for 5 h, then heat inac-
tivate the priming kinase. Preliminary experiments indi-
cated that each of the tested kinases was able to
phosphorylate p53-GST under the experimental condi-
tions (data not shown). Aliquots of the prephosphorylat-
ed p53-GST were then incubated with or without
recombinant GSK3α or GSK3β and 32P-ATP to measure
p53 phosphorylation.

p53-GST preincubated in buffer alone, and then exposed
to the heat inactivation protocol was not phosphorylated
by either GSK3α or GSK3β (fig 1, Control). Autophos-
phorylation of GSK3α and GSK3β can be seen (figure 1).
Unphosphorylated p53-GST is therefore not a substrate
for GSK3α or GSK3β in vitro. p53-GST was then pre-
phosphorylated with MAP kinase, S6 kinase, Protein Ki-
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nase A, DNA-PK and Protein Kinase C (fig 1) or Casein
Kinase II and JNK1/JNK2 (data not shown). Following
incubation in each of the primary kinases, the prephos-
phorylated p53-GST was then incubated with 32P-ATP
and either GSK3α or GSK3β. Prephosphorylation of p53-
GST by MAP kinase, S6 kinase, Protein Kinase A or Pro-
tein Kinase C (fig 1) or Casein Kinase II or JNK1 or JNK
2 (data not shown) failed to create a phosphorylation site
for either GSK3α or GSK3β. However, prephosphoryla-
tion of p53-GST by DNA-PK resulted in strong phospho-
rylation of p53 by GSK3β (fig 1) but not GSK3α. GST
protein alone incubated with DNA-PK was not phospho-
rylated by GSK3β (data not shown). Since there was no
significant phosphorylation of p53-GST by GSK3α (fig
1), this indicates that phosphorylation of p53 by DNA-
PK, in vitro, creates a site for GSK3β to phosphorylate
p53.

Next, we set out to identify the exact amino-acid(s) with-
in the p53 protein which were phosphorylated by GSK3β.
p53 is phosphorylated by DNA-PK at serines 15 and 37
[32]. Of these 2 sites, the sequence around serine 37 con-
tains a predicted GSK3 phosphorylation site at serine 33
(figure 2, underlined). Serine 33 and 37 of p53 were indi-
vidually mutated to alanine, and p53-GST fusion pro-
teins containing these mutations prepared. The ability of
DNA-PK to create a GSK3β phosphorylation site on these
p53 proteins was then examined.

In the absence of p53, no phosphorylation by GSK3β was
detected (fig 2). Unphosphorylated p53-GST was not a
substrate for GSK3β, whereas p53-GST prephosphor-

ylated by DNA-PK was (fig 2). Mutation of serine 33 of
p53 to alanine (S33A) blocked the ability of GSK3β to
phosphorylate p53, indicating that serine 33 is the likely
target for GSK3β (fig 2, 33). Similarly, mutation of serine
37, which abolishes the DNA-PK phosphorylation site,
blocks phosphorylation of p53 by GSK3β. This indicates
that p53 must be phosphorylated on serine 37 by DNA-
PK before it can be phosphorylated at serine 33 by
GSK3β.

To examine the in vivo function of these in vitro phos-
phorylations, wtp53 and p53 with the S33A and S37A
mutations were sub-cloned into the expression vector
pcDNA3.1. These were then expressed in the human os-
teosarcoma cell line SAOS-2, which does not express en-
dogenous p53 protein [33]. First, we analyzed the level of
expression of each of the p53 proteins following tran-
sient expression in SAOS-2 cells. In fig 3A, approx equal
amounts of wtp53, p53S33A and p53S37A were detected
by western blot, indicating that they were expressed at
similar levels. In fig 3B, we examined the transcriptional
activity of these p53 constructs. A p53-reporter con-
struct, p50-2, which specifically responds to wtp53 by in-
creasing transcription of the luciferase gene, was used
[described in 33]. In fig 3B, SAOS-2 cells transiently ex-
pressing vector (Con), showed minimal activation of the
p53-reporter construct. Cells expressing wtp53 showed
significant activation, as did cells expressing both the
S33A and S37A mutations. Both the S33A and S37A mu-
tations displayed slightly higher basal levels of transcrip-
tional activity than the wtp53 protein.

Figure 1
Phosphorylation of p53 by GSK3β. p53-GST (2 µg) was incubated in the absence (Control) or presence of the indicated
protein kinase as described in methods. Primary kinases were then heat inactivated (65°C/15 min). Aliquots of the phosphor-
ylated p53-GST were then incubated in the absence (-), or presence of recombinant GSK3α (α) or GSK3β (β) and 10 µCi 32P-
ATP. Phosphorylated p53-GST (0.25 µg total p53-GST was detected by SDS-PAGE followed by auto-radiography. MAPK, MAP
kinase; S6 Kin, S6 Kinase; PKA, Protein Kinase A; PKC, Protein Kinase C.
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Serines 33 and 37 are located within the N-terminal tran-
scriptional activation domain of the p53 protein. To de-
termine if GSK3β regulates p53's transcriptional activity
in vivo, a wild type GSK3β expression vector was
cotransfected with either wtp53 or p53 with mutations in
serines 33 or 37. The ability of GSK3β to activate each
construct was calculated by expressing the p53 tran-
scriptional activity in the presence of GSK3β as a per-
centage of that observed in the absence of GSK3β. On
this scale, no activation by GSK3β yields a zero percent
increase in p53 transcriptional relative to p53 alone.
GSK3β alone (fig 3C, Con) did not significantly increase
the activity of the luciferase reporter construct. When
GSK3β was cotransfected with wtp53, p53-dependent
activity from the luciferase reporter construct was in-
creased by 160% compared to wtp53 alone. To determine

if this activation of p53 transcriptional activity required
the GSK3β phosphorylation site at serine 33, wtp53 with
serine to alanine mutations at either positions 33 or 37
were cotransfected with GSK3β. Mutation of either ser-
ine 33 or 37 significantly reduced the ability of GSK3β to
upregulate p53 transcriptional activity. This is consistent
with the phosphorylation data in fig 1 and 2, which indi-
cated that serine 37 phosphorylation is required for the
subsequent phosphorylation of serine 33 by GSK3β.
These results suggests that GSK3β may be a physiologi-
cal regulator of the p53 protein. GSK3β is constitutively
active in resting cells, and is inactivated by PKB through
the growth factor dependent p110-PI 3-kinase pathway
[25,28,29]. Thus the activity of GSK3β in growing cells is
less than that in cells arrested in Go. p53 can be activated
by several distinct pathways, including DNA damage. If

Figure 2
GSK3β phosphorvlates serine 33 of p53. wtp53-GST (W), p53-GSTS33A (33) or p53-GSTS37A (37) were preincubated
in buffer (-) or DNA-PK (+) for 5 h in the presence of excess ATP. Following heat inactivation of the DNA-PK, aliquots of the
phosphorylated p53-GST fusion proteins were incubated for 30 min without (-) or with (+) GSK-3β. Position of p53-GST and
GSK3β is indicated. The sequence of p53 around serines 15 and 37 is shown below the figure.
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GSK3β is involved in the activation of p53 by DNA dam-
age, then GSK3β is predicted to be upregulated in re-
sponse to DNA damage. In fig 4, GSK3β kinase activity
was monitored by immunoprecipitating GSK3β and then
measuring the ability of the immunoprecipitated protein
to phosphorylate a specific GSK3β peptide substrate. In
fig 4, the omission of either the peptide or the GSK3β an-
tibody from the assay resulted in minimal phosphoryla-
tion of the substrate peptide (fig 4). When both GSK3β
antibody and substrate peptide were employed, high lev-
els of GSK3β-dependent kinase activity were detected.
When cells were incubated for 24 h in low serum (0.5%)
to induce growth arrest in Go, the levels of GSK3β activ-
ity were increased compared to asynchronously growing
cells (fig 4, Go). When asynchronously growing cells
were exposed to 5Gy or 10Gy of Ionizing Radiation to
cause DNA damage, the levels of GSK3β activity were re-
duced. Similar results were seen using p53-GST as the
substrate for GSK3β phosphorylation in the kinase assay
(data not shown). This implies that the phosphorylation
of serine 33 of p53 by GSK3β would be decreased in cells
exposed to DNA damage, but elevated in cells growth ar-
rested in Go.

Discussion
Several p53 kinases were examined for their ability to
create in vitro GSK3 phosphorylation sites on p53. Phos-
phorylation of p53 by DNA-PK created a phosphoryla-
tion site for GSK3β, but not for GSK3α. GSK3α and
GSK3β have 98% homology within the kinase domain,
although regions N- and C-terminal to this are less well
conserved [36]. GSK3α and GSK3β have similar sub-
strate specificity in vivo, and are regulated in parallel in
response to growth factors [24,27,28,29]. However, dis-
ruption of GSK3β in mice results in embryonic lethality
and impaired NFκ B function [37], indicating that
GSK3α cannot substitute for GSK3β in this model sys-
tem. GSK3α and GSK3β therefore have overlapping cel-
lular functions, but each isoform also regulates distinct
signaling pathways. Our results clearly show that p53
phsophorylation is specific for GSK3β.

The GSK3β phosphorylation site was identified by muta-
genesis as serine 33 of p53, and we were able to show that
this was dependent on prior phosphorylation of serine 37
by DNA-PK. We also examined if GSK3β regulates in

vivo p53 function through a mechanism involving ser-
ines 33 and 37 of p53. Previous studies have shown that
phosphorylation of serines 15, 20, 33 and 37 of p53 block

Figure 3
GSK3β regulates p53 transcriptional activity. (A) SAOS-2 cells were transiently transfected with vector (pcDNA3.1), or
expression vectors for wtp53, wtp53S33A (S33A) or wtp53S37A (S37A). p53 expression was detected by western blotting.
(B+C). SAOS-2 cells were transiently transfected with p50-2, a p53-responsive luciferase reporter construct, and 50 ng of
vector (Con), wtp53, wtp53S33A (S33A), or wtp53S37A (S37A) as indicated, β-galactosidase activity from pCMV-Gal was used
to adjust for transfection efficiency. In (B), the actual transcriptional activity of each p53 construct is shown. In (C), cells were
cotransfected with an expression vector for GSK3β (pcDGSKSβ ; 800 ng). The transcriptional activity was calculated by divid-
ing p53 activity in the presence of GSK3b by p53 activity in the absence of GSK3b and expressing the answer as a percentage.
0% = no increase
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the interaction of p53 with mdm2, leading to stabiliza-
tion and accumulation of p53 protein in the cell
[10,11,13,14,15,18]. mdm2 binding is dependent on the
phosphorylation status of serine 20 of p53 [15], although
phosphorylation of serines 15, 33 and 37 also play a role.
We did not detect any significant difference in the level of
expression of p53 with single mutations in either serines
33 or 37 when compared to wtp53, indicating that single

point mutations in serines 33 or 37 do not greatly alter
p53 stability.

A key function of p53 is the transcriptional activation of
genes which regulate growth arrest and apoptosis
[1,2,3,4]. Individual mutation of either serine 33 or 37
slightly increased the basal transcriptional activity of the
p53 protein. This is in keeping with observations made
by other groups, who demonstrated that single or multi-

Figure 4
Ionizing Radiation inhibits GSK3β kinase activity. SAOS-2 cells were immunoprecipitated with anti-GSK3 antibody and
incubated with CREB phosphopeptide substrate. Total CPM incorporated into the substrate peptide are shown. Pep: Assays
carried out with or without peptide. Ab: Immunoprecipitation carried out with either IgG or anti-GSK3 antibody (+). Cell:
Cells were either growing asynchronously (+) or preincubated for 24 h in 0.5% Serum to induce quiescence (Go). IR: Cells
were exposed to 5 or 10Gy of Ionizing Radiation and allowed to recover for 60 min.
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ple mutations in p53 phosphorylation sites has minimal
effect on the basal transcriptional activity of the p53 pro-
tein [38,39,40]. We also determined if GSK3β could reg-
ulate p53 transcriptional activity in vivo. GSK3β is
constitutively active in resting cells, but exhibits lower
activity in asynchronously growing cells [24]. To in-
crease the activity of GSK3β, we co-transfected GSK3β
with either wtp53 or p53 bearing serine to alanine muta-
tions at positions 33 or 37. GSK3β increased the tran-
scriptional activity of wtp53, but not of p53 with
mutations in either serine 33 or 37. Therefore both serine
33 and serine 37 are required for GSK3β to activate p53
transcriptional activity in vivo. GSK3β regulates many
stress activated transcription factors. For example,
GSK3β is required for activation of NFκ B [37], but inhib-
its activation of Heat Shock Factor-1 [27]. Our results in-
dicate that GSK3β may also be involved in the activation
of the p53 protein as well.

A key question is whether DNA-PK or some other kinase
phosphorylates serine 37 of p53 in vivo. DNA-PK is 460
kd DNA-activated protein kinase which participates in
the cellular response to DNA damage [41]. DNA-PK is in-
volved in DNA strand-break repair, and can phosphor-
ylate serines 15 and serine 37 of p53 in vitro [32]. Some
reports indicate that DNA-PK is required for the activa-
tion of p53 [42], but recent genetic studies have shown
clearly that DNA-PK is not required for p53 activation by
Ionizing Radiation [43]. Whether DNA-PK is required
for p53 activation in response to other stimuli is not
known. A more likely candidate is the Atr protein kinase,
a kinase related to DNA-PK [44], which can regulate the
phosphorylation of serine 37 of p53 in response to DNA
damage. The present data indicates that transcriptional
activation of p53 by GSK3β requires both serines 33 and
37, but it does not allow us to determine if phosphoryla-
tion of serine 33 is dependent on phosphorylation of ser-
ine 37 in vivo. It is possible that, in vivo, GSK3β directly
phosphorylates serine 33 independently of serine 37, but
that both residues must be phosphorylated for transcrip-
tional activation to occur in vivo. Future studies will ad-
dress this issue.

p53 is activated by multiple pathways, including DNA
damage and oncogene activation [1,2,3]. If GSK3β is re-
quired for the activation of p53 by DNA damage, GSK3β
activity should be regulated by DNA damage. However,
when cells were exposed to Ionizing Radiation, GSK3β
kinase activity was inhibited rather than enhanced, im-
plying decreased GSK3β-dependent phosphorylation of
p53 after DNA damage. Serine 33 of p53 is also phospho-
rylated by other kinases, including the CDK7-cyclin H
complex [45] and p38 MAPK [46]. p38 MAPK is involved
in p53 activation by genotoxic stress [46], and may be re-
sponsible for p53 phosphorylation at serine 33 in

response to DNA damage. GSK3β-dependent phosphor-
ylation of p53 at serine 33 may be part of other p53-reg-
ulatory pathways, such as oncogene activation or
apoptosis, which are not directly activated by DNA-dam-
age. For example, activation of the p110-PI 3-kinase/
PKB pathway delivers an anti-apoptotic signal to the cell
[23,25,47]. Further, activation of the p110-PI 3-kinase/
PKB is associated with inhibition of both p53 dependent
apoptosis [48] and p53 transcriptional activity [49,50].
Although PKB has many down stream targets which may
regulate these effects [47] a key target of PKB is GSK3β
[29]. Phosphorylation of GSK3β by PKB inhibits GSK3β
kinase activity [29]. This would be predicted to block
phosphorylation of serine 33 of p53 by GSK3β, decreas-
ing p53 transcriptional activity and therefore reducing
the transcription of p53-regulated growth and pro-apop-
totic proteins. However, clarification of the potential role
of GSK3β in regulating p53 activation by non-DNA dam-
age pathways will require additional study.

Conclusions
This study demonstrates that GSK3β, but not GSK3α,
can directly phosphorylate serine 33 of p53 when serine
37 of p53 is already phosphorylated. GSK3β can increase
p53's transcriptional activity in vivo, and this activation
requires serines 33 and 37 of the p53 protein. Thus
GSK3β may phosphorylate and activate p53 in vivo.

However, GSK3β is not part of the p53-DNA damage re-
sponse pathway. Instead, GSK3β may provide the link
between p53 and non-DNA damage mechanisms for p53
activation, such as oncogene activation.

Materials and methods
Phosphorylation Reactions
Wild type p53 or p53 bearing mutations in serines 33 or
37 were subcloned into pGEX-2T GST fusion vector
(Pharmacia, NJ) and p53-GST purified as previously de-
scribed [33]. p53-GST protein (2 µg; measured using
Bio-Rad Protein assay Kit, Biorad, CA) was incubated
with MAP kinase (Erk2, 10 Units, New England Biolabs,
MA), Protein Kinase A (Catalytic sub-unit, 5 Units, Cal-
biochem, CA), S6 kinase (0.2 Units, Upstate Biotechnol-
ogy, NY), Protein Kinase C (O.1 mUnits, Roche
Molecular Biochemicals, IN) or DNA-PK (20 Units,
Promega Corp, Wl) for 5 h at 30°C in the following buff-
ers (40 µl final volume). MAP kinase and Protein Kinase
A: 20 mM Hepes pH 7.2/10 mM Na-Acetate/30 mM
MgCl2/0.2 mM EDTA/1 mM EDTA/I0 µM ATP. S6 Ki-
nase: 20 mM MOPS pH 7.2/30 mM MgCl2/5 mM EGTA/
1 mM DTT/I0 µM ATP. DNA-PK:25 mM Hepes pH7.5/
150 mM KCI/10 mM MgCl2/20% Glycerol/0.1% NP40/
20 µM ZnCl2/1 mM DTT/250 ng DNA/4.2 mM spermi-
dine/ 10 µM ATP. PKC: 20 mM Hepes pH 7.4/ 20 mM
MgCl2/ 0.2 mM EGTA/ 1 mM CaCl2/1.5 µg phosphati-
dylserine. Samples were then incubated at 65°C for 20
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min to inactivate kinases, and 25% of the reaction incu-
bated for 30 min with GSK3α or GSK3β in GSK3 kinase
buffer (KGB Buffer: 8 mM MOPS, pH7.2/ 10 mM MgCl2/
0.2 mM EDTA/ 5 µM ATP/10 µCi 32P-ATP) in a final
volume of 40 µl. Reactions were terminated by the addi-
tion of SDS sample buffer and p53-GST phosphorylation
detected by SDS-PAGE and auotradiography. Equal
amounts of p53-GST (0.25 µg) were analyzed by SDS-
PAGE and equal loading confirmed by coomassie blue
staining of the SDS-PAG.

GSK3 immunokinase assay
SAOS-2 cells (5 × 106) were lyzed in 0.5 ml of GLB buffer
(50 mM Tris pH7.5/1 mM EDTA/1 mM EGTA/0.5%
NP40/0.5 M NaCI/1 mM DTT/1 mM PMSF/leupeptin/
aprotinin/600 µM Na3VO4/50 mM NaF). Extracts were
cleared by centrifugation and incubated with GSK3 anti-
body (1 µg; Upstate Biotech, NY) prebound to Sepharose
A/G agarose beads for 2 h. The beads were washed in 4 ×
1 ml of GLB buffer and then in 2 × 1 ml of KGB buffer. Ki-
nase reactions contained 5 µM ATP/15 µCi 32P-ATP/0.5
µg PhosphoCREB peptide in 30 µl of KGB. After incubate
for 10 min at room temperature, the beads were collected
by centrifugation and 20 µl of the reaction mix spotted
onto circles of P81 paper (Whatman, USA). The P81 pa-
per was washed in 4 × 10 ml changes of 100 mM phos-
phoric acid, dried and counted. PhosphoCREB peptide
(sequence KRREILSRRPS(P)YR) was obtained from
New England Biolabs, MA.

Mutagenesis was carried out using the Altered Sites
Mutagenesis System (Promega, Wl) as previously de-
scribed by us [33]. Human wild type p53 or p53 bearing
mutations in serines 33 or 37 were inserted into the
BamH1 site of the pcDNA3.1 expression vector (Invitro-
gen, CA).

Luciferase reporter assays were carried out in the
p53 null cell line SAOS-2 using the p53 specific luciferase
reporter construct p50-Luc, and pCMV-β-galatosidase
to control for transfection efficiency. Cells were trans-
fected using Lipofectin (Gibco-BRL) containing p50-Luc
(1 µg), pCMV-Gal (1 µg) and pcDNAp53 (50 ng) in a final
volume of 400 µl as described in the manufacturers pro-
tocol.
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