
StarFlow: A Script-Centric Data Analysis 
Environment

Citation
Angelino, Elaine, Daniel Yamins, and Margo Seltzer. 2010. StarFlow: a script-centric data 
analysis environment. Lecture Notes in Computer Science 6378: 236-250. Also published in 
Proceedings of the Third International Provenance and Annotation Workshop (IPAW 2010), Troy, 
NY, USA, June 15-16, 2010: Revised Selected Papers. Berlin: Springer.

Published Version
dx.doi.org/10.1007/978-3-642-17819-1_27

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4797264

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:4797264
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=StarFlow:%20A%20Script-Centric%20Data%20Analysis%20Environment&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=d6d8189694bd225809d1a20d667c3534&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility


StarFlow: A Script-centric
Data Analysis Environment

Elaine Angelino, Daniel Yamins, and Margo Seltzer

School of Engineering and Applied Sciences, Harvard University,
33 Oxford St., Cambridge, MA 02138

{elaine,margo}@eecs.harvard.edu, yamins@fas.harvard.edu
http://www.eecs.harvard.edu/∼margo/

Abstract. We introduce StarFlow, a script-centric environment for data
analysis. StarFlow has four main features: (1) extraction of control and
data-flow dependencies through a novel combination of static analysis,
dynamic runtime analysis, and user annotations, (2) command-line tools
for exploring and propagating changes through the resulting dependency
network, (3) support for workflow abstractions enabling robust parallel
executions of complex analysis pipelines, and (4) a seamless interface
with the Python scripting language. We describe real applications of
StarFlow, including automatic parallelization of complex workflows in
the cloud.

Key words: automatic parallelization, automatic updating, computa-
tional workflows, control flow, data-flow, data analysis, dependency track-
ing, provenance, Python, workflow abstraction

1 Introduction

Many people analyze data by writing pipelines of scripts: short programs written
in high-level languages such as Python that parse input, call numerical analysis
routines, and write output.

Scripts plus data files are powerful because they are very flexible: they allow
users to mix and match many kinds of data formats and analysis routines, out-
put files where convenient, write code that performs complicated computational
tasks, re-use code in different places, and put related functions into the same
file. While script pipelines are less rigid than databases, they are more prone
to disorganization. Scripts and data live in conventional file systems, where de-
pendency relationships are exposed only at runtime, and provenance of data is
easily lost.

The data analysis work cycle consists of basic actions: create an analysis
pipeline and execute its initial run, modify input data or an analysis function
and propagate the change, add an analysis function and re-execute the pipeline,
and create related pipelines based on an abstract workflow. In this context, it
is difficult and annoying to remember what functions were called with what
parameters to produce what files, to re-run a long chain of downstream scripts



2 StarFlow: A Script-centric Data Analysis Environment

when an upstream data file or script is modified, to capture repeated patterns
of analysis, to parallelize execution, and to communicate or replicate analyses.

Data analysts who write scripts are thus confronted by fundamental data
management challenges: identifying dependencies, propagating changes, paral-
lelizing work, sharing data and code, and archiving relevant information. De-
pendency tracking and workflow management tools would help them by making
recomputation automatic and efficient and by making sharing easier.

These programmers are an important and unique user group. They are com-
fortable with and depend on writing code, and as a result are unwilling to depend
on tools that depart from the scripting environment. At the same time, they are
not sophisticated software engineers; they write code as a means to produce
analytic results, not to produce code as an end result.

A workflow tool for these users must integrate in a simple way with the ex-
isting scripting environment. By focusing on these users in this environment, we
have designed a dependency tracking system and workflow engine with novel fea-
tures. A key observation is that scripts plus data files already contain workflows
in the sense that they implicitly describe a dependency graph. This insight moti-
vates both design constraints and a unified and flexible framework for managing
dependencies across multiple workflows that may exist separately or overlap
within a user’s file system.

Dependency tracking systems can explicitly capture the provenance of data
analysis and enable workflow tools for managing, generating and executing anal-
ysis pipelines. Existing tools track dependencies by combining dynamic runtime
analysis, static analysis, and/or user annotations; their specific choices restrict
when and what dependencies can be extracted and thus when and how they
can be used to drive actions. User annotations plus static analysis extract con-
trol flow prior to runtime execution, enabling automatic parallelization. Even
without annotations, dynamic analysis extracts both information and control
flow. Whether dynamic or static, control flow dependency tracking at the level
of functions facilitates incremental recomputation.

StarFlow strategically uses all three methods of dependency tracking while in-
tegrating seamlessly with a script-based programming environment1. This unique
combination of features makes StarFlow widely applicable, from single-purpose
analysis pipelines written “on the fly” to complex workflows in a high-performance
computing environment.

Below, we introduce a design framework for data analysis workflow engines
and describe existing implementations (§2). Next, we describe StarFlow’s im-
plementation (§3), user scenarios (§3.4), workflow abstraction and automatic
parallelization of complex workflows in the cloud (§4).

1 See http://bitbucket.org/dyamins/starflow/ for StarFlow source code and documen-
tation.



StarFlow: A Script-centric Data Analysis Environment 3

file2

myfunc()

outdir/

parse()

file1

Fig. 1. The function myfunc() de-
pends on input files ‘file1’ and ‘file2’,
creates output directory ‘outdir/’, and
uses the function parse(). Arrows are
in the direction of information flow.

Runtime analysis Static analysis User annotation

Information flow Accurate, but Difficult Acceptable if
data dependencies sometimes too late lightweight

Control flow Accurate, but Usually possible Very annoying
functional dependencies mostly unnecessary
Table 1. Three complementary methods for tracking information flow and control
flow: dynamic runtime analysis, static analysis of code, and user annotation.

2 Features of a workflow engine for data analysis

A workflow engine for data analysis can be evaluated by: (1) how and at what
level of granularity it tracks dependency relationships between data and anal-
ysis functions, (2) what user actions it supports using those dependencies, (3)
whether and how it supports workflow abstraction, and (4) how it integrates
with a programming environment. We use this framework to describe our design
and to classify existing workflow tools (Table 2).

2.1 Tracking dependencies

A set of scripts implies a dependency network of links between data and func-
tions. A function may depend on file inputs, create file outputs, and use other
functions (Fig. 1). There are three complementary sources of dependency infor-
mation: user annotations, static code analysis, and dynamic runtime analysis.
Each technique has strengths and weaknesses (Table 1).

User annotation of dependencies allows a workflow tool to be aware of
dependencies without having to extract them, and is a widely used technique.
The familiar Unix make utility requires that a user create a Makefile, explic-
itly specifying file targets, their dependencies, and commands transforming one
to another. Although Makefiles are notoriously difficult to maintain, they are
still the de facto standard way to specify source code dependencies. Workflow
management systems also ask users to explicitly describe both information and
control flow; there are many in the scientific (e.g. Galaxy[26], GenePattern[16],
Kepler[18], Knime[3], Pegasus[9], Taverna[22], Vistrails[4]) and business (e.g.
clario[5], Pentaho Data Integration [8]) communities. Their users construct work-
flows by connecting functional “nodes” with well-defined input/output types.



4 StarFlow: A Script-centric Data Analysis Environment

Runtime analysis Static analysis User annotation

make Specify file targets,
their file dependencies
& executable com-
mands in a Makefile

make +

Automake

depcomp determines
source file dependen-
cies during compilation

When depcomp fails,
makedepend determines
source file dependencies

Specify C/C++ source
files in a simplified
Makefile

Workflow
management
systems

Specify node parame-
ters & data flow in a
GUI or flow language

IncPy Modified Python inter-
preter tracks file I/O
& function calls; mem-
oizes function returns

StarFlow File I/O interception &
stack trace inspection
in the Python inter-
preter

Abstract syntax tree
analysis of Python code
tracks function-level
control flow

Specify data flow &
non-Python control
flow directly in func-
tion definition lines

Table 2. Comparison of data tracking implementations.

Static analysis of code can automate some of this manual annotation, but
in the general case cannot completely capture information or control flow; these
are Turing-undecidable problems. In practice, static analysis can often extract a
highly accurate description of control flow. For example, makedepend augments
the standard make utility by using static analysis to automatically extract C
source code file dependencies. Static analysis can even extract dependencies at
the level of functions because their syntax makes them easy to parse from the
abstract syntax tree. Data-flow dependencies are difficult to extract because
they are not explicit in the abstract syntax tree, e.g. they may be implicit in a
concatenation of strings.

Dynamic analysis captures the actual information and control flow gener-
ated during runtime execution of scripts. File input/output interception captures
data file dependencies, and stack trace inspection captures functional dependen-
cies. Pure runtime systems use only dynamic runtime analysis. For example,
provenance-aware storage systems (PASS) automatically track provenance at
the level of files and processes dynamically at runtime [21], while IncPy is a
modified Python interpreter that dynamically tracks file I/O and computational
results at the level of function calls [13]. Automake is another dynamic analysis
tool that automates the construction of Makefiles [24].

The granularity of dependency tracking determines what actions it can
support. Notably, make-like tools track control flow at the level of files, but
practical incremental recomputation requires tracking at the level of functions.



StarFlow: A Script-centric Data Analysis Environment 5

2.2 Using the dependency network

Knowing the dependency network supports three activities: dependency explo-
ration, automatic change propagation, and pipeline extraction and sharing.

Dependency exploration involves querying the dependency network to
understand where files and functions come from and their upstream and down-
stream dependencies. A query might concern only dependency structure (e.g.,
“On what Python modules does this output depend?”) or could take into ac-
count other information, such as the file modification times of dependency targets
relative to their sources (e.g., “Do I need to rerun this analysis?”).

Automatic change propagation involves the use of a “smart” updating
engine that queries the dependency network to support incremental recomputa-
tion; it updates targets by (re-)executing the minimal set of control flow compo-
nents necessary. When the user invokes make, it examines the file modification
times of targets relative to their dependencies to determine those in need of up-
dating and executes the minimal sequence of necessary commands. The Panda
project is developing a formalism and algorithms for provenance-based refresh
in data-oriented workflows [14]. IncPy’s dynamic analysis and memoization fa-
cilitates fine-grain incremental recomputation.

Extraction and sharing of an analysis pipeline between users is facilitated
by knowing its dependency network.

2.3 Workflow abstraction

Once a user develops an analysis pipeline, she often needs to apply it to a po-
tentially large number of similar analyses. If we view the overall pipeline as an
abstract workflow, then each of these pipelines becomes an instance of that ab-
stract workflow. Workflow environments differ in whether and how they allow
users to represent abstract workflows, concrete instances or both. Those that do
support workflow abstraction additionally differ in whether they support pro-
grammatic instantiation of concrete pipelines from abstract workflows. Scripting
environments support but do not typically come with ready tools for workflow
abstraction, while workflow management systems emphasize workflow abstrac-
tion but not necessarily programmatic instantiation.

2.4 Integration with the programming environment

There are two fundamental approaches to providing dependency tracking ca-
pabilities: make the workflow management system the center of the system or
integrate dependency tracking into the programming environment. Workflow
management systems tend to do the former while integrated development envi-
ronments (IDEs) do the latter. It is often a design goal of workflow management
systems to support novices who do not want to write programs [18]. For example,
Taverna replaces a regular programming environment with a GUI for manipu-
lating an XML-based flow language, Scufl [20]; users can also directly write in
Scufl to annotate dependencies. IDE-based systems provide a unified interface



6 StarFlow: A Script-centric Data Analysis Environment

for code developement that decreases the distance between where a user edits
and executes scripts. Eclipse’s C/C++ Development Tooling (CDT) IDE includes
standard make build, plus a GUI for writing Makefiles and invoking make [12].
While the Chimera virtual data system is script-based, it requires use of a virtual
data language (VDL) [11].

An important extension of a workflow engine’s integration with the program-
ming environment is its support for distributed computing on a grid or in the
cloud. Users often have computational needs at multiple scales, from jobs they
want to run a personal computer to high performance computing (HPC) prob-
lems; many of the scientific and business workflow tools mentioned already can
be deployed in a variety of environments. Other workflow management solutions
are specifically for distributed systems, such as Azkaban and Oozie for Apache
Hadoop by LinkedIn and Yahoo!, respectively [7, 15]. Some tools, including Pi-
Cloud and pomsets, specialize in workflow management for cloud services, e.g.,
Amazon’s EC2 [10, 23].

3 StarFlow

StarFlow is a data analysis environment that is script-centric, has make-like tools,
tracks dependencies at the level of functions rather than files, and is constrained
in scope to the level of a scripting language. Our implementation of the StarFlow
workflow engine has four main features: (1) dependency tracking of both infor-
mation and control flow via a novel combination of static analysis, dynamic
analysis, and user annotations, (2) command-line tools supporting dependency
exploration, automatic updating, and pipeline extraction and sharing, (3) work-
flow abstractions and concrete analysis pipeline instances, and (4) a seamless
interface with Python. Although our initial implementation is for Python, our
design principles and algorithms are broadly applicable. Sections §3.2 and §3.3
describe how StarFlow tracks and uses dependencies, and section §3.4 presents
various usage scenarios.

3.1 Design principles

A few basic principles guide StarFlow’s design. First, users express dependencies
only in their code. This design choice makes sharing dependency information a
consequence of sharing code, and so these actions do not have to occur sep-
arately. Second, StarFlow is designed to place a minimal burden on the user,
implying that any required annotations must be lightweight. Finally, StarFlow
is for programmers who aren’t software engineers, and so it is script-centric and
simple.

3.2 Tracking dependencies

StarFlow uses a combination of dynamic analysis, static analysis and user anno-
tations to track data and functional dependencies.



StarFlow: A Script-centric Data Analysis Environment 7

User annotations. Although user annotations in StarFlow are purely op-
tional, they enable parallelization and dependency querying before a script has
ever been run. They also make sharing dependency provenance a side effect of
sharing code. Such annotations are simple declarations within Python functions
that expose the inputs and outputs of the function. For example,

def myfunc(depends_on=(‘file1’,‘file2’), creates=‘outdir/’):

indicates that (‘file1’,‘file2’) and ‘outdir/’ are the file names of the in-
puts and output of myfunc, respectively. The user can also annotate non-Python
functional dependencies, e.g. a Perl script, with an analogous parameter, uses.

When functions specify input and output file namess via parameters, the user
can write a simple one-line annotation to describe information flow. It is a Python
decoration, indicated by @activate, consisting of two lambda expressions, one
representing the inputs (depends_on annotations) and the other representing
the outputs (creates annotations). Upon function invocation, the decoration
maps the parameters to the appropriate lambda expression. For example, in

@activate(lambda x: (x[0], x[1]), lambda x: x[2])
def myfunc(infile1, infile2, outdir):

the first lambda represents the depends_on values, mapping to the first two
parameters (x[0] and x[1]), while the second lambda represents the creates
values, mapping to the third parameter x[2]. Thus, like in the previous exam-
ple, (infile1, infile2) are the inputs and outdir is the output of myfunc().
This is particularly useful for workflow abstraction (§4) but also for any function
whose inputs and/or outputs are specified at runtime.

Static analysis. StarFlow uses static code analysis to determine most con-
trol flow prior to runtime execution. First, it examines import statements to
determine what external modules a script depends on. Then, it uses Python’s
built-in compiler.ast module to access the abstract syntax tree to determine
the functional dependencies within a module. Static analysis cannot determine
conditional control flow, and StarFlow has different methods for approximating
dependencies in different scenarios. For example, it extracts control flow in all
conditional clauses, but never extracts control flow in an eval statement.

Dynamic analysis. During runtime, for each function executed at the top of
the Python stack, StarFlow uses sys.settrace to set a trace function. StarFlow
walks the stack and examines all function calls to extract control flow and in-
tercepts file I/O functions to extract information flow. This produces a trace
of all function calls specifying the stacks where they were invoked, as well as
what I/O operations were performed and what files they involved. By setting an
environment variable, the user can control how StarFlow uses runtime depen-
dencies: they can be simply logged, or they can be compared to the results of
static analysis and user annotations to check for consistency.



8 StarFlow: A Script-centric Data Analysis Environment

Dependency representation. As a result of using the three methods of
dependency tracking, StarFlow determines the dependency network; we describe
its representation here.

LoadLiveModules() takes a set of directories and recursively determines all
the Python modules inside those directories. The user can pass LoadLiveModules()
a set of regular expression filters to conditionally select modules and functions
and can maintain a LiveModules configuration file to set the default input.

LinksFromOperations() determines the dependency network corresponding
to a list of Python modules. It uses static code analysis and extracts user anno-
tations to construct the dependency list including both information and control
flow. LinksFromOperations() caches the compiled bytecode of user-generated
functions so that irrelevant changes, such as edits to comments or changes to
unrelated functions in the same module, do not result in changes to the de-
pendency network. It returns the LinkList, a table whose records correspond
to dependency links and whose columns describe the links. For example, this
LinkList describes the dependencies in Figure 1:

Link Link Source Link Target Update Update
Type Source File Target File Script ScriptFile

DependsOn file1 file1 myfunc()mymodule.py None mymodule.py
DependsOn file2 file2 myfunc()mymodule.py None mymodule.py
CreatedBy myfunc() mymodule.py outdir/ outdir/ myfunc() mymodule.py
Uses parse() mymodule.py myfunc()mymodule.py None mymodule.py

There are four files: ‘file1’, ‘file2’, ‘mymodule.py’, and ‘outdir/’. The four links
represent that: (1-2) the myfunc() function depends on the files ‘file1’ and ‘file2’,
and is inside of the Python module ‘mymodule.py’, (3) the ‘outdir/’ directory is
created by the function myfunc() inside of ‘mymodule.py’, and (4) the myfunc()
function uses the function parse(), and both are in ‘mymodule.py’.

The LinkList is stored on-disk in a serialized format. The LinkList can
trivially be represented in a tabular format (CSV) or XML or RDF consistent
with the Open Provenance Model (OPM) [6]. We could easily allow users to edit
pipelines by directly editing the LinkList, but do not currently do so.

3.3 Exploring, updating and sharing

StarFlow includes a set of Python command-line tools for exploring dependen-
cies, propagating changes, and extracting and sharing analysis pipelines.

Exploring dependencies. DownstreamLinks() takes a list of source depen-
dencies and propagates down through the dependency network to return a list
of downstream dependencies. Its default behavior uses file time stamps to prop-
agate only through dependencies in need of updating, i.e., dependencies whose
targets’ time stamps are older than those of their sources. When Forced = True,
it ignores time stamps and instead propagates through all downstream depen-
dencies. UpstreamLinks() is an analogous function for upstream dependencies.



StarFlow: A Script-centric Data Analysis Environment 9

ShowUpdates() uses DownstreamLinks() to determine and print a readable
report describing what Python functions to execute, and in what order, to update
dependency targets relative to their sources, without actually calling them.

Propagating changes. StarFlow’s automatic updating engine supports two
styles of change propagation. Update() uses ShowUpdates() to implement down-
stream updating, so changes to the dependency network trigger execution of
downstream functions. Make(Targets) implements upstream updating in the
spirit of make, so targets are made by executing upstream functions that have
changed or whose upstream dependencies have changed. For both functions,
the user can force re-execution by passing Forced = True. Both can propagate
changes through a restricted dependency network, i.e., a filtered LinkList. The
user can pass a list of regular expression filters mapping to a list of Python
functions and specify default filters from a configuration file.

StarFlow’s automatic updating engine combines change propagation with a
set of optional “smart” features: (1) consistency checking that can issue an error
or warning if user annotations contradict runtime file I/O, (2) Unix-style diff
checking between each round of updates, so that if a set of updates produces no
changes, unnecessary downstream updates are cancelled, (3) data archiving and
managed exception handling so that if user scripts throw errors, downstream
updates are cancelled and previous versions of data restored, and (4) storing of
sha-1 checksums after each round of computation to detect corrupt data.

Extracting and sharing. Extract(Targets) uses UpstreamLinks(Targets)
to find all code modules and data sources required to recompute Targets and
then extracts them into a zipped archive. The result of Extract(Targets) can
then be integrated into another user’s StarFlow environment with Integrate().

3.4 Basic use case

StarFlow enables a highly organized real-time data analysis development cy-
cle where the user can automatically update her pipelines every time she edits
scripts or data. Consider a user-generated Python module containing several pa-
rameterized functions for basic data processing and analysis:

def Parser(infile, outfile):
X = open(infile)
Y = remove_header(X)
Z = pivot(Y)
save(Z, outfile)

def Cluster(infile, outfile, distfunc, param=None):
X = open(infile)
C = hcluster(X, distfunc, param)
save(C, outfile)

def PCA(infile, outfile):
X = open(infile)



10 StarFlow: A Script-centric Data Analysis Environment

Y = pca(X)

save(Y, outfile)

def Compare(PCAfile, Clusterfile, outfile):

X1 = open(PCAfile)

X2 = open(Clusterfile)

Y = compute_error(X1, X2)

save(Y, outfile)

These functions read input data files, process their contents, and write output
data files. They depend on other functions located either in the same module
or imported from elsewhere. Regular user interaction at the Python interpreter,
without StarFlow, might look like this:

>> from my_module import *
>> Parser(‘raw_data.csv’, ‘data.csv’)
>> PCA(‘data.csv’, ‘pca.csv’)
>> Cluster(‘data.csv’, ‘euc.csv’, EuclideanDistance)
>> Compare(‘pca.csv’, ‘euc.csv’, ‘error1.csv’)
>> Cluster(‘data.csv’, ‘geo.csv’, GeometricDistance)
>> Compare(‘pca.csv’, ‘geo.csv’, ‘error2.csv’)

StarFlow enables the user to track the dependencies of these sorts of opera-
tions. Suppose the user wants to use the depends_on and creates annotations
to record the first four function calls from the above interpreter session. She
could add the following lines to my_module.py:

def ParseBigInput(depends_on=‘raw_data.csv’, creates=‘data.csv’):

Parser(depends_on, creates)

def DoPCA(depends_on=‘data.csv’, creates=‘pca.csv’):

PCA(depend_on, creates)

def ClusterEuclid(depends_on=‘data.csv’, creates=‘euc.csv’):

Cluster(depends_on, creates, EuclideanDistance)

def Comp(depends_on=(‘pca.csv’, ‘euc.csv’), creates=‘error.csv’):

Compare(depends_on[0], depends_on[1], creates)

With the information flow annotated, StarFlow can determine the complete
dependency network prior to runtime (Fig. 2). The user opens the Python ter-
minal and initializes StarFlow by importing its modules.



StarFlow: A Script-centric Data Analysis Environment 11

ParseBig
Input()

data.csv

Parser()

raw_data.csv

Cluster
Euclid()

euc.csv

DoPCA()

PCA()

pca.csv

Comp()

Cluster()

Compare()

error.csv

Fig. 2. Dependency graph
extracted by StarFlow. Ar-
rows are in the direction of
information flow. Files are
rectangles and functions are
ovals. For example, the func-
tion DoPCA() depends on the
file data.csv, creates the file
pca.csv, and uses the func-
tion PCA().

>> from starflow.interactive import *

Before executing anything, the user can type ShowUpdates() to see what
functions will run and in what order:

>> ShowUpdates()
Round 1: my_module.ParseBigInput
Round 2: my_module.DoPCA, my_module.ClusterData
Round 3: my_module.Comp

The output of ShowUpdates() corresponds to the breadth-first parallelization
scheme that StarFlow can implement automatically. As before, the user can
make edits to data or functions and propagate incremental changes by call-
ing Update() or related tools. When using StarFlow with the depends_on and
creates annotations, the user may find that she only needs to type two com-
mands at the prompt – ShowUpdates() and Update() – to review and propagate
changes as she develops her analysis pipelines.

Later, the user edits her scripts and data, and wants to propagate these
changes. First, she makes a small change to the file raw_data.csv. She types
Update(), and StarFlow re-executes each of the function calls she typed at the
prompt because they are all downstream of the raw_data.csv file. Next, she
makes a small change to the hcluster function. Now when she types Update(),
StarFlow re-executes only the function calls to Cluster, because it depends
directly on hcluster, and Compare, because it is downstream of Cluster.



12 StarFlow: A Script-centric Data Analysis Environment

4 Workflow abstraction

StarFlow supports a simple metaprogramming syntax that allows the user to con-
struct abstract workflows and then instantiate concrete analysis pipelines from
them. The user represents a workflow by a simple data model for a list of con-
crete workflow steps, the OpList. Each step corresponds to a concrete function
call with inputs and outputs and is represented as a three-tuple: a unique string
name, a function, and a tuple of function parameters. Actual concrete workflows
are instantiated by passing the OpList to the Actualize() templating engine.
Actualize(OpList, ‘path.py’) writes out a Python module, ‘path.py’ where
each step corresponds to a hard-coded function with depends_on and creates
annotations. For example, this script:

def instantiator(creates=‘instances.py’):
L = []
for i in [‘a’, ‘b’, ‘c’]:

L += [(‘step_’+i, myfunc, (‘in1_’+i, ‘in2_’+i, ‘out_’+i))]
Actualize(L, ‘instances.py’)

instantiates three concrete instances of a one-step workflow, where myfunc is
@activate decorated, as in §3.2. Each workflow step is automatically written
out as a separate function in ‘instances.py’:

def step_a(depends_on=(‘in1_a’, ‘in2_a’), creates=‘out_a’)
myfunc(‘in1_a’, ‘in2_a’, ‘out_a’)

def step_b(depends_on=(‘in1_b’, ‘in2_b’), creates=‘out_b’)
myfunc(‘in1_b’, ‘in2_b’, ‘out_b’)

def step_c(depends_on=(‘in1_c’, ‘in2_c’), creates=‘out_c’)
myfunc(‘in1_c’, ‘in2_c’, ‘out_c’)

By combining workflow abstraction with automatic updating, we have developed
a parallelization engine. Users can exploit this engine by writing an abstract
workflow that generates many concrete instances. When configured for paral-
lelization, StarFlow’s Update() command materializes these instances, computes
their dependency network and partitions them into parallelizable groups. We
then use a grid scheduler to dispatch the parallel jobs on available machines.
The next section shows how we have integrated StarFlow with Amazon’s Elastic
Compute Cloud (EC2) [17] to perform automatically, parallelized web download
and analysis.

Applying parallelization to abstract workflows. We combine StarFlow
with StarCluster [25] to enable automatic parallelization of workflows in a high
performance cloud setting. StarCluster manages the creation and adminstration
of clusters hosted on Amazon’s EC2, connecting to SunGrid Engine for job
scheduling and load balancing.



StarFlow: A Script-centric Data Analysis Environment 13

Below we illustrate a representative and simple scenario; it is embarrassingly
parallel and contains just one of many possible analyses of interest. Suppose the
user wants to download data from the U.S. Environmental Protection Agency
about facilities or sites subject to environmental regulation [2]. There is one
downloadable file for each of 50 states, and the user wants to call the function
pairwise_comparison() for each pair of states. She writes this module, using
Actualize to automatically produce ‘EPA_instances.py’:

01 urlroot = ‘http://www.epa.gov/enviro/html/frs_demo/’
02 urlroot += ‘geospatial_data/state_files/state_combined_’
03
04 def EPA(depends_on=‘states.txt’, creates=‘EPA_instances.py’):
05
06 L = []
07 statelist = open(‘states.txt’,‘r’).read().strip().split(‘,’)
08
09 for S in statelist:
10 L += [(‘get_’+S, wget, (urlroot+S+‘.zip’, S+‘.zip’))]
11 L += [(‘unzip_’+S, unzip, (S+‘.zip’, S+‘/’))]
12
13 for i in range(0, 49):
14 S1 = statelist[i]
15 for j in range(i+1, 50):
16 S2 = statelist[j]
17 L += [(‘compare_’+S1+‘_’+S2, pairwise_comparison,
18 (S1+‘/data.csv’, S2+‘/data.csv’, S1+‘_’+S2+’.csv’))]
19
20 Actualize(L, ‘EPA_instances.py’)

In the first for loop (lines 9-11), the user downloads and unzips the data, pro-
ducing two rounds of 50 function executions that, within a round, can be run
in parallel. For each state, a large CSV file (≈100 MB) is unarchived. Next,
she analyzes all pairs of states, generating a third round of 1225 parallelizable
function executions.

The user starts a 10-node cluster on EC2 with StarCluster, opens a Python
terminal and initializes StarFlow. When she runs Update(), StarFlow executes
analyze.EPA(), which writes out ‘EPA_instances.py’. StarFlow automatically
detects the functions inside of this new module, determines their dependencies
and how to run them in parallel on 10 nodes, and then does so.

5 Future directions

Although Starflow is currently Python-specific, we’d like to take the underly-
ing principles and design and apply them to other scripting languages, such as
Perl and R, to determine how generally applicable the ideas are. We also would



14 StarFlow: A Script-centric Data Analysis Environment

like to to extend StarFlow to the interactive shell in two ways: (i) given a vari-
able, automatically update its value in response to upstream changes, and (ii)
given a sequence of commands, automatically generate a script from the mini-
mal sequence needed to produce a set of targets. We have developed and plan
to improve a GUI for StarFlow that integrates browsing of files, dependencies,
data and metadata. We are working on more comprehensive parallelization and
workflow tools. We will integrate StarFlow’s dependency tracking infrastructure
with a version control system such as Mercurial [19].

6 Conclusion

StarFlow provides a powerful, script-centric environment for data analysis. It
strategically combines dynamic runtime analysis, static analysis of code, and
user annotations to provide fine-grain propagation. StarFlow enables workflow
abstraction and automatic parallelization, and we have implemented StarFlow
in the cloud.

Acknowledgments. We thank P. C. Sabeti (Harvard), who supported our
initial effort, and whose students and collaborators provided us with a valuable
case study. In particular, I. Shlyakhter, a member of the Sabeti Lab, provided us
with valuable insight on workflow abstraction. Finally, we thank the reviewers,
members of the PASS group (Harvard), and P. J. Guo (Stanford) for many
helpful comments on this manuscript.

References

1. Proceedings of the 2010 USENIX Workshop on the Theory and Practice of Prove-
nance, February 22, 2010, San Jose, CA, USA. USENIX, 2010.

2. U. S. E. P. Agency. Epa frs facilities state combined csv files
download. http://epa.gov/enviro/html/frs demo/geospatial data/geo data

state combined.html.
3. M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kotter, T. Meinl, P. Ohl,

K. Thiel, and B. Wiswedel. Knime - the konstanz information miner: version 2.0
and beyond. SIGKDD Explor. Newsl., 11(1):26–31, 2009.

4. S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T.
Vo. Vistrails: visualization meets data management. In SIGMOD ’06: Proceed-
ings of the 2006 ACM SIGMOD international conference on Management of data,
pages 745–747, New York, NY, USA, 2006. ACM. General Chair-Yu, Clement and
General Chair-Scheuermann, Peter and Program Chair-Chaudhuri, Surajit.

5. clario Analytics. clario. http://clarioanalytics.com.
6. B. Clifford, J. Freire, Y. Gil, P. Groth, J. Futrelle, N. Kwasnikowska, S. Miles,

P. Missier, J. Myers, Y. Simmhan, E. Stephan, and J. V. den Bussche. The open
provenance model core specification (v1.1). http://eprints.ecs.soton.ac.uk/

18332/1/opm.pdf, 2009.
7. L. Corporation. Azkaban. http://sna-projects.com/azkaban/.
8. P. Corporation. Kettle: Pentaho data integration. http://kettle.pentaho.org.



StarFlow: A Script-centric Data Analysis Environment 15

9. E. Deelman, J. Blythe, A. Gil, C. Kesselman, G. Mehta, S. Patil, M. hui Su,
K. Vahi, and M. Livny. Pegasus: Mapping scientific workflows onto the grid. pages
11–20, 2004.

10. K. Elkabany, A. Staley, and K. Park. Picloud - cloud computing for science.
simplified. In SciPy 2010: Python for Scientific Computing Conference, Austin,
TX, July 2010.

11. I. Foster, J. Vckler, M. Wilde, and Y. Zhao. Chimera: A virtual data system for
representing, querying, and automating data derivation. In In Proceedings of the
14th Conference on Scientific and Statistical Database Management, pages 37–46,
2002.

12. T. E. Foundation. Eclipse c/c++ development tooling project. http://www.

eclipse.org/cdt.
13. P. J. Guo and D. Engler. Towards practical incremental recomputation for scien-

tists: An implementation for the python language. In TaPP ’10 [1].
14. R. Ikeda and J. Widom. Panda: A system for provenance and data. In TaPP ’10

[1].
15. Y. Inc. Oozie. http://yahoo.github.com/oozie/.
16. H. Kuehn, A. Liberzon, M. Reich, and J. P. Mesirov. Using genepattern for gene

expression analysis. Curr. Prot. in Bioinformatics, pages 7.12.1–7.12.39, 2008.
17. A. W. S. LLC. Amazon elastic compute cloud (ec2). http://aws.amazon.com/ec2.
18. T. McPhillips, S. Bowers, D. Zinn, and B. Ludaschera. Scientific workflow design

for mere mortals. Future Generation Computer Systems, 25(5):541–551, 2009.
19. Mercurial. Mercurial. http://mercurial.selenic.com.
20. P. Missier, K. Belhajjame, J. Zhao, M. Roos, and C. Goble. Data lineage model for

taverna workflows with lightweight annotation requirements. In J. Freire, D. Koop,
and L. Moreau, editors, Provenance and Annotation of Data and Processes: Sec-
ond International Provenance and Annotation Workshop, IPAW 2008, Salt Lake
City, UT, USA, June 17-18, 2008. Revised Selected Papers, pages 17–30, Berlin,
Heidelberg, 2008. Springer-Verlag.

21. K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer. Provenance-
aware storage systems. In USENIX Annual Technical Conference, General Track,
pages 43–56. USENIX, 2006.

22. T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool
for the composition and enactment of bioinformatics workflows. Bioinformatics,
20(17):3045–3054, 2004.

23. M. J. Pan. pomsets: workflow management for your cloud. In SciPy 2010: Python
for Scientific Computing Conference, Austin, TX, July 2010.

24. T. G. Project. Gnu automake. http://www.gnu.org/software/automake.
25. J. Riley. Starcluster - numpy/scipy computing in the cloud. In SciPy 2010: Python

for Scientific Computing Conference, Austin, TX, July 2010.
26. J. Taylor, I. Schenck, D. Blankenberg, and A. Nekrutenko. Using galaxy to perform

large-scale interactive data analyses. Curr. Prot. in Bioinformatics, pages 10.5.1–
10.5.25, 2007.


