Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching

Citation
Wang, Jing H., Frederick W. Alt, Monica Gostissa, Abhishek Datta, Michael Murphy, Marat B. Alimzhanov, Kristen M. Coakley, Klaus Rajewsky, John P. Manis, and Catherine T. Yan. 2008. Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. The Journal of Experimental Medicine 205(13): 3079-3090.

Published Version
doi:10.1084/jem.20082271

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4853410

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching

Jing H. Wang,1,2,3,4 Frederick W. Alt,1,2,3,4 Monica Gostissa,1,2,3,4 Abhishek Datta,1,2,3,4 Michael Murphy,1,2,3,4 Marat B. Alimzhanov,3 Kristen M. Coakley,1,2,3,4 Klaus Rajewsky,3,5 John P. Manis,2,5 and Catherine T. Yan1,2,3,4

1Howard Hughes Medical Institute, 2The Children’s Hospital, 3Immune Disease Institute, 4Department of Genetics, 5Department of Pathology, Harvard Medical School, MA 02115

Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks (DSBs) during V(D)J recombination in developing lymphocytes and during immunoglobulin (Ig) heavy chain (IgH) class switch recombination (CSR) in peripheral B lymphocytes. We now show that CD21-cre-mediated deletion of the Xrcc4 NHEJ gene in p53-deficient peripheral B cells leads to recurrent surface Ig-negative B lymphomas (“CXP lymphomas”). Remarkably, CXP lymphomas arise from peripheral B cells that had attempted both receptor editing (secondary V[D]J recombination of Igκ and Igλ light chain genes) and IgH CSR subsequent to Xrcc4 deletion. Correspondingly, CXP tumors frequently harbored a CSR-based reciprocal chromosomal translocation that fused IgH to c-myc, as well as large chromosomal deletions or translocations involving Igκ or Igλ, with the latter fusing Igλ to oncogenes or to IgH. Our findings reveal peripheral B cells that have undergone both editing and CSR and show them to be common progenitors of CXP tumors. Our studies also reveal developmental stage-specific mechanisms of c-myc activation via IgH locus translocations. Thus, Xrcc4/p53-deficient pro-B lymphomas routinely activate c-myc by gene amplification, whereas Xrcc4/p53-deficient peripheral B cell lymphomas routinely ectopically activate a single c-myc copy.

© 2008 Wang et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jem.org/misc/terms.shtml). After six months it is available under a Creative Commons License Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
B lymphocytes are Igκ−, with the remainder being Igκ+. In that context, Igκ assembly usually precedes that of Igλ (9). Thus, most Igκ+ B cells contain Igλ in germline configuration, with Igλ rearrangements occurring in cells in which both Igκ alleles are rearranged out-of-frame or that harbor deletions of the Jκ segments, κ enhancer, and/or Cκ exons (9). Such deletions usually occur via rearrangement of Vκs or an RS heptamer in the Jκ-Cκ intron (IRS) to a bona fide RS 25 kb downstream of Cκ (3’RS) (10). Recent analyses suggest that Igκ deletions via 3’RS rearrangements may play a role in progression to Igλ rearrangement (11).

Expression of complete Ig (IgH/IgL) leads to IgM+ B lymphocytes, which ultimately down-regulate RAG expression to enforce allelic exclusion (1). However, newly generated BM IgM+ B lymphocytes that express autoreactive switch (S) regions (29), which are 1–10-kb repetitive sequences, proliferation and ionizing radiation sensitivity. Xrcc4 deficient BM IgM+ B lymphocytes owing to failure to join broken S regions because up to 50% of each Cμ gene. AID-generated lesions with the donor Sμ and a downstream acceptor S region are processed into DSBs, which are end-joined to complete CSR (27). In contrast to V(D)J recombination, substantial CSR occurs in the absence of Xrcc4 or Lig4 (C-NHEJ) via an alternative end-joining (A-EJ) pathway strongly biased to use microhomology (30). However, CSR is significantly impaired in Xrcc4-deficient B cells owing to failure to join broken S regions because up to 20% of Xrcc4-deficient B cells activated for CSR in vitro have IgH chromosomal breaks, with a substantial portion participating in chromosomal translocations (30).

Inactivation of Xrcc4 in mice results in impaired cellular proliferation and ionizing radiation sensitivity. Xrcc4 deficiency also results in extensive apoptosis of newly generated neurons and late embryonic death (6), both of which can be rescued by deficiency for the p53 tumor suppressor (31). In this context, p53 monitors the G1 cell cycle checkpoint, signaling apoptosis of certain cell types, such as neurons and progenitor lymphocytes, which harbor persistent DSBs (32). However, as p53 deficiency does not rescue defective NHEJ associated with Xrcc4 deficiency, Xrcc4/p53–double-deficient mice are still immuno-deficient and inevitably succumb to pro-B cell lymphomas that harbor RAG-dependent complex translocations (33). These translocations usually join IgH on chromosome 12 to a region downstream of c-myc on chromosome 15, resulting in dicentric 12;15 translocations and c-myc amplification via breakage–fusion–bridge cycles (34). Such complex translocations are rare in human peripheral B cell lymphomas, which more frequently harbor reciprocal translocations that fuse IgH, or less frequently IgL loci, just upstream of c-myc, leading to ectopic c-myc activation (35).

In the current study, we have asked whether inactivation of C-NHEJ in WT or p53–deficient peripheral B cells leads to peripheral B cell lymphoma with CSR or V(D)J recombination-associated IgH or IgL locus translocations.

RESULTS

Inactivation of Xrcc4 in p53–deficient peripheral B cells leads to novel B cell lymphomas

We previously inactivated Xrcc4 specifically in transitional stage peripheral B cells by generating mice that harbored one copy of a loxP-flanked (floxed) Xrcc4 allele (X) and one copy of an Xrcc4-null allele (X−) plus a transgenic that drives Cre recombinase expression via a CD21 promoter (termed CXc/+ mice) (30). CD21 proteins are expressed during B cell development at the time when immature transitional B cells differentiate into mature long-lived peripheral B cells, including marginal zone B cells, follicular B cells, B1a (CD5+), and B1b cells (36). CD21Cre mediates efficient Cre recombination in mature, but not immature, transitional B cells (37). Thus, CXc/+ mice have normal IgM+ splenic B cell numbers as Xrcc4 is not deleted during early B cell developmental stages where V(D)J recombination occurs (30). Remarkably, CXc− mice have a normal life span and are not cancer-prone (Fig. 1 A), despite high levels of general and IgH-specific genomic instability in vivo. In vivo CXc− mice succumbed to thymic lymphomas and sarcomas characteristic of p53-deficiency alone and which had not deleted Xrcc4 (Fig. 1 B),
In contrast, none of the \(CP^{-/-} \), \(CX^{+/+} \), or \(CX^{-/-}P^{+/+} \) littersmates developed B lymphomas (Fig. 1, A and B). Of eight \(CX^{-/-}P^{-/-} \) B lineage lymphomas (termed CXP lymphomas) characterized in detail, all were surface Ig negative \((sIg^-) \) and all were B220\(^+\), CD43\(^{low}\), CD138/Syndecan-1\(^+\), and CD19\(^+\) (Fig. S1 A, available at http://www.jem.org/cgi/content/full/jem.20082271/DC1). In addition, all had clonal \(IgH \) and \(Igk \) rearrangements and many had clonal \(IgA \) rearrangements, even though they usually lacked expression of \(IgH \) and \(IgL \) proteins (Table S1; see below). RNA expression analyses indicated that CXP lymphomas lacked expression of \(\lambda5 \) and Vpre–B, two diagnostic early B cell markers, but did show very low-level RAG expression (Fig. S1, B and C, and not depicted). We also analyzed six additional \(Xrcc4/p53\)-deficient B lymphomas derived from \(CX^{+/+} \) mice in which the p53 gene was also floxed \((CX^{-/-}P^{-/-}) \) and found that the majority had a phenotype similar to \(CX^{-/-}P^{-/-} \) lymphomas (Fig. S2 and Table S2). Likewise, eight additional \(CX^{+/+}P^{-/-} \) B lymphomas that were also heterozygous for a mutation in the \(3' \) \(IgH \) regulatory region (CXP\(R \) lymphomas) had a similar phenotype, including lack of surface Ig expression (unpublished data). As expected, we found little or no evidence of \(Xrcc4 \) deletion in sorted BM \(B220^{+} \)IgM\(^+\) cells or in sorted \(HSA^{high}/CD21^{low} \) peripheral immature B cells, but essentially complete \(Xrcc4 \) deletion in purified \(HSA^{low}/CD21^{high} \) mature splenic B cells (Fig. S3). By PCR, we occasionally observed very low levels of a product corresponding to \(Xrcc4 \) deletion in BM and immature B cell samples, which theoretically may reflect very low-level deletion in earlier B cell stages, but which also may simply reflect recirculating peripheral B cells in the BM and/or low-level contamination of the sorted populations (unpublished data). Along with the appearance of these B lineage tumors being dependent on \(Xrcc4 \) deletion via \(CD21^{cre} \) expression at transitional B cell stage (Fig. 1 B and Fig. S3) (30), these phenotypic characterizations indicate that CXP lymphomas, despite lack of surface Ig expression, derive from peripheral B cells.

IgH, Igκ, and Igλ rearrangements in CXP tumors

Recurrent \(sIg^- \) peripheral lymphomas have not been observed previously. To elucidate the basis for this striking phenotype, we first assayed for expression of \(IgH \) chains via Western blotting of tumor extracts. Most analyzed CXP B lymphomas lacked readily detectable \(IgH \) chain expression, although CXP62 expressed cytoplasmic \(\gamma \) chains (Fig. 2, B and C). Both normal and C-NHEJ-deficient pro–B lines display rearrangements of both \(J_{H} \) alleles (31). Assays of CXP tumor DNA for \(J_{H} \) rearrangements via Southern blotting revealed that all primary CXP tumors showed \(J_{H} \) rearrangements, along with varying degrees of a germline \(J_{H} \) band (Fig. 2 A). However, the germline band usually occurred in low levels and was often further reduced in passaged tumors (unpublished data), indicating derivation from non–B lineage cells within the tumor. Despite lack of detectable \(IgH \) expression, molecular cloning demonstrated that CXP tumors contained structurally normal in-frame or out-of-frame \(V(D)J \) rearrangements, indicating that they occurred before \(Xrcc4 \) inactivation (see the following section). Finally, most CXP tumors had rearrangements in or around \(IgH \) regions. At least five out of eight CXP tumors had clonal \(S_{\mu}/C_{\mu} \) rearrangements; three had one or more clonal \(S_{\alpha} \) rearrangements of which one was molecularly cloned (from CXP68) and found to be an \(S_{\gamma}2a \) to \(S_{\alpha} \) rearrangement; one CXP tumor had an \(S_{\gamma}2b \) rearrangement; and another had a clonal \(S_{\gamma}3 \) rearrangement in addition to the \(S_{\gamma}2a \) to \(S_{\alpha} \) rearrangement (Table S1 and Fig. S4, A and B, available at http://www.jem.org/cgi/content/full/jem.20082271/DC1). Thus, most CXP tumors derived from peripheral B cells that had attempted \(IgH \) CSR.

No analyzed CXP tumor expressed readily detectable \(Ig\kappa \) and \(Ig\lambda \) chains (Fig. 2 B and not depicted). Approximately 60% of normal B cells have one productively rearranged \(Ig\kappa \) allele and one germline allele, and ~40% have one productive and one nonproductively rearranged or deleted \(J\kappa \) allele (38).
We assayed for Jκ rearrangements by Southern blotting and found that all eight analyzed CXP tumors lacked both copies of the Jκ locus (Fig. 3 A and Fig. S5 A, available at http://www.jem.org/cgi/content/full/jem.20082271/DC1). Although there was a variable level of a germline-sized Jκ band, the level was far below that expected for a single germline allele and roughly correlated with that of contaminating nonlymphoid DNA as judged by the Jκ Southern blot (Fig. 2 A). Southern blot analyses of CXP lymphoma cellular extracts for expression of representative of at least two separate analyses for each sample). (B) Western chain specifc, anti-IgM (25kD) + Igλ (25kD) IgG (>75kD) Igκ (25kD) – Igκ + Igλ (25kD) α-Tubulin (50 kD) α-Tubulin control α-IgG (~55kD) α-Tubulin control α-IgG control α-IgG (~55kD) α-IgG control α-IgG (~55kD). Figure 2. CXP lymphomas harbor clonal Jκ rearrangements, but do not express IgM or IgL chains. (A) Southern blot analyses of CXP lymphoma genomic DNA samples for rearrangement or deletion of Jκ loci (representative of at least two separate analyses for each sample). (B) Western blot analyses of CXP lymphoma cellular extracts for expression of μ heavy chain and κ or λ light chains using HRP-conjugated anti-IgM (μ heavy chain specific), anti-κ, or anti-λ antibodies, respectively. (C) Western blot analyses of CXP lymphoma cellular extracts for expression of γ heavy chains using HRP-conjugated anti-mouse IgG antibody. An α-tubulin antibody was used to generate a loading control in both panels. PP indicates extracts from Peyer’s patches. Data presented in this figure shows results representative of two or three independent sets of analyses.

rearrangement in CXP tumors via Southern blotting and found rearrangement and/or deletion of the 3′RS sequences in all analyzed tumors (Fig. 3 A and Fig. S5 A). As normal 3′RS rearrangements do not result in deletions larger than a few nucleotides (39), we tested the hypothesis that 3′RS rearrangements in CXP lymphomas had occurred after Xrc4 inactivation by cloning and sequencing rearrangements. Of three RS rearrangements isolated, two had apparent Vκ and 3′RS region junctions accompanied by large deletions (30–80 bp into Vκ and 26–43 bp beyond 3′RS sequence), whereas the other had a normal Vκ to 3′RS join (Fig. S5 B). In addition, Southern blotting with a 3′RS probe showed CXP163 had an aberrant RS rearrangement with a large deletion (>4 kb) downstream of the 3′RS sequence (Fig. S5 C). Southern blotting also showed that a significant proportion of CXc/c–Pc/c B lymphomas (four out of six; Fig. S2) and CXPR B lymphomas (five out of eight; not depicted) had deleted one or both Igκ alleles. We conclude that deleitional Igκ 3′RS rearrangements in CXP tumors are reminiscent of those associated with attempted V(D)J joining in the absence of C-NHEJ, suggesting they occurred in progenitors of CXP tumors subsequent to Xrc4 inactivation via CD21 expression.

Complete Igκ deletion is generally observed in a subset of mouse peripheral Igκ+ B cells (39). Therefore, we assayed CXP lymphoma DNA by Southern blotting with probes to detect VAJA rearrangements within both Igκ clusters (Fig. S5 D). These analyses demonstrated that at least six out of nine assayed CXP or CXc/c–Pc/c B cell lymphomas had clear-cut Igκ rearrangements, with CXP62, 162, and 163 showing rearrangements within both Igκ alleles. We conclude that deleitional Igκ 3′RS rearrangements in CXP tumors are reminiscent of those associated with attempted V(D)J joining in the absence of C-NHEJ, suggesting they occurred in progenitors of CXP tumors subsequent to Xrc4 inactivation via CD21 expression.

As PCR only allows isolation of junctions within the primer boundaries, we cloned several Igκ rearrangements from genomic phage libraries generated from CXP163 and CXP162 DNA and identified a deleitional rearrangement that went ~2.8-kb and ~800-bp, respectively, beyond the Vκ1 and Jκ1 segments, as well as aberrantly deleted RS rearrangements (Fig. 3 B and Fig. S5 E). Overall, the observed pattern of Igκ rearrangements in CXP lymphomas, namely large deletions from the participating segments on one or both sides of the join, is fully consistent with the types of junctions previously characterized for attempted V(D)J recombination of endogenous loci in C-NHEJ-deficient progenitor B or T lymphocytes (3, 41). Therefore, CXP tumors appear to arise from B cells that attempted Igκ rearrangement subsequent to Xrc4 deletion via CD21 expression.
C-NHEJ suppresses oncogenic CSR-related translocations between *IgH* and *c-myc*

Spectral karyotyping (SKY) revealed that six out of eight characterized CXP tumors (CXP68, 153, 162, 163, 221, and 2152) harbored clonal translocations between chromosomes 12 and 15, possibly involving *IgH* (Chr12) and *c-myc* (Chr15) loci (Fig. 4 A, Table S3, and Fig. S6 A, available at http://www.jem.org/cgi/content/full/jem.20082271/DC1). To test this possibility, we performed fluorescence in situ hybridization (FISH) with 5′ and 3′ *IgH* BAC probes plus a BAC probe containing *c-myc* (Fig. 4 A). These analyses demonstrated that 5 out of 6 tumors (CXP68, 153, 162, 163, and 2152) harbored reciprocal t(12;15) and t(15;12) translocations in which the centromeric portion (C_15_H) of *IgH* (5′ *IgH* probe) was fused proximal to the telomeric portion of Chr15 in or around *c-myc* (c-myc BAC probe) to yield the t(12;15) translocation, and the telomeric (V_15_H) portion of *IgH* (5′ *IgH* probe) was fused proximal to the centromeric portion of Chr15 in or just upstream of *c-myc* to yield the reciprocal t(15;12) translocation (Fig. 4 A and Fig. S6 A). CXP221 harbored a clonal t(12;15) translocation involving *IgH* and *c-myc* loc, but lacked the reciprocal t(15;12) translocation, and instead contained a clonal t(15;7) translocation (Fig. S6 A). Based on FISH, neither *c-myc* nor *IgH* appeared amplified in CXP tumors. Similar to CXP tumors, three out of four analyzed CX_c/_H11002/C_c_cp/_H11002 B lymphomas and six out of six CXPR tumors analyzed had translocations involving chromosomes 12 and 15 that involved the *IgH* and *c-myc* loci (Fig. S6 A, Table S4, and not depicted).

To further analyze CXP B lymphoma t(12;15) and t(15;12) translocation junctions, we performed Southern blotting with probes within or just upstream of *c-myc* (Fig. S6 B). These analyses demonstrated that six CXP lymphomas with t(12;15) translocations had clonal rearrangements in or around *c-myc* (c-myc BAC probe) to yield the t(12;15) translocation, and the telomeric (V_15_H) portion of *IgH* (5′ *IgH* probe) was fused proximal to the centromeric portion of Chr15 in or just upstream of *c-myc* to yield the reciprocal t(15;12) translocation (Fig. 4 A and Fig. S6 A). CXP221 harbored a clonal t(12;15) translocation involving *IgH* and *c-myc* loc, but lacked the reciprocal t(15;12) translocation, and instead contained a clonal t(15;7) translocation (Fig. S6 A). Based on FISH, neither *c-myc* nor *IgH* appeared amplified in CXP tumors. Similar to CXP tumors, three out of four analyzed CX_c/_H11002/C_c_cp/_H11002 B lymphomas and six out of six CXPR tumors analyzed had translocations involving chromosomes 12 and 15 that involved the *IgH* and *c-myc* loci (Fig. S6 A, Table S4, and not depicted).

To further analyze CXP B lymphoma t(12;15) and t(15;12) translocation junctions, we performed fluorescence in situ hybridization (FISH) with 5′ and 3′ *IgH* BAC probes plus a BAC probe containing *c-myc* (Fig. 4 A). These analyses demonstrated that 5 out of 6 tumors (CXP68, 153, 162, 163, and 2152) harbored reciprocal t(12;15) and t(15;12) translocations in which the centromeric portion (C_15_H) of *IgH* (5′ *IgH* probe) was fused proximal to the telomeric portion of Chr15 in or around *c-myc* (c-myc BAC probe) to yield the t(12;15) translocation, and the telomeric (V_15_H) portion of *IgH* (5′ *IgH* probe) was fused proximal to the centromeric portion of Chr15 in or just upstream of *c-myc* to yield the reciprocal t(15;12) translocation (Fig. 4 A and Fig. S6 A). CXP221 harbored a clonal t(12;15) translocation involving *IgH* and *c-myc* loc, but lacked the reciprocal t(15;12) translocation, and instead contained a clonal t(15;7) translocation (Fig. S6 A). Based on FISH, neither *c-myc* nor *IgH* appeared amplified in CXP tumors. Similar to CXP tumors, three out of four analyzed CX_c/_H11002/C_c_cp/_H11002 B lymphomas and six out of six CXPR tumors analyzed had translocations involving chromosomes 12 and 15 that involved the *IgH* and *c-myc* loci (Fig. S6 A, Table S4, and not depicted).

To further analyze CXP B lymphoma t(12;15) and t(15;12) translocation junctions, we performed Southern blotting with probes within or just upstream of *c-myc* (Fig. S6 B). These analyses demonstrated that six CXP lymphomas with t(12;15) translocations had clonal rearrangements in or around *c-myc* (c-myc BAC probe) to yield the t(12;15) translocation, and the telomeric (V_15_H) portion of *IgH* (5′ *IgH* probe) was fused proximal to the centromeric portion of Chr15 in or just upstream of *c-myc* to yield the reciprocal t(15;12) translocation (Fig. 4 A and Fig. S6 A). CXP221 harbored a clonal t(12;15) translocation involving *IgH* and *c-myc* loc, but lacked the reciprocal t(15;12) translocation, and instead contained a clonal t(15;7) translocation (Fig. S6 A). Based on FISH, neither *c-myc* nor *IgH* appeared amplified in CXP tumors. Similar to CXP tumors, three out of four analyzed CX_c/_H11002/C_c_cp/_H11002 B lymphomas and six out of six CXPR tumors analyzed had translocations involving chromosomes 12 and 15 that involved the *IgH* and *c-myc* loci (Fig. S6 A, Table S4, and not depicted).

To further analyze CXP B lymphoma t(12;15) and t(15;12) translocation junctions, we performed Southern blotting with probes within or just upstream of *c-myc* (Fig. S6 B). These analyses demonstrated that six CXP lymphomas with t(12;15) translocations had clonal rearrangements in or around *c-myc* (c-myc BAC probe) to yield the t(12;15) translocation, and the telomeric (V_15_H) portion of *IgH* (5′ *IgH* probe) was fused proximal to the centromeric portion of Chr15 in or just upstream of *c-myc* to yield the reciprocal t(15;12) translocation (Fig. 4 A and Fig. S6 A). CXP221 harbored a clonal t(12;15) translocation involving *IgH* and *c-myc* loc, but lacked the reciprocal t(15;12) translocation, and instead contained a clonal t(15;7) translocation (Fig. S6 A). Based on FISH, neither *c-myc* nor *IgH* appeared amplified in CXP tumors. Similar to CXP tumors, three out of four analyzed CX_c/_H11002/C_c_cp/_H11002 B lymphomas and six out of six CXPR tumors analyzed had translocations involving chromosomes 12 and 15 that involved the *IgH* and *c-myc* loci (Fig. S6 A, Table S4, and not depicted).
around c-myc (Fig. S6 B and not depicted), with one additional tumor that lacks a t(12;15) translocation (CXP62; detailed in the following section), also showing a clonal c-myc rearrangement (Fig. S6 B). Southern blotting confirmed that none of the CXP tumors had amplified c-myc (Fig. S6 B). Northern blotting with a c-myc probe further demonstrated that all CXP tumors with t(12;15) translocations had greatly increased c-myc expression, indicating ectopic overexpression from a single copy of the translocated c-myc gene (Fig. S6 C). Of note, only two CXP tumors lacked t(12;15) translocations; however, one (CXP62) activated c-myc via an IgH/c-myc translocation (see below) and the other (CXP35) had a complex Chr12 translocation that resulted in N-myc amplification and overexpression (Fig. S6 C and Fig. S7 A, available at http://www.jem.org/cgi/content/full/jem.20082271/DC1) reminiscent of that observed in Artemis/p53-deficient pro–B cell tumors (42). Thus, all CXP tumors overexpressed a myc family gene.

To further elucidate IgH/c-myc translocations in CXP tumors, we isolated translocation junctions by screening genomic DNA libraries from individual tumors. Nucleotide sequence analyses showed that all five characterized junctions corresponded to translocations between IgH and c-myc (Fig. 4 B and Fig. S6 D). All junctions on Chr12 (Fig. 4 B, red), including those associated with both t(12;15) and t(15;12) occurred within IgH, most in the C_H region within or around S regions consistent with derivation via aberrant CSR. The CXP153 t(12;15) junction linked S to sequences just 5′ of c-myc (junction 1, CXP153), whereas the t(15;12) linked Sμ to sequences in the first intron of c-myc (Fig. 4 B and Fig. S6 D).

The CXP163 t(12;15) junction linked Iγ to a sequence around c-myc (Fig. S6 B and not depicted), with one additional tumor that lacks a t(12;15) translocation (CXP62; detailed in the following section), also showing a clonal c-myc rearrangement (Fig. S6 B). Southern blotting confirmed that none of the CXP tumors had amplified c-myc (Fig. S6 B). Northern blotting with a c-myc probe further demonstrated that all CXP tumors with t(12;15) translocations had greatly increased c-myc expression, indicating ectopic overexpression from a single copy of the translocated c-myc gene (Fig. S6 C). Of note, only two CXP tumors lacked t(12;15) translocations; however, one (CXP62) activated c-myc via an IgH/c-myc translocation (see below) and the other (CXP35) had a complex Chr12 translocation that resulted in N-myc amplification and overexpression (Fig. S6 C and Fig. S7 A, available at http://www.jem.org/cgi/content/full/jem.20082271/DC1) reminiscent of that observed in Artemis/p53-deficient pro–B cell tumors (42). Thus, all CXP tumors overexpressed a myc family gene.

To further elucidate IgH/c-myc translocations in CXP tumors, we isolated translocation junctions by screening genomic DNA libraries from individual tumors. Nucleotide sequence analyses showed that all five characterized junctions corresponded to translocations between IgH and c-myc (Fig. 4 B and Fig. S6 D). All junctions on Chr12 (Fig. 4 B, red), including those associated with both t(12;15) and t(15;12) occurred within IgH, most in the C_H region within or around S regions consistent with derivation via aberrant CSR. The CXP153 t(12;15) junction linked Sγ1 to sequences just 5′ of c-myc (junction 1, CXP153), whereas the t(15;12) linked Sμ to sequences in the first intron of c-myc (Fig. 4 B and Fig. S6 D).

The CXP163 t(12;15) junction linked 1μ to a sequence

Figure 4. Reciprocal IgH/c-myc translocations in CXP lymphoma. (A) SKY, FISH, and chromosome paint analyses (Chr12 pink, Chr15 green) for IgH/c-myc translocations in CXP163 and CXP153. A 3′ IgH BAC (light green) and a c-myc BAC (light green) were used in combination with chromosome paints to detect t(12;15) translocations. The t(15;12) translocation, not detectable by SKY, was visualized using the 5′ IgH BAC (pink) and a Chr15 paint (green). At least 15 metaphase spreads were analyzed for SKY, FISH, and chromosomal paints, respectively, for each CXP tumor. Translocations shown were observed in the majority of metaphases, and were scored as clonal if observed in >80% of metaphases. (B) Schematic of IgH/c-myc translocation breakpoint junctions cloned and sequenced from λ-phage tumor genomic DNA libraries. At least two independent phage clones were isolated from each genomic DNA library, and breakpoint junctions identified within them were further independently confirmed by PCR and sequencing from the appropriate tumor DNA samples. The numbers on the top indicate t(12;15) translocation breakpoints and the same numbers containing a 1′ on the bottom indicate the “reciprocal” t(15;12) translocation breakpoints in the corresponding tumor: CXP153 (junction 1 and 1′), 163 (junction 2 and 2′), and 68 (junction 3′).
translocations of Chr6 (which contains Igk) in one of eight CXP tumors and in two of four characterized CXκ−/−Pκ−/− B lymphomas (Tables S3 and S4). Notably two tumors (CXP162 and CXκ−/−Pκ−/− 1893) harbored clonal (t(6;16)) translocations that fused Igα to Chr6. However, cytogenetic analyses indicated that these t(6;16) translocations did not harbor Igk (Fig. S7 A), although Igk may still have been involved and deleted during joining (see the following section).

Characterization of several Igα breakpoints by FISH and/or molecular cloning revealed partner loci and showed that sequences around translocation junctions lacked somatic hypermutation (SHM; Fig. S7 B and not depicted). By SKY, the CXP62 tumor, which was the only one that did not activate a myc-family gene by an IgH translocation, contained reciprocal t(16;15) and t(15;16) translocations, which juxtaposed the Igα P12 BAC probe to the telomeric portion of Chr15 in

CXP lymphomas frequently harbor Igα translocations

SKY analyses demonstrated that five out of eight characterized CXP B lymphomas (CXP35, 62, 68, 162, and 163), many of the same ones that harbored translocations between chromosomes 12 and 15, harbored Chr16 translocations to various other chromosomes with two others (CXP153 and 2152) harboring nonclonal Chr16 translocations (Fig. 6 A, Table S3, and Fig. S7 A). In contrast to the Chr12 translocations, all but one Chr16 translocation (i.e., CXP62) appeared nonreciprocal (Fig. 6 A and Fig. S7 A), similar to RAG-initiated oncogenic IgH translocations in Xrcc4/p53−/− deficient pro-B lymphomas (34). As the Igα locus is on Chr16, we used FISH with three different BAC probes covering the Igα locus to determine whether the Chr16 breakpoints involved Igα (Fig. 6 A; P12 is centromeric to Igα, E14 spans both Igα clusters, P9 is telomeric to Igα). These analyses revealed that all five Chr16 breakpoints occurred directly within various regions of Igα (Fig. 6 A and Fig. S7 A). We also observed clonal translocations of Chr6 (which contains Igk) in one of eight CXP tumors and in two of four characterized CXκ−/−Pκ−/− B lymphomas (Tables S3 and S4). Notably two tumors (CXP162 and CXκ−/−Pκ−/− 1893) harbored clonal (t(6;16)) translocations that fused Igα to Chr6. However, cytogenetic analyses indicated that these t(6;16) translocations did not harbor Igk (Fig. S7 A), although Igk may still have been involved and deleted during joining (see the following section).

Characterization of several Igα breakpoints by FISH and/or molecular cloning revealed partner loci and showed that sequences around translocation junctions lacked somatic hypermutation (SHM; Fig. S7 B and not depicted). By SKY, the CXP62 tumor, which was the only one that did not activate a myc-family gene by an IgH translocation, contained reciprocal t(16;15) and t(15;16) translocations, which juxtaposed the Igα P12 BAC probe to the telomeric portion of Chr15 in

CXP lymphomas frequently harbor Igα translocations

SKY analyses demonstrated that five out of eight characterized CXP B lymphomas (CXP35, 62, 68, 162, and 163), many of the same ones that harbored translocations between chromosomes 12 and 15, harbored Chr16 translocations to various other chromosomes with two others (CXP153 and 2152) harboring nonclonal Chr16 translocations (Fig. 6 A, Table S3, and Fig. S7 A). In contrast to the Chr12 translocations, all but one Chr16 translocation (i.e., CXP62) appeared nonreciprocal (Fig. 6 A and Fig. S7 A), similar to RAG-initiated oncogenic IgH translocations in Xrcc4/p53−/− deficient pro-B lymphomas (34). As the Igα locus is on Chr16, we used FISH with three different BAC probes covering the Igα locus to determine whether the Chr16 breakpoints involved Igα (Fig. 6 A; P12 is centromeric to Igα, E14 spans both Igα clusters, P9 is telomeric to Igα). These analyses revealed that all five Chr16 breakpoints occurred directly within various regions of Igα (Fig. 6 A and Fig. S7 A). We also observed clonal
the t(16;15) translocation, and the Igλ P9 and E14 BAC probes to the centromeric portion of Chr15 in the t(15;16) translocation (Fig. 6 A). Based on analyses of cloned junctions, the t(16;15) translocation fused sequences upstream of Jλ1 to sequences 5’ of c-myc exon 1 (Fig. 6 B and Fig. S7 B), which led to high level expression of c-myc transcripts (Fig. S6 C), whereas the t(15;16) translocation contained the reciprocal product (Fig. S7 B). FISH analyses of the complex t(12;12;16) translocation that led to N-myc amplification in CXP35 revealed that it involved both Igλ and IgH loci (Fig. S7 A). Likewise, FISH analyses of the nonreciprocal t(12;16) CXP68 translocation revealed colocalization of 3’ IgH and Igλ P9 BAC probes at the junction (Fig. 6 A). By phage cloning, we mapped the CXP68 breakpoint to Cδ in IgH and just 3’ of Jα2 in Igλ (Fig. 6 B and Fig. S7 B).

Comparative genomic hybridization analyses of CXP tumors

We used comparative genomic hybridization (CGH) to assay for sequence copy number differences among tumor and control tissues samples. Among the four samples derived from the CXP or CX^{−/−}P^{−/−} cohort, three had clearly lost one copy of either the entire Chr6 or a large region of Chr6, with the boundary of the loss occurring near or spanning Igκ (Fig. S8, available at http://www.jem.org/cgi/content/full/jem.20082271/DC1, and not depicted). Out of nine CXPR B lymphoma DNAs analyzed, seven again had a clear loss of one copy of the entire Chr6 or a large region that in two extended directly from Igκ (Fig. S8 and not depicted).

CGH also showed focal deletion of Igκ in most analyzed CXP, CX^{−/−}P^{−/−}, or CXPR tumors (Fig. S8 and not depicted), which is consistent with results of Southern blotting.
DISCUSSION

Xrcc4 deficiency in peripheral B cells does not predispose to B cell lymphoma, despite dramatic IgH instability in Xrcc4-deficient B cells activated for CSR by treatment with αCD40 plus IL-4 (30). In this context, αCD40 plus IL-4-activated splenic CXP B cells had at most a very modest increase in IgH breaks compared with activated Xrcc4-deficient peripheral B cells (28 ± 13% versus 17 ± 7% of metaphases containing IgH breaks). Yet, CD21cre deletion of Xrcc4 in p53-deficient peripheral B cells, or deletion of both genes in peripheral B cells, recurrently led to sIg- B lymphomas that harbor activated c-myc, likely reflecting the critical role of p53 in eliminating B cells with activated c-myc expression and/or eliminating B cells with high genomic instability (33, 43, 44). CXP B lymphomas are remarkable in several ways. First, most CXP lymphomas arise from B cells that have attempted IgH CSR and a majority appear to arise from B cells that have undergone receptor editing, with both processes occurring after Xrcc4 inactivation by CD21Cre. Second, many CXP tumors harbored two separate, clonal translocations that, respectively, involved IgH and IgL loci. Occurrence of clonal IgH and IgL translocations in the same tumor may reflect dual CSR and editing activities of B cells from which they arose. In this context, some CXP lymphomas had clonal translocations that fused IgH and Igλ, clearly indicating simultaneous presence of breaks in both loci in tumor progenitors. As outlined below, these unusual features of CXP tumors have novel implications for B cell developmental processes and for oncogenic translocation mechanisms.

Germline Xrcc4 plus p53 deficiency in mice leads to pro-B lymphomas with RAG-dependent translocations that fuse IgH sequences to sequences far downstream of c-myc, resulting in dicentric chromosomes and c-myc activation via breakage-fusion-bridge amplification (34). Thus, it is remarkable that inactivation of same two genes in mature B cells recurrently leads to ectopic activation of a single copy c-myc gene by fusion of IgH into its upstream region, analogous to similar IgH/c-myc translocations in human Burkitt’s lymphoma and diffuse large B cell lymphomas (35). In pristane- or IL-6-induced mouse plasmacytomas, similar IgH/c-myc translocations occur and are initiated by AID (45, 46). In this context, CXP lymphoma IgH/c-myc translocations occur in and around IgH S regions and downstream of normal V_{H}D_{J}_{H} exons, indicating their likely selection from the abundant pool of IgH translocations that result from aberrant CSR in activated Xrcc4-deficient peripheral B cells (30). As the intrinsic IgH enhancer is generally absent from CXP IgH/c-myc translocations, long-range 3′ IgH regulatory region activity (47), or that of unknown IgH regulatory elements, may ectopically activate c-myc. The recurrent differences in IgH/c-myc translocations in Xrcc4/p53-deficient pro-B versus CXP peripheral B cell tumors might reflect RAG versus AID-dependent DSB initiation in IgH and/or c-myc, other differential stage-specific mechanisms that lead to DSBs in and around c-myc, stage-specific differences in nuclear localization of IgH and c-myc loci, or mechanisms that differentially activate c-myc after translocation, including stage-specific IgH enhancer activities. As both Xrcc4/p53-deficient pro-B and CXP peripheral B cell lymphomas frequently have IgH/c-myc junctions that appear to be mediated by A-EJ, repair pathway choice is not likely to be a major factor in generating a particular form of translocation. Given the uniform and recurrent IgH/c-myc translocations, the CXP B lymphoma system should allow putative roles of cis elements and other factors to be tested.

CXP lymphomas also frequently harbor chromosome 16 translocations that involve aberrant V(D)J recombination of Igλ after Xrcc4 deletion. At least one CXP Igλ translocation was oncogenic, CXP62 had reciprocal t(15;16) and t(16;15) translocations, the latter of which fused the downstream portion of Igλ to sequences just upstream of c-myc, resulting in ectopic c-myc activation, reminiscent of Igλ/c-myc translocations observed in certain human B lymphomas (35). Characterization of additional CXP Igλ translocations may lead to identification of additional oncogenes. Notably, we also observe loss of all or part of one copy of chromosome 6 with some large deletions extending from the vicinity of Igκ. The latter findings suggest that rearrangements of Igκ, likely in association with aberrant editing, may also lead to translocations or chromosome loss. In the latter context, unrepaired DSBs can lead to chromosome loss in yeast (48). The frequent loss of all or a large portion of chromosome 6 in CXP tumors is striking and suggests a potential role in etiology of these tumors, perhaps by deletion of a tumor suppressor sequence.

More than 95% of mouse peripheral B cells express Igκ and, correspondingly, have VκJκ joins on one or both Igκ alleles and Igλ in germline configuration (9). A small percentage of mouse B cells express Igλ, and these have Igκ alleles that are nonproductively rearranged or deleted by 3′RS or related rearrangements (39, 49). Notably, Igκ-expressing mouse B cells frequently arise via receptor editing, often in the context of Igκ deletion via 3′RS rearrangement (39). Thus, it is striking that CXP lymphomas frequently had clonal Igκ deletions via aberrant Vκ to 3′RS rearrangements and aberrant Vλ to Jλ rearrangements, with both types of rearrangements occurring subsequent to CD21cre expression. Based on these findings, we speculate that a common CXP tumor progenitor derives from an Igκ-expressing B cell that attempted receptor editing subsequent to Xrcc4 deletion. Attempted editing in the absence of Xrcc4 would lead to aberrant rearrangement/deletion of Igκ and progression to Igκ rearrangement, which also would be aberrant. Thus, editing Xrcc4-deficient B cells would lose Igλ expression caused by inability to undergo productive IgL editing.

As a working model, we suggest that aberrant receptor editing in CXP tumor progenitors generates an initial transforming event and/or activates aberrant CSR through loss of parts of chromosome 6 or translocations of Igλ. Aberrant
CSR in the absence of Xrcc4 would lead to a high level of IgH translocations (30), including IgH/c-myc translocations that would complete the transformation process. In the case of the CXP tumor that harbors an IgH/c-myc translocation, the former may have been sufficient to fully transform the cells. This scenario provides a potential role for chromosome 6 losses, and also could explain why all CXP Igα translocations are not clearly oncogenic, why some CXP Igα translocations have IgH as a partner, and why CXP IgH translocations can involve either productive or nonproductive IgH alleles.

Receptor editing is generally thought to occur in immature B cells in the BM (16); yet a substantial fraction of CXP tumor progenitors appear to have both breaks associated with attempted editing of the Igα locus and breaks associated with attempted IgH CSR. In this regard, BM immature B cells in quasimonoclonal (QM) mice can express both AID and RAG1/2 (50), although other studies of developing B cells in WT mice concluded that AID is not expressed in BM B cells (51). QM mice harbor a productive IgH knock-in V(D)J allele and a homozygous gene-targeted deletion of both Jκ alleles and, thus, only have Igκ-producing B cells (52). The striking similarities between immature QM B cells and proposed CXP tumor progenitors suggest a potential relationship. In this regard, CXP tumor progenitors might derive from an undetected, low-level population of CD21cre-expressing BM immature B cells that delete Xnc4 and undergo aberrant editing and CSR before migration to the periphery. However, we note that CXP tumors arise in the periphery, have features of peripheral B cells, and harbor clonal Igκ and Igα rearrangements, as well as IgH CSR-associated rearrangements that occurred subsequent to CD21cre expression. Conceivably, the Igα breaks that lead to translocations found in CXP tumor progenitors might reflect RAG-initiated breaks in BM developing B cells that persist because of p53 deficiency, as observed for RAG-initiated Igκ breaks in ATM-deficient or 53BP1/p53-double-deficient pro–B cells (53, 54). However, we also observed dual IgH and Igα translocations in a CXβ−/−Pκ−/− tumor in which both p53 and Xnc4 were deleted peripherally. Therefore, we must consider the alternative possibility that CXP tumors arise from peripheral B cells driven into editing. Such cells might also participate in extrafollicular responses in which CSR occurs with limited SHM (55), a possibility consistent with most CXP tumor IgH variable region exons lacking SHM.

Transitional B cell populations express very low levels of RAG upon arrival in the periphery, with RAG expression being essentially undetectable in more mature splenic B cell populations (24, 25). Thus, if the RAG breaks in CXP tumor progenitors, indeed, are generated in the periphery, it remains to be determined in what cell type they occur and how apparently low-level RAG expression could generate them. Given that CXP progenitors nearly all arise from cells that harbor IgH/c-myc translocations, it is quite striking that CXP tumors do not arise from slgκ+ B cells simply in the context of aberrant CSR. Indeed, the recurrent occurrence of slgκ+ lymphomas with aberrant Igκ and Igα rearrangements and translocations indicates that inability to productively complete receptor editing confers a major predisposition to transformation of peripheral CXP B cells. Perhaps editing CXP B cells represent a larger fraction of the CD21−expressing B cell pool than anticipated or are enriched in certain locations. For example, receptor editing might especially contribute to antibody diversification in B cells of the gut-associated lymphoid tissue (e.g., mesenteric lymph nodes), where the CXP tumors appear to arise most frequently and in which lymphocytes are chronically activated and driven into immune responses by products of the gut microflora.

MATERIALS AND METHODS

Mice. CD21cre/Xα4−/− mice were generated as previously described (30) and crossed into p53 germline-deficient mice (56) or mice carrying conditional p53 alleles (57). Animal work was approved by the Institutional Animal Care and Use Committee of Children’s Hospital Boston.

Southern, Northern, and Western blot. Genomic DNA was isolated from tumor masses or normal tissues from control mice, and Southern blotting was performed as previously described (58). 3′Jκ probe was a 1-kb Hpal–HindIII fragment from plasmid pSPIg8 containing the Jκ and Cκ region (59), or generated by PCR using the following primers: 3′ Jκ5, 5′-CATCCAAGAGATCTTTGAGGATAAAGCCA-3′; MA35, 5′-AAC-CTGGATAAAGCGATTTGCTCTTCT-3′; and plasmid pSPIg8 as template. Cκ probe was a 1.7-kb HindIII–BglII fragment covering the Cκ region. RS probes were previously described (60). RNA samples were extracted from tumor masses or normal tissues from control mice using TriPure Isolation Reagent (Roche). Northern blotting was performed following a standard protocol. Western blotting was performed using HRP-conjugated antibodies at 1:1,000 dilution (HRP goat anti–mouse IgM [μ-chain–specific antibody], HRP goat anti–mouse λ, HRP goat anti–mouse κ, and HRP goat anti–mouse IgG [γ-chain–specific antibody]; SouthernBiotech). Additional primers used for generating probes are detailed in the Supplemental materials and methods (available at http://www.jem.org/cgi/content/full/jem.20082271/DC1).

Phage and PCR cloning. Tumor DNA samples were digested to completion with EcoRI, and fragments were cloned into either ZAP II vector (Stratagene) or DASH II vector (Stratagene) according to the size of the fragments. Libraries were screened according to standard protocols (Stratagene) using CaI or Jκ2 probe for λ rearrangements or translocations; c-myc probe A or c-myc probe D for c-myc translocations; Cκ, Cy1, and Sy1 probes for Sκ region rearrangement and translocations (see details for probes in the Supplemental materials and methods). Single plaques were purified, subcloned, and sequenced. In the case of ZAPII clones, the inserts were excised according to the protocol provided (Stratagene). Positive clones were verified by restriction analysis and hybridization. Sequencing of subcloned inserts was performed using T7 or T3 primers (DF-HCC DNA Resource Core). To obtain junctional sequences, internal primers were required for some tumors. For PCR cloning of lgk rearrangements: VλB1 cloneFI3′ –tggtgctcaggaatctgca-3′ and LαB1 5′−gacggcttgataagagagcaagt-3′ were used. Additional primers used for PCR cloning of junctions are detailed in Online supplemental material. SKY and FISH analyses. Preparation of metaphase chromosomes, SKY analyses, FISH, and whole-chromosome painting using single-chromosome–specific paints were performed as previously described (61). FISH probes were as follows: a BAC that covered the 3′ region of the IgH locus encompassing 3′ IgH enhancer and 100 kb downstream (3′ IgH BAC), a BAC just upstream of the IgH Vλ1 region (5′ IgH BAC) as described previously (62), and a BAC that contained the c-myc gene (RP23-307D14, c-myc BAC). BACs for Igκ regions are RP23-382P9, RP23-60F14, RP23-374P12, and BACs for Igκ regions are RP23-84F6 and RP23-64F9. All the BACs were obtained from BACPAC CHORI database, except for the IgH BACs.
Online supplemental material. Fig. S1 shows the FACS, Northern blot, and RT-PCR data for assays used to characterize indicated surface protein and transcript expression in CXP lymphomas. Fig. S2 shows a Kaplan-Meier curve and summary of tumors that develop in CX/−/− P−/− lymphomas. Fig. S3 shows the evidence for specific Xcfr deletion via CD21cre. Fig. S4 shows assays for IgH S region rearrangements in CXP lymphomas. Fig. S5 shows Southern blot data for Igk and Igk rearrangements and sequences of aberrant VJα joins in CXP lymphomas. Fig. S6 shows various characterizations of translocations in CXP tumors, including representative cytogenetic data (SKY, FISH, and chromosome paints) for analyses that were used to characterize Igk/c-myc translocations, Southern blots for characterization of c-myc rearrangements, Northern blot assays for c-myc expression, and sequences of translocation breakpoints. Fig. S7 displays cytogenetic data (SKY, FISH, and chromosome paints) for Igk translocations, and sequence data for translocation breakpoints from CXP lymphomas. Fig. S8 displays CGH array data for analysis of genetic amplifications and deletions in CXP lymphomas. Table S1 summarizes the phenotypes of CXP lymphomas. Table S2 summarizes the phenotypes of CX−/− P−/− lymphomas. Table S3 summarizes the characterized clonal translocations in CXP lymphomas. Table S4 summarizes the characterized clonal translocations in CX/−/− P−/− lymphomas. The online supplemental material is available at http://www.jem.org/cgi/content/full/jem.20082271/DC1.

We thank Drs. L. Chin and Y. Xiao (The Belfer Cancer Genomics Center at Dana Farber Cancer Institute, Boston, MA) for histology analysis; and members of the Farber Cancer Institute, Boston MA) for analysis of CGH data; Dr. S. Casola, P. Goff, and T. Hickenern for technical assistance and suggestions; Drs. J. Kukot and J. Aster (Brigham and Women's Hospital, Boston, MA) for histology analysis; and members of the Alt laboratory for discussions.

This work was supported by National Institutes of Health (NIH) grants S01 CA92625 (to F.W. Alt), an NIH postdoctoral training grant NRSA T32 CA7008 (to C.T. Yan), Leukemia and Lymphoma Society (LLS) senior fellowships (to F.W. Alt and K. Rajewsky), an NIH postdoctoral training grant NRSA T32 CA92625 (to A. Datta). F.W. Alt is an investigator of the Howard Hughes Medical Institute.

The authors have no conflicting financial interests.

Submitted: 10 October 2008
Accepted: 18 November 2008

REFERENCES

3089
JEM

Takahashi, K., Y. Kozono, T.J. Waldschmidt, D. Berthiaume, R.J. Quigg, A. Baron, and V.M. Holes. 1997. Mouse complement receptors type 1 (CR1;CD35) and type 2 (CR2;CD21): expression on normal B cell subpopulations and decreased levels during the development of autoimmune in MRL/lpr mice. J. Immunol. 159:1557–1569.

