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The nature of the ‘‘toxic gain of function’’ that results from amyotrophic lateral sclerosis (ALS)-, Parkinson-, and
Alzheimer-related mutations is a matter of debate. As a result no adequate model of any neurodegenerative disease
etiology exists. We demonstrate that two synergistic properties, namely, increased protein aggregation propensity
(increased likelihood that an unfolded protein will aggregate) and decreased protein stability (increased likelihood
that a protein will unfold), are central to ALS etiology. Taken together these properties account for 69% of the
variability in mutant Cu/Zn-superoxide-dismutase-linked familial ALS patient survival times. Aggregation is a
concentration-dependent process, and spinal cord motor neurons have higher concentrations of Cu/Zn-superoxide
dismutase than the surrounding cells. Protein aggregation therefore is expected to contribute to the selective
vulnerability of motor neurons in familial ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS) is an adult-onset
neurodegenerative disease with roughly 10% of the cases
being inherited or familial [1]. The cause of sporadic ALS
(sALS) is unknown while familial ALS (fALS) is known to be
caused by mutations in six different genes and six different
chromosomal loci [2–4]. One of these genes encoding Cu/Zn-
superoxide dismutase (SOD1) was found to associate with
20% of fALS, and at least 119 fALS-associated SOD1
mutations have been characterized in humans [1,5].

Fifteen years after the discovery that SOD1 mutations can
cause ALS [1], the mechanisms of toxicity are still not well
understood. The dominant inheritance of most SOD1
mutations and the literature as a whole indicate that SOD1
mutations result in a toxic gain of function rather than a loss
of function [6–9]. Numerous hypotheses have been proposed,
reviewed in [10,11], and can be broken down conceptually
into the (nonexclusive) toxic mechanisms that converge to
SOD1 protein structure–function and those that converge
elsewhere (downstream effects). Popular hypotheses for
SOD1 variant structure and function changes include
decreased stability of apo or metallated SOD1 [12–15],
increased hydrophobicity [16] and aggregation propensity
[17,18], susceptibility to posttranslational modification [19–
25], loss of metals [22,26–32], and aberrant chemistry [33–37].
Popular hypotheses for downstream effects [38–40] include
impairment of axonal transport [41–43], impairment of
proteasome [39,44,45] or chaperone activity [46,47], and
mitochondrial [9,48–53] or endoplasmic reticulum–Golgi
dysfunction [54,55]. Notably, the only potentially toxic
property thus far shared by all fALS SOD1 variants is an
increased propensity to form proteinaceous aggregates [56–
62]. Due to the clinical similarities between fALS and sALS,
research into SOD1 mutation-related fALS may provide

insight into sporadic cases. Here we demonstrate that two
properties, namely, increased aggregation propensity and
instability (loss of stability), are major contributors to SOD1
toxicity in ALS patients. On the basis of these results we
rationalize the determinants of aggregation, the selective
vulnerability of neurons, and patient survival times.

Results

SOD1 Mutations Have Inherently Different Toxicities
The goal of this study is to discover the mechanisms of

toxicity of fALS SOD1 mutations. Neurologists often publish
the age at onset and the time from disease onset to death (also
termed survival or disease duration) for their ALS patients,
thereby enabling epidemiological studies that assess the risk
of a given variable [63–66], which for this study include given
mutations’ relative toxicity and physical characteristics
(physicochemical parameters). Previous studies revealed that
different SOD1 mutations have inherently different toxicities
(encode different mean disease durations) [67]. We expanded
upon these studies with a larger set of fALS-causing SOD1
mutations as well as larger patient cohorts. Hazard ratios
(relative risk of dying at a given time) of fALS SOD1
mutations and non-SOD1-related fALS compared to that of
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sALS were obtained from the Cox proportional hazard model
(Table 1). From this result, fALS SOD1 mutations with data
from at least five individual patients (full criteria for
inclusion are defined in the Materials and Methods section)
were significantly related to different hazards. Kaplan–Meier
survival curves from patients with fALS-causing SOD1
mutations, non-SOD1-related fALS, and sALS were gener-
ated. Figure 1 illustrates that fALS SOD1 mutations encode
different prognoses, ranging from considerably better (e.g.,
H46R, hazard rate¼0.0753 sALS) to considerably worse (e.g.,
A4V, hazard rate¼ 5.73 sALS) than sALS. Moreover, the Log
rank, Breslow, and Tarone–Ware tests, which also compare
patient survival rates (i.e., each mutation versus every other
fALS-causing SOD1 mutation, non-SOD1-related fALS, and
sALS) using different mathematical functions, confirm that
different SOD1 mutations have inherently different prog-
noses (Table 2).

SOD1 Variants’ Gain of Hydrophobicity, Loss of a-Helix,
and Gain of b-Sheet Propensity Are fALS Risk Factors,
While Loss of Net Charge Is Protective

To test the hypothesis that changes to the physicochemical
properties of SOD1 variants are toxic, specifically those
properties known to influence protein aggregation, phys-
icochemical properties for each protein variant (hydro-
phobicity, propensity to lose a-helices, form b-sheets,
protein net charge, etc.) were evaluated in a Cox proportional
hazard model (Table 3). The hazard ratios were significantly
higher than 1.0 for mutations that either increase hydro-
phobicity, lose a-helices, or form b-sheets. In contrast,
mutations that decrease the magnitude of the protein net
charge correlate with hazard ratios significantly smaller than
1.0. These results indicate that changes in the SOD1 variants’
properties, specifically increases in hydrophobicity and
propensity to lose a-helices and to form b-sheets, correlate
with decreased fALS patient survival, while decreases of the

magnitude of net charge correlate with increased fALS
patient survival, in contradiction with previous reports
[15,68].
Dobson and co-workers [69] introduced an equation

(termed the Chiti–Dobson equation herein) to predict the
changes of aggregation rates of unfolded peptides or proteins
upon point mutations by their physicochemical properties.
This equation was derived empirically by modeling how three
physicochemical properties, hydrophobicity, secondary struc-
ture (including loss of a-helix and gain of b-sheet), and
protein net charge, change upon mutations (the hazard
analyses for each of these properties were reported in the
previous paragraph). These physicochemical property
changes then were related to changes in protein aggregation
rate, yielding an equation that predicts how any mutation will
change the rate of protein aggregation (the predicted change
of aggregation rate is referred to as the aggregation
propensity). Although this equation is empirical, it is based
upon first physical/chemical principles and approximates
how a given mutation will change the energy (and thus the
equilibrium) between a solvated and an aggregated protein.
The Chiti–Dobson equation is ln(mmut/mwt) ¼ 0.633DHydr þ
0.198(DDGcoil-a þ DDGb-coil) – 0.491Dcharge, in which ln(mmut/
mwt) represents change of aggregation rate upon mutation,
and DHydr, DDGcoil-a, DDGb-coil, and Dcharge represent the
changes of hydrophobicity, free energy change for the
process from a-helix to random coil, free energy change for
the process from random coil to b-sheet, and protein net

Table 1. SOD1 Mutations Encode Inherently Different Prognoses

Mutation p-Value Hazard Ratio

A4T ,0.001 4.2

A4V ,0.001 5.7

L8Q 0.005 3.6

G10V ,0.001 8.4

G37R ,0.001 0.081

L38V 0.1 1.4

G41D ,0.001 0.16

G41S ,0.001 11

H46R ,0.001 0.075

L84F 0.001 0.38

N86K 0.002 3.4

D90A ,0.001 0.14

G93C ,0.001 0.18

G93S ,0.001 0.26

E100G 0.03 0.70

D101N 0.01 1.9

S105L 1 0.98

I113T 0.001 0.54

L144F ,0.001 0.14

I149T 0.4 1.3

non-SOD1-related fALS 0.7 1.0

Cox proportional hazard model was applied to analyze patients’ SOD1 mutation status,
which was treated as a categorized variable. A significance level of 0.05 was used, and the
hazard ratio for each mutation qualifying the modified rule of thumb was calculated in
contrast to sALS patients’ survival. It was observed that mutations with higher hazard
ratios correlate with shorter patients’ disease durations and vice versa. The statistical
analysis was performed with the software SPSS 15.0 (SPSS, Inc.). Disease durations from
620 patients with 20 different fALS-causing SOD1 mutations qualifying the modified rule
of thumb, 159 patients with non-SOD1-related fALS, and 269 patients with sALS were
used in this analysis.
doi:10.1371/journal.pbio.0060170.t001
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Author Summary

Amyotrophic lateral sclerosis (ALS), also known in America as Lou
Gehrig’s disease, is a fatal neurodegenerative disease with no
effective treatment. Paralysis occurs as the result of the death of
cells that connect the brain to various muscles, namely, the motor
neurons of the brain and spinal cord. Ninety percent of ALS is
sporadic and of unknown cause. A landmark discovery in ALS
research was that mutations in the gene coding for Cu/Zn-
superoxide dismutase cause at least 2% of ALS, and researchers
have since discovered at least 119 such mutations. Neurologists also
discovered that different mutations have remarkably different
prognoses. For example, patients with the A4V mutation survive
an average of 1 year after diagnosis, whereas patients with the H46R
mutation survive an average of 18 years. Biochemists discovered
that different mutations result in remarkably different physical
properties, for example, stability of Cu/Zn-superoxide dismutase. In
this article we apply an algorithm that predicts how fast a given Cu/
Zn-superoxide dismutase will aggregate (stick to other proteins) and
demonstrate that faster aggregation relates to faster death of ALS
patients. We also demonstrate that loss of Cu/Zn-superoxide
dismutase stability relates to faster ALS patient death. Our findings
imply that aggregation of unfolded SOD1 is toxic for ALS patients,
and in fact accounts for 69% of the variability in mutant Cu/Zn-
superoxide-dismutase-linked familial ALS patient survival times.



charge from the mutation, respectively. In their landmark
study, it was demonstrated that increases in hydrophobicity,
losses of a-helices, gains of b-sheets, and decreases in the
magnitude of protein net charge increase the rate of protein
aggregation.

Protein Aggregation Propensity Is a Risk Factor of fALS
The Chiti–Dobson equation and the many equations it

inspired are robust and versatile, having successfully pre-
dicted aggregation rates of diverse disease-associated pro-
teins [70], including amyloid b-peptide [69], tau [69], a-
synuclein [69], amylin [69], lysozyme [71], etc. Moreover,
increases in the predicted rates of aggregation of various
mutations in amyloid b-peptide were shown to relate to
increased neuronal dysfunction and degeneration in a
Drosophila model of Alzheimer’s disease [72]. To test the
hypothesis that protein aggregation propensity is related to
fALS patient survival, the Chiti–Dobson equation was used to
predict the aggregation propensities of fALS-causing SOD1
mutations. We started this study by validating the Chiti–
Dobson equation, taking all experimental protein aggrega-
tion rate data available at the inception of our study (data
reported as of 2005, listed in Table 4) and recalibrating the
equation. The detailed results of the validation are reported
in Figure 2. In summary, the Chiti–Dobson equation was
verified for use in fALS, and the statistical correlation
between the physicochemical parameters (hydrophobicity,
net charge, and secondary structure) and the aggregation
propensity remained and changed only marginally. Since the
time we validated the Chiti–Dobson equation, a number of
papers also validated their general approach [73–75]. Even so,
we have included our own analysis since it provides exposure
to the physical basis of aggregation propensity. Furthermore,
inclusion of this data makes this study self-contained so that
all of the data necessary to support or disprove our model are
contained herein. Notably, this paper’s conclusions were the

Table 2. SOD1 Mutations Are Inherently Related to ALS Patients’ Disease Duration

Mutation p-Value from Kaplan–Meier Curve Tests

Log Rank Breslow Tarone–Ware

A4T ,0.001 ,0.001 ,0.001

A4V ,0.001 ,0.001 ,0.001

L8Q 0.01 0.04 0.02

G10V ,0.001 ,0.001 ,0.001

G37R ,0.001 ,0.001 ,0.001

L38V 0.07 0.6 0.3

G41D ,0.001 ,0.001 ,0.001

G41S ,0.001 ,0.001 ,0.001

H46R ,0.001 ,0.001 ,0.001

L84F 0.02 0.003 0.005

N86K 0.005 0.02 0.01

D90A 0.005 0.04 0.02

G93C ,0.001 ,0.001 ,0.001

G93S 0.003 ,0.001 ,0.001

E100G 0.5 0.003 0.04

D101N 0.02 0.2 0.08

S105L 0.9 0.4 0.7

I113T 0.9 0.3 0.6

L144F ,0.001 ,0.001 ,0.001

I149T 0.02 ,0.001 0.002

non-SOD1-related fALS 0.001 0.3 0.04

sALS ,0.001 0.7 0.2

Kaplan–Meier curves’ log rank, Breslow, and Tarone–Ware tests were obtained to evaluate the statistical equivalence of patients’ survival curves between each fALS-causing SOD1
mutation qualifying the modified rule of thumb and every other fALS-causing SOD1 mutation, non-SOD1-related fALS, and sALS. A significance level of 0.05 was used. The statistical
analysis was performed with the software SPSS 15.0 (SPSS, Inc.). Disease durations from 824 patients with 71 different fALS-causing SOD1 mutations, 159 patients with non-SOD1-related
fALS, and 269 patients with sALS were used in this analysis.
doi:10.1371/journal.pbio.0060170.t002

Figure 1. fALS Patients’ Kaplan–Meier Survival Curves Illustrating Low

and High Risk SOD1 Mutations

Kaplan–Meier survival curves from patients with A4V (red) and H46R
(blue) SOD1 mutations and sALS (green) are as shown. Disease durations
from 205 patients with A4V SOD1 mutation, 63 patients with H46R SOD1
mutation, and 269 patients with sALS were used to generate these
Kaplan–Meier survival curves.
doi:10.1371/journal.pbio.0060170.g001
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same using both the original and the recalibrated Chiti–
Dobson equation.

The average patient survival times for different SOD1
variants with measured thermodynamic stabilities were
plotted against corresponding predicted aggregation pro-
pensities, and linear regression analysis weighted by the
number of patients for each mutation yielded R (multiple
correlation coefficient, with a larger value indicating a
stronger relationship) and P (value less than 0.05 implies a
significant result) values of 0.58 and ,0.001, respectively
(Figure 3A). The severity of fALS thus is related to mutation-
induced increases in SOD1 aggregation propensity. The same
plot was performed with the linear regression analysis not
weighted by the number of patients (Figure 4A), yielding R
and P values of 0.23 and 0.2, respectively. Unfortunately, the
published epidemiology data do not provide the information
necessary to stratify for known ALS covariates, including
lifestyle (diet and smoking) [76–79], palliative care [80], bulbar
onset, etc., and weighted data are more likely to account for
differences in these factors. The Chiti–Dobson equation
results for all fALS-causing SOD1 mutations with patients’
survival data also were evaluated in a univariate Cox
proportional hazard model (Table 3). The hazard ratio for
the Chiti–Dobson equation result was significantly higher
than 1.0, which also indicates that aggregation propensity is a
risk factor for fALS. Previous studies of Huntington’s disease
revealed an inverse relationship between the length of
glutamine repeat of huntingtin and age of disease onset.
The authors of this previous study concluded that disease
onset correlates with rate of nucleation of aggregation [81].
We demonstrate here an inverse relationship between the
rate of aggregation elongation after nucleation and the disease
duration after onset.

Protein Instability Is a Risk Factor for fALS
On the basis of our observation that predicted increased

protein aggregation correlates with increased disease severity
and previous data indicating that protein unfolding or
misfolding promote aggregation [82–85], we tested the
hypothesis that a loss of protein stability also could be a risk
factor for ALS. For the sake of simplicity, we use the term
instability throughout this article, with instability defined as
the inverse of either the normalized DDG (unfolding free
energy change difference between mutant and wild-type

SOD1) or normalized DTm (melting point difference between
mutant and wild-type SOD1). Instability was considered for
two reasons: (1) the Chiti–Dobson equation predicts the
aggregation rates of unfolded proteins (it was derived from
the aggregation rates of proteins in high trifluoroethanol
concentrations that contained secondary but no tertiary
structure), and therefore, formally, unfolding must occur
prior to aggregation, and (2) unfolding is known to speed
protein aggregation in vitro to the extent that without
chemically induced unfolding induction periods extend from
months to years, as demonstrated for SOD1 [32]. Aggregation
in vivo therefore may require protein unfolding. Before using
stability data published by different laboratories using
different methods (melting point, which yields DTm, or
chaotroph-induced unfolding, which yields DDG), we sought
to determine the reliability of the data. If different
laboratories reported similar values of stability for the same
mutants, then the data could be deemed reliable. Therefore,
all published measurements of apo SOD1 stability (metallated
SOD1 calorimetry data often bear the characteristics of
irreversible denaturation, probably via Cu-catalyzed disulfide
bond formation, and is therefore less reliable) [15,31,60,86–
88] were compiled, and the experimental values of DDG and
DTm were normalized to the range from 0 to 1 (described in
the Materials and Methods section), with 0 representing the
least stable, and 1 representing the most stable (highest
stability) variant. Through the use of all of the data from
mutants where DDG and DTm were measured by different
laboratories, a plot of normalized DDG versus normalized
DTm was created. Good interlaboratory correlation of
measured stability values was observed (slope ¼ 0.94, R ¼
0.90, P ¼ 0.002; Figure 5), and we therefore deemed the
stability data reliable for use.
Next, patient survival data for fALS-causing SOD1 variants

were plotted against corresponding instability values, and
linear regression analysis weighted by the number of patients
for each mutation yielded R and P values of 0.71 and ,0.001,
respectively (Figure 3B). The same plot was performed with
the linear regression analysis not weighted by the number of
patients (Figure 4B), yielding R¼ 0.34 and P¼ 0.07. A gain of
SOD1 instability (loss of stability) upon mutation therefore is
related to decreased fALS patient survival. Increased in vitro
instability is consistent with previous findings that the in vivo
half-lives of SOD1 variants are decreased [89].

Table 3. SOD1 Variants’ Gain of Hydrophobicity, Loss of a-Helix, and Gain of b-Sheet Propensity Are ALS Risk Factors, While Loss of Net
Charge Is Protective

Model Physicochemical Factors p-Value Hazard Ratio 95.0% CI for Hazard Ratio

Lower Upper

multivariate Gain of hydrophobicity ,0.001 1.16 1.10 1.22

Loss of a-helix 0.002 1.4 1.1 1.7

Gain of b-sheet ,0.001 1.5 1.3 1.7

Loss of net charge ,0.001 0.36 0.27 0.48

univariate Chiti–Dobson equation result ,0.001 1.16 1.12 1.20

Multivariate survival model was tested stepwise with physicochemical property changes of SOD1 variants, and the likelihood ratio test was used to examine the significance of the factors.
Univariate survival model was tested with the Chiti–Dobson equation results for SOD1 variants. A significance level of 0.05 was used. Hydrophobicity, net charge, and the trend to lose a-
helices and form b-sheets are shown as significantly related to patients’ survival. Disease durations from 824 patients with 71 different fALS-causing SOD1 mutations were used in this
analysis.
doi:10.1371/journal.pbio.0060170.t003
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Protein Aggregation Propensity and Protein Instability Are
Synergistic Risk Factors for fALS
Previous results from computer simulations indicate a

multistep process for aggregation via destabilization [90],
encouraging us to understand the combined effect of
aggregation propensity and protein instability upon ALS
patient survival. On the basis of their respective multiple
correlation coefficients and slopes, aggregation propensity
and instability are equal contributors to fALS patients’
survival. Moreover, no obvious correlation between protein
instability and aggregation propensity was observed for the
SOD1 variants used in Figure 3 (Figure S1), indicating that
increased instability is not responsible for the increased
predicted protein aggregation propensity. The combination
of instability and aggregation propensity represents the
relative energy in proceeding from folded to unfolded apo
SOD1 and then from unfolded to aggregated states. Patient
survival was plotted against corresponding summed insta-
bility and aggregation propensity values. A linear regression
analysis weighted by the number of patients for each
mutation yielded R and P values of 0.83 and ,0.001,
respectively (Figure 3C). The same plot was performed with
the linear regression analysis not weighted by the number of
patients (Figure 4C), yielding R ¼ 0.47 and P ¼ 0.01. The
improved statistical result of predicting patient survival after
combining instability and aggregation propensity indicates
that aggregation occurs from unfolded or partially unfolded
SOD1. The stability data used herein were for apo SOD1, and
therefore the absence of metals is implicit. The R2 value was
0.69 from the weighted data, indicating that 69% of the
intrinsic variability these fALS patients’ survival resulted
from the combination of increased aggregation propensity
and instability. Additionally, aggregation propensity and
instability were evaluated in a Cox proportional hazard
model (Table 5). The hazard ratios were significantly higher
than 1.0 for both factors. The sum of aggregation propensity
and instability also was evaluated in a univariate Cox
proportional hazard model (Table 5). The hazard ratio for
this sum was also significantly higher than 1.0, further

Figure 2. Rederivation and Validation of the Chiti–Dobson Equation

The original Chiti–Dobson equation was rederived by correlating all
known empirically measured mutation-related changes in protein
aggregation rates as of 2005 with the corresponding changes in the
physicochemical properties of charge, hydrophobicity, and secondary
structure. Importantly, aggregation rate data were not taken directly
from the publication that presented the Chiti–Dobson equation; instead
these values were calculated from their respective original publication if
applicable (Table 4). The dependence of observed ln(mmut/mwt) on

hydrophobicity, secondary structure, and charge changes were still
observed after the addition of extra protein aggregation data.
(A) The relationship between observed ln(mmut/mwt) and Dhydrophobicity.
To insure that the effect of hydrophobicity change was considered
independent of other physiochemical properties, only mutations that
had a Dcharge of 0 and a jDDGcoil-a þ DDGb-coilj of less than 2.5 kJ/mol
were considered.
(B) The relationship between observed ln(mmut/mwt) and DDGcoil-a þ
DDGb-coil. To insure that the effect of secondary structure change was
considered independent of other physiochemical properties, only
mutations which had a Dcharge of 0 and a jDhydrophobicityj of less
than 3 kcal/mol were considered.
(C) The relationship between the observed ln(mmut/mwt) and Dcharge. To
ensure that the effect of charge change was considered independent of
other physiochemical properties, only mutations that had a
jDhydrophobicityj of less than 3 kcal/mol and a jDDGcoil-a þ DDGb-coilj
of less than 2.5 kJ/mol were considered. Wild-type protein was used as a
data point at (0,0) in all of the three graphs. The rederived slopes from
this figure for the three factors, 0.95 for hydrophobicity, 0.18 for
secondary structure, and �0.78 for charge, were applied to calculate
aggregation propensities of fALS-causing SOD1 variants presented in
Figure 4. Patient survival times were plotted against these aggregation
propensities; the corresponding slope and R values differ less than 5%
compared to the results in Figure 4 (unpublished data), validating the
Chiti–Dobson equation.
doi:10.1371/journal.pbio.0060170.g002
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indicating that aggregation propensity and instability are
synergistic risk factors for fALS. Note that the aggregation
propensity and instability tested in Table 5 were normalized
to the range from 0 to 1 (as in Figures 3 and 4), while the
values tested in Table 3 were not normalized. As a result of
normalization, which decreased the value range of tested
factors, the hazard ratios of Table 5 are much larger than
Table 3, and therefore the large values of hazard ratios
reported in Table 5 should not be overinterpreted. Signifi-
cantly, a fALS patient with an SOD1 mutation of relatively
low aggregation propensity and high stability is expected to
survive longer after disease onset. It has not escaped our
attention that the rate of protein aggregation has implica-
tions in both sporadic diseases and aging; for example, the
toxicity of a given posttranslational modification is a function
of its effect on protein stability and aggregation propensity.

Discussion

We describe here synergistic gains of toxic functions of
SOD1 in ALS. These are the first results in any neuro-
degenerative disease demonstrating that protein instability
and aggregation propensity are synergistic risk factors. The
fact that there are two synergistic risk factors rather than a
single toxic gain of function probably has delayed the
discovery of the mechanisms of fALS mutant SOD1 toxicity.
The SOD1 stability data used in this paper were measured
from apo SOD1, and the aggregation rate data used to create
the Chiti–Dobson model were from in vitro unfolded
proteins. Therefore, formally, the combination of instability
and aggregation propensity represents the relative energy in
proceeding from apo folded to unfolded SOD1 and then
from unfolded to aggregated states. It has been demonstrated
experimentally that apo SOD1 has a faster rate of aggregation
than that of holo forms [32]. Partial unfolding/misfolding also
can lead to aggregation [28,91–96], and our results cannot
rule out a role for the aggregation of partially folded,
including metallated, SOD1. Previous studies revealed a
correlation [15] and conversely a lack of correlation [86]
between SOD1 variant stability and patient disease duration.
Correlation between SOD1 variant stability and patient
disease duration, however, required that the authors omit
stability data of 4 of the 15 variants from their regression
analysis (on the basis that these variants change the net
charge of SOD1).
As presented in Table 3, SOD1 variants’ loss of net charge

Figure 3. Synergistic Increases in SOD1 Aggregation Propensity and

Increases of Instability Are Associated with Decreases in Survival for fALS

Patients (Data Weighted by the Number of Patients)

(A) An increase in aggregation propensity is associated with a decrease
in fALS patient survival. Single point mutations of SOD1 found in fALS
patients with corresponding reported stability values in (B) were
considered. Aggregation propensities for each fALS mutation were
calculated using the Chiti–Dobson equation, normalized such that 0
represents the least and 1 represents the most aggregation prone

proteins, and the corresponding disease duration (survival) was plotted
versus this value.
(B) An increase in SOD1 instability is associated with severe disease. All
instability values of apo SOD1 reported in the literature were normalized
such that 0 represents the most and 1 represents the least stable
proteins, and corresponding disease durations were plotted versus these
values.
(C) Increase in SOD1 aggregation propensity and gain of instability
synergistically decrease patient survival. Normalized aggregation pro-
pensity in (A) and instability in (B) were summed and normalized to the
range from 0 to 1, and patient survival was plotted versus this value. The
data used in these three graphs (disease durations from 580 patients
with 28 different fALS-causing SOD1 mutations with reported stability
values) were weighted based on the number of patients for each
mutation using SPSS version 15.0.
Note that the correlation between the size of each data point and the
number of patients for (A–C) is shown as an inset in (C).
doi:10.1371/journal.pbio.0060170.g003
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correlates with increased patient survival, while gain of
hydrophobicity, loss of a-helix, and gain of b-sheet propensity
are ALS risk factors. On the basis of Dobson and co-workers’
related work [69,73,97], a loss of net charge is predicted to
increase the aggregation propensity of unfolded proteins. If
aggregation is toxic, then one would expect loss of net charge
to be toxic. In contrast to the synergistic effects for
aggregation propensity and instability presented in Table 5,
the correlation of loss of net charge with increased survival
has an effect of decreasing the hazard ratio presented in the
univariate model presented in Table 3. We demonstrate that
mutations causing the entire protein to approach neutrality
are protective in the context of fALS (Table 3) rather than
deleterious as proposed by Oliveberg and co-workers [15,68].
These results should be cautiously interpreted since in
contrast to our Cox proportional hazard model result that
loss of net charge is protective, the mean patient survival for
loss of net charge and gain of net charge mutations,
unweighted by the number of patients, are 7.1 and 6.9 years,
respectively. Further study clearly is required to understand
the role of charge in ALS etiology.
In contrast with the strong familiality shown for disease

duration after onset (Table 1), SOD1-mediated ALS showed
modest familiality with respect to onset, accounting for only
42% of the variability in A4V and D90A fALS patients [98],
and with only G37R and L38V mutations of SOD1 being
significant covariates of age of onset [67]. The same analysis
shown in Figures 3 and 4 was performed using age at disease

Figure 4. Synergistic Increases in SOD1 Aggregation Propensity and

Losses of Thermodynamic Stability Are Associated with Decreased

Survival of fALS Patients (Using Unweighted Data)

(A) An increase in aggregation propensity is associated with decreased
fALS patient survival. Single point mutations found in fALS patients with
corresponding reported thermodynamic stabilities in (B) were consid-
ered.
(B) A loss of SOD1 thermodynamic stability is associated with severe
disease.
(C) Increase in SOD1 aggregation propensity and gain of instability
synergistically decrease patient survival. The data used in these three

graphs (disease durations from 580 patients with 28 different fALS-
causing SOD1 mutations with reported stability values) were treated
equally regardless of the number of patients using the software
SigmaPlot 9.0 (Systat Software, Inc.). SPSS 15.0 also was used on this
analysis, and identical results were obtained.
doi:10.1371/journal.pbio.0060170.g004

Figure 5. Correlation between Measures of Stability, Specifically

Normalized DTm and DDG, Reported from Different Groups for Apo

SOD1 Variants

The variants with both measured DTm and DDG were plotted, and a
good correlation between normalized DTm and normalized DDG was
observed. This correlation provides the rationale for averaging DTm and
DDG and taking the average value as an indicator for stability of fALS-
related variants. The normalized DTm and DDG were obtained as
described in the Materials and Methods section.
doi:10.1371/journal.pbio.0060170.g005
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onset rather than disease duration as the dependant variable
(Figure S2), and little or no relationship between disease
onset and aggregation propensity or instability was observed.
The Chiti–Dobson equation predicts the rate of aggregation
after nucleation (rate of elongation). It is tempting therefore
to speculate that the rate of nucleation is a determinant of
age at onset. Testing this hypothesis would require the
development of a model that can predict nucleation rates
based upon physicochemical parameters, a task that is
hampered by the stochastic nature of in vitro nucleation
times [99,100] but that should now be possible given our
recent development of methods for modeling in vitro
nucleation kinetics [101].

Although our model accounts for 69% of the variability in
fALS patient survival after onset, there are clearly genetic
components of fALS that our model cannot account for. For
example, while D90A is normally a dominantly inherited
mutation in North America, 2.5% of people in Sweden and
Finland are heterozygous asymptomatic carriers of the D90A
SOD1 mutation [102,103] and require two mutant alleles
before presenting ALS symptoms. Notably, our results and
conclusions were unaffected by including or excluding D90A
survival times during data analysis.

It is postulated that diseases for which protein aggregation
contributes to patient death will (1) develop in cells with the
highest concentration of the aggregation-prone protein in
accordance with the concentration dependence of aggrega-
tion rates [101,104] and (2) have a prognosis influenced by the
aggregation propensity of the aggregating protein, in
accordance with the results reported herein. Motor neurons
are the cells in the ventral horn of the spinal cord with the
highest SOD1 concentration [39,105], perhaps explaining an
aspect of the selective vulnerability of these cells.

Protein aggregation is a hallmark of many neurodegener-
ative diseases, including ALS. The toxicity of aggregation is
fiercely debated (reviewed in [106,107]), fueled by reprodu-
cible evidence that aggregates can be toxic [108,109], have no
effect [110], or be protective [111]. We propose that
aggregates on either extreme of size, i.e., small protofibrillar
aggregates [108,112] or aggregates large enough to clog axons,
are more toxic, while midsize microscopically visible aggre-
gates are less toxic [106]. Our data indicate that the increased
aggregation propensity of SOD1 is related to decreased
survival of ALS patients. Notably aggregation of SOD1 has
been demonstrated in fALS [113,114] and a subset of sALS
patients [114,115], 18 fALS rodent models of 13 different

SOD1 mutations [7–9,23,59,116–128], and at least 13 SOD1
mutants in cell models [56,58,59,116,118,119,129–131].

Materials and Methods

Familial ALS patients’ disease duration and age of onset. Familial
ALS patients’ data were taken from all of the available literature.
Disease duration was initiated with onset of the first symptoms until
the patient’s death or when respiratory assistance was required for
patients’ survival. The average duration and onset for each mutation
were calculated as the weighted average based on the number of
patients (Table 6). If the patients were still reported to be alive
without respiratory assistance at the end of a study, then their disease
durations were not used to calculate the average unless the known
duration value was larger than the average calculated with only
durations from patients deceased or with respiratory assistance. For
studies reporting average disease duration and Kaplan–Meier curves,
the reported average durations were used to calculate the weighted
averages. The current unavailability of http://www.alsod.org/ made it
impossible to review the references provided by the website (from
which we had taken survival times before it became unavailable),
which created the risk of counting a patient’s disease onset or survival
twice, and made reproducing our study impossible for other groups.
We therefore opted not to report data from this website in this study,
thereby eliminating no more than 67 (there were 67 http://www.alsod.
org/ patients’ data without accompanying literature references that
may, or may not, have been represented by our literature search) of
1319 patients’ data. However, we did perform a complete, alternative
set of analyses that did include http://www.alsod.org/ data (unpub-
lished data), and the statistical correlations in the figures and tables
shown herein persisted. Mean values of disease durations also were
obtained from Kaplan–Meier curves and tested on SOD1 mutations
with known experimental thermodynamic stabilities, and the results
were comparable to those in Figure 3. Since the weighted average
method can provide disease duration regardless of the number of
patients, we opted for its use.

Kaplan–Meier survival curves, the log rank tests, and the Cox
proportional hazard model. Kaplan–Meier curves of survival for
different fALS-causing SOD1 mutations, non-SOD1-related fALS,
and sALS were generated. The hazard ratios of different fALS-
causing SOD1 mutations and non-SOD1-related fALS compared to
sALS were tested as a category variable by Cox proportional hazard
model analysis. For studies reporting Kaplan–Meier curves but
without individual patients’ data, the Engauge Digitizer 4.1 software
was used to obtain coordinates for cumulative survival at each time
point. This information was used to calculate the number of patients
not surviving at each time point under the assumption that there is
no censored patient (with unknown exact survival time because of
being alive at the end of study, lost to follow-up, or withdrawal from
the study) within the course of survival curves. For cumulative
survival not reaching 0 at the end of study, those fractions of
patients were treated as censored. The error of the estimated
number of patients is less than 5% of the number reported. To
eliminate the chance that one or two patients’ survival data bias the
analysis result, a rule of thumb [132] requiring that each tested
fALS-related SOD1 mutation includes at least five noncensored
patients was applied. Since patients’ survival was reported only as an
average from a group of patients and individual patient’s survival

Table 5. SOD1 Variants’ Aggregation Propensity and Instability Are ALS Risk Factors

Model Physicochemical factors p-Value Hazard Ratio 95.0% CI for Hazard Ratio

Lower Upper

Multivariate Aggregation propensity ,0.001 13 9 21

Instability ,0.001 24 16 36

Univariate Sum of aggregation propensity and instability ,0.001 333 174 638

Multivariate survival model was tested with aggregation propensity and instability. Univariate survival model was tested with the sum of aggregation propensity and instability. A
significance level of 0.05 was used. Aggregation propensity and instability as well as the sum of aggregation propensity and instability are shown as significantly related to patients’
survival. Disease durations from 614 patients with 29 different fALS-causing SOD1 mutations with reported stability values were used in this analysis. Due to the ability to handle censored
data in Cox proportional hazard models, these analyses not only include the dataset presented in Figure 3 but also with extra censored patients’ survival data.
doi:10.1371/journal.pbio.0060170.t005
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Table 6. Disease Durations and Age of Onsets for SOD1 Mutation Related fALS, Non-SOD1-Related fALS, and sALS Patients

Entries Mutation Reference Duration 6 SD in

Years (number

of patients)

Average

Duration

Number of

Patients

Reference Onset 6 SD in

Years (number

of patients)

Average

Onset

Number of

Patients

1 A4S [156] .3 (1) .3 0 [156] 34 (1) 34 1

2 A4T [157] 1.2 (9) 1.5 21 [157] 46.0 6 9.5 (13) 45.3 26

[157] 4.3 (1)a [67] 40 (1)

[67] 0.75 (1) [158] 52.0 6 10.1 (7)

[158] 1.5 6 0.4 (7) [156] 21 (1)

[156] 1.7 (1)a [159] 21 (1)

[159] 0.83 (1) [159] 45 (3)

[159] 1.7 (1) — — — —

3 A4V [67] 1.4 6 0.9 (84) 1.2 205 [67] 47.8 6 13.3 (84) 47.7 212

[158] 1.0 6 0.4 (75) [67] 47.0 (4)

[160] 1.0 6 0.5 (8) [158] 47.0 6 13.7 (75)

[161] 1.2 6 0.8 (24) [160] 45.4 6 11.3 (11)

[162] 0.9 (4) [161] 51.5 6 11.2 (24)

[156] 1.5 6 1.1 (3) [162] 58.5 (4)

[163] 0.7 (2) [156] 50.3 6 8.7 (3)

[164] 0.8 6 0.2 (2)a [163] 53.5 6 3.5 (2)

[165] 1.5 6 0.7 (3) [164] 25.5 6 0.5 (2)

— — — — [165] 38.3 6 12.7 (3)

4 C6G [166] 0.2 (2) 0.2 2 [166] 49.5 6 3.5 (2) 49.5 2

5 C6F [167] 1.0 (1) 1.0 1 [167] 50.0 6 9 (2) 50.0

[167] .0.5 (1) — — — —

6 V7E [67] 6.0 6 2 (2) 5.7 3 [67] 49.0 6 13 (2) 48.5 4

[168] 5.0 (1)a [168] 34 (1)

[168] .4 (1) [168] 62 (1)

7 L8Q [169] 1.6 6 0.7 (5) 1.6 5 [169] 51.6 6 8.1 (5) 51.6 5

8 G10V [170] 1.1 6 0.5 (5)a 1.1 5 [170] 31.2 6 7.1 (5) 31.2

9 G12A [171] .4 (1) .4 0 [171] 63 (1) 63 1

10 G12R [172] 5.5 6 1.5 (2) 5.5 2 [172] 59.0 6 4 (2) 60.3 3

[173] .4(1) [173] 63 (1)

11 V14G [156] 1.7 (1) 1.7 1 [156] 41 (1) 41 1

12 F20C [174] 1.9 6 1.2 (3) 2.0 7 [174] 50.8 6 12.4 (8) 50.8 8

[174] .2 6 0 (4) — — — —

[174] .1 (1) — — — —

13 E21G [175] 19.3 (3)b 17.2 5 [175] 43.6 (3)b 43.6 3

[176] 3.0 (1) — — — —

[176] .25 (1) — — — —

14 G37R [67] 18.7 6 11.4 (8) 17.0 27 [67] 40.0 6 9.9 (8) 36.9 27

[158] 18.0 6 0 (3) [158] 29.3 6 1.2 (3)

[177] 9.2 6 3.4 (3)a [177] 40.0 6 6.2 (3)

[175] 6.7 (3)b [175] 37.0 (3)b

[178] 24.5 (5) [178] 36.5 (5)

[156] 6.0 (1) [156] 41 (1)

[179] 17.0 (3)b [179] 35.0 (3)

[178] .29 (1) [178] 28 (1)

15 L38R [175] .2 (3) .2 0 [175] 42.0 (3) 42.0 3

16 L38V [67] 2.8 6 1.9 (12) 2.4 22 [67] 41.5 6 8.1 (14) 41.1 31

[180] 2.0 6 1.6 (10) [67] 44.9 (7)

— — — — [180] 38.0 6 6.6 (10)

17 G41D [67] 17.0 6 6.3 (7) 14.1 15 [67] 46.0 6 7.3 (7) 45.2 17

[67] 11.6 6 1.7 (8) [67] 46.8 6 13.5 (8)

[156] .11 (1) [156] 36 (1)

[165] .14 (1) [165] 36 (1)

18 G41S [67] 0.9 6 0.5 (4) 1.0 16 [67] 50.8 6 19.9 (4) 47.9 16

[181] 1.0 6 0.1 (8) [181] 46.8 6 13.5 (8)

[172] 1.1 6 0.1 (4) [172] 47.3 6 14.9 (4)

19 H43R [67] 2.8 6 1.5 (4) 1.8 12 [67] 49.8 6 3.9 (4) 49.3 14

[158] 1.4 6 0.8 (7) [67] 42.8 (2)

[182] 0.6 (1) [158] 49.6 6 15.1 (7)

— — — — [182] 58 (1)

20 F45C [173] .6 (1) .6 0 [173] 58.0 6 5.6 (3) 58.0 3

21 H46R [183] .17.2 6 8.1 (6) 17.6 49 [183] 42.9 6 4.7 (7) 45.6 70

[183] 22.0 (1) [184] 39.7 6 10.5 (9)

[184] .13.4 (7) [67] 48.6 (6)

[184] 22.0 (1) [158] 43.2 6 11.7 (5)

[184] 47.0 (1) [182] 44.3 6 8.7 (17)

[67] 17.0 6 11.0 (5) [185] 49.6 6 10.9 (10)

[158] 17.4 6 6.4 (5) [185] 48.0 6 9.5 (14)
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Table 6. Continued.

Entries Mutation Reference Duration 6 SD in

Years (number

of patients)

Average

Duration

Number of

Patients

Reference Onset 6 SD in

Years (number

of patients)

Average

Onset

Number of

Patients

[182] 17.0 6 7.3 (7) [156] 52.5 6 6.5 (2)

[185] 17.3 6 10.7 (4) — — — —

[185] 16.8 6 6.8 (9) — — — —

[156] .11(1) — — — —

[156] 5.0 (1) — — — —

[176] 11.5 6 10.6 (4)a — — — —

[186] 19.0 (11) — — — —

22 V47F — — — — [173] 36 (1) 36 1

23 H48Q [187] 1.2 6 0.3 (3) 1.2 4 [187] 48.5 6 10.0 (3) 43.6 4

[188] 1.0 (1) [188] 29 (1)

24 N65S [164] .14 (1) .14 0 [164] 38 (1) 38 1

25 G72C [189] 4.4 (1) 4.4 1 [189] 71 (1) 71 1

26 G72S [190] 3.3 6 0.7 (2) 3.3 2 [190] 46.8 6 0.3 (2) 46.8 2

27 D76Y [156] 17.0 (1) 17.0 1 [162] 58.0 (2) 55.0 3

— — — — [156] 49 (1)

28 D76V [191] 18.8 6 7.9 (4) 18.8 4 [191] 46.0 6 2.2 (5) 46.0 5

[191] .2 (1) [191] 46.0 6 2.2 (5)

29 L84F [192] 4.9 6 2.7 (12) 5.8 18 [194] 47.1 6 12.2 (4) 43.9 22

[193] 5.0 (1) [192] 42.8 6 11.3 (15)

[192] .8.0 6 2 (2) [193] 50.0 6 5 (2)

[194] .8.0 6 2.6 (3) [173] 35 (1)

[192] .3 (1) — — — —

[193] .2.1 (1) — — — —

30 L84V [195] 4.7 6 5.8 (5) 3.2 10 [195] 42.5 6 9.3 (6) 47.6 11

[185] 1.6 6 0.5 (5) [185] 53.8 6 15.3 (5)

31 G85R [158] 6.0 6 4.5 (11) 6.0 11 [158] 55.5 6 12.6 (11) 55.5 11

32 N86K [196] 1.7 6 0.6 (7) 1.7 7 [196] 58.2 6 12.6 (7) 58.2 7

33 N86S [156] 7.5 6 1.5 (2) 6.8 4 [156] 49.5 6 13.5 (2) 47.8 4

[197] 6.0 6 3 (2)a [197] 46.0 6 10 (2)

34 A89V [198] .3.3 6 1.5 (3) .3.8 0 [198] 51.0 6 31.2 (3) 55.6 5

[156] .4.5 6 1.5 (2) [156] 62.5 6 7.5 (2)

35 D90A [162] 2.5 6 0.5 (2) 8.0 15 [162] 64.0 (2) 52.4 14

[164] 3.6 6 1.2 (2) [172] 41.3 (1)

[175] 2.7 6 0.6 (2) [164] 66 (1)

[176] 25.0 (1) [175] 68 (1)

[199] 14.0 (1) [175] 62 (1)

[103] 1.0 6 0 (2) [199] 38.7 6 7.6 (3)

[176] .10.5 6 3.5 (2) [103] 49.0 6 17.1 (4)

[199] .15.5 6 9.5 (2) [164] 56 (1)

[103] .9 (1) — — — —

[172] .0.8 (1) — — — —

[103] .3 (1) — — — —

36 D90V [200] 2.7 6 0.6 (3) 2.7 3 [200] 46.0 6 5.5 (4) 46.0 4

37 G93A [67] 2.2 6 1.5 (9) 3.1 16 [67] 47.9 6 17.7 (9) 46.0 15

[158] 2.4 6 1.4 (6) [158] 43.1 6 16.6 (6)

[201] 15.0 (1) — — — —

38 G93D [67] 10.5 6 5.5 (3) 8.8 7 [67] 48.3 6 16.2 (3) 39.3 10

[67] 5.7 6 4.5 (3) [67] 35.8 6 4.3 (4)

[175] .2.5 (3)b [175] 35.0 (3)b

[173] .13 (1) — — — —

39 G93C [67] 10.1 6 6.2 (7) 12.1 27 [67] 47.4 6 12.4 (7) 45.8 30

[175] .6.7 (3)b [175] 41.5 (3)b

[180] 12.8 6 17 (20) [180] 45.9 6 10.6 (20)

40 G93R [188] 5.3 6 4.57 (4) 5.3 4 [188] 35.0 6 5.0 (4) 35.0 4

41 G93S [202] 8.5 6 1.5 (2)a 8.0 11 [202] 49.5 6 16.5 (2) 51.6 15

[203] 6.9 6 2.0 (7) [203] 51.9 6 14.9 (13)

[203] .11.5 6 3.5 (2) — — — —

[203] .5.3 6 2.1 (4) — — — —

42 G93V [204] 6.0 6 1 (2) 6.0 2 [204] 46.0 (3) 46.0 3

43 E100G [67] 4.0 6 2.3 (22) 4.7 50 [67] 46.9 6 12.0 (26) 47.3 54

[67] 5.2 6 0.4 (2) [67] 47.5 6 1.5 (2)

[158] 5.1 6 3.3 (23) [158] 48.6 6 12.7 (23)

[205] 3.3 (1) [205] 36 (1)

[188] 8.0 (1) [188] 44.0 6 8.5 (2)

[188] .6 (1) — — — —

44 D101N [206] 2.4 6 0.9 (12) 2.3 17 [206] 40.0 6 10.2 (12) 40.1 17

[207] 2.2 6 0.4 (5) [207] 40.4 6 10.2 (5)
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Table 6. Continued.

Entries Mutation Reference Duration 6 SD in

Years (number

of patients)

Average

Duration

Number of

Patients

Reference Onset 6 SD in

Years (number

of patients)

Average

Onset

Number of

Patients

45 D101G [208] 1.4 (2) 1.9 3 [188] 38 (1) 38 1

[188] 3.0 (1) [188] 38 (1)

46 D101H [209] 1.2 6 0.8 (2) 1.2 2 [209] 52 (1) 52 1

47 D101Y [210] 0.9 (1) 0.9 1 [210] 57 (1) 57 1

48 I104F [211] 21.3 6 11.8 (3) 21.3 3 [211] 33.0 6 20.7 (4) 33.0 4

49 S105L [212] 3.2 6 1.6 (3) 3.5 7 [212] 52.0 6 14.5 (4) 48.7 8

[212] .2 (1) [178] 42.4 (3)b

[178] 3.2 (3)b [156] 54 (1)

[156] 5.0 (1) — — — —

50 L106V [67] 2.3 6 1.3 (4) 1.9 6 [67] 35.5 6 7.2 (4) 34.3 7

[158] 1.2 6 0.1 (2) [67] 40 (1)

— — — — [158] 29.0 6 1.4 (2)

51 G108V [213] 4.0 6 1 (2) 4.0 2 [213] 56.7 6 13.3 (3) 56.7 3

52 I112T [67] 0.9 6 0.1 (2) 0.9 2 [67] 44.0 6 7.1 (2) 44.0 2

53 I112M [179] 2.8 (1–4.5) (6) 3.0 9 [179] 50.8 (37–66) (8) 50.7 11

[178] 3.4 (3)b [178] 50.6 (3)b

54 I113F [156] . 6(1) . 6 0 [156] 68 (1) 68 1

55 I113T [67] 3.5 6 2.8 (7) 4.3 38 [67] 58.9 6 12.6 (7) 56.3 43

[67] 2–20 (3) [67] 47.0 6 1 (3)

[158] 4.2 6 2.5 (9) [67] 42 (1)

[214] 3.0 (1) [158] 57.8 6 15.1 (9)

[215] 4.7 6 3.3 (2)a [214] 63 (1)

[156] 1.6 (1) [215] 58.0 6 10 (2)

[216] 1.6 610 (4) [156] 63 (1)

[188] 5.0 6 7.5 (6) [216] 61.2 6 12.9 (5)

[217] 1.1 (1) [218] 42 (1)

[165] 3.0 6 1.7 (3) [188] 51.2 6 9.3 (6)

[165] .9.3 6 0.8 (2) [217] 64 (1)

— — — — [165] 57.5 6 13.5 (6)

56 G114A [156] 2.4 (1) 2.7 2 [156] 38 (1) 37.5 2

[165] 3.0 (1) [165] 37 (1)

57 R115G [156] .1.8 (1) 2.5 2 [156] 66 (1) 60.0 3

[219] 2.5 6 0.7 (2) [219] 57.0 6 12.7 (2)

58 D124V [204] .2 (1) . 2 0 [204] 42 (1) 42 1

59 D125H [220] 1.67 (1) 1.8 2 [220] 69 (1) 65.0 3

[188] 2.0 (1) [188] 63.0 6 9 (2)

60 L126S [221] 7.5 6 5 (4) 8.0 5 [221] 52.0 6 18.8 (4) 52.1 7

[222] .10 (1) [222] 47.0 6 5 (2)

[222] .5 (1) [156] 63 (1)

[156] .3 (1) — — — —

61 S134N [223] .2 (1) 1.2 3 [223] 63 (1) 51.3 3

[156] 0.8 (2) [156] 45.5 6 6.5 (2)

62 N139H [224] 3.4 6 0.7 (3) 3.0 6 [224] 58.0 6 2.6 (3) 58.2 6

[178] 2.5 (3)b [178] 58.3 (3)b

63 A140G [225] 10.0 (1) 10.0 1 [225] 62.0 6 10 (2) 62.0 2

[225] .2 (1) [225] 62.0 6 10 (2)

64 G141E [209] 3.5 6 0.5 (2) 3.5 2 [209] 43 (1) 43 1

[209] .3 (1) [209] 43 (1)

65 L144F [226] 4.9 6 2.0 (6) 11.8 15 [226] 57.3 6 8.9 (9) 54.6 22

[158] 11.0 6 2.6 (3) [158] 48.3 6 5.7 (3)

[227] 20.4 6 16.3 (5) [172] 72 (1)

[226] .13 (1) [227] 50.7 (7)

[156] .2 6 1 (2) [156] 56.5 6 14.5 (2)

[172] .2 (1) — — — —

[226] .2.5 6 1.5 (2) — — — —

[227] .2 6 0 (2) — — — —

66 L144S [67] 12.3 6 3.7 (2) 12.3 2 [67] 42.5 6 10.6 (2) 42.5 2

67 A145T [67] 1.6 6 0.5 (2) 1.6 2 [67] 48.0 6 2.8 (2) 48.0 2

68 C146R [228] 2.0 (1) 2.8 2 [228] 55.5 6 5.5 (2) 55.5 2

[228] .3.5 (1) — — — —

69 V148G [67] 2.3 6 2.2 (4) 2.1 11 [67] 43.5 6 8.5 (4) 43.1 11

[158] 2.0 6 0.9 (7) [158] 42.8 6 10.5 (7)

70 V148I [67] 1.5 (2) 1.7 5 [211] 28.0 6 3.8 (4) 28.0 4

[211] 1.8 6 0.5 (3) — — — —

71 I149T [229] 2.5 6 3.9 (14)a 2.7 15 [229] 38.2 6 8.4 (13) 37.6 14

[188] .6 (1) [188] 30 (1)

72 I151T [230] 20.0 (1) 20.0 1 [230] 48.5 6 0.5 (2) 48.5 2
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information was not described in some publications, one or two
publications’ survival data might bias the analysis result. To
eliminate this chance of bias, the rule of thumb was modified as
requiring at least five independent descriptions of noncensored
patients’ survival data (a reported average without individual
patient’s survival information was treated as one description). The
statistical analysis was performed with the software SPSS 15.0 (SPSS,
Inc.).

Aggregation propensity calculated from the Chiti–Dobson equa-
tion. The hydrophobicity, b-sheet propensity, and charge values for
the amino acid residues were obtained from the Supplementary
Information of [69]. While applying the AGADIR algorithm at http://
www.embl-heidelberg.de/Services/serrano/agadir/agadir-start.html to
obtain a-helical propensities for wild-type (wt) and mutant (mut)
Pa

wt and Pa
mut values for DDGcoil-a calculation for human SOD1, the

parameters of pH 7, 310 K, and ionic strength of 0.100 were used. For
the protein human SOD1, the N terminus is acetylated, and the C
terminus is free in vivo. After the prediction at the residue level was
output, the value in the column ‘‘Hel’’ at a specific residue was taken
as Pa. If a value of 0 for Pa was obtained, then 0.1 was added to both
Pa

wt and Pa
mut values for the correct mathematical meaning of

ln(Pa
wt/Pa

mut) (F. Chiti, personal communication). The Chiti–Dobson
equation terms, Dhydrophobicity, Dcharge, DDGcoil-a, and DDGb-coil,
were calculated based on equations illustrated in the legend of Table
1 of [69]. The ln(mmut/mwt) values were calculated based on Equation 1
from [69] and normalized from 0 to 1 using the equation normalized
aggregation propensity ¼ (aggregation propensity before normal-
ization – MINap)/(MAXap – MINap), with MINap and MAXap as the
minimum and maximum aggregation propensities of fALS-causing
mutations with known thermodynamic stabilities, respectively, so that
the larger normalized values correlate to larger aggregation
propensities.

Normalized DDG. The free energy change difference (DDG) and
melting temperature difference (DTm) of unfolding a pathogenic
variant and wild-type protein are parameters used to characterize the
thermodynamic stability of a protein. DDG values were taken from
Table 2 of [15]. To graph with other protein stability data, the DDG
values were normalized by applying the equation normalized DDG ¼
(DDG values before normalization – MINDDG)/(MAXDDG – MINDDG),
with MINDDG and MAXDDG as the minimum and maximum values of
DDG in this dataset, respectively.

Normalized DTm. DTm values were taken from Table 1 of [86],
Table 1 of [60], Table 2 of [87], Table 3 of [88], and Table II of [31].
DTm values from [60,87,88] were averaged for each mutation. Those
results then were averaged with the DTm values from [31,86] to
determine the DTm values for given mutations. The normalized DTm
values were obtained by applying the equation normalized DTm ¼
(average DTm values before normalization – MINDTm)/(MAXDTm –
MINDTm), with MINDTm and MAXDTm as the minimum and maximum
values of averaged DTm values in this dataset, respectively.

Thermodynamic instability of SOD1 variants. The instability values
for SOD1 variants were obtained from the equation normalized
instability¼ 1 – average of normalized DDG and normalized DTm for
each mutation, so instability values are simply (1 – normalized DDG or
DTm), and larger values correlate to less stable variants.

The normalized aggregation propensity and instability for each
variant were summed and normalized to the range from 0 to 1 to
consider the two factors together.

Supporting Information

Alternative Language Abstract S1. Translation of the Abstract into
Chinese by Qi Wang

Found at doi:10.1371/journal.pbio.0060170.sd001 (62 KB PDF).

Figure S1. Lack of Correlation between SOD1 Aggregation Propen-
sity and SOD1 Instability

The same dataset for fALS-associated SOD1 mutations shown in
Figures 3 and 4 were considered. The predicted aggregation
propensities and instabilities from 28 different fALS-causing SOD1
mutations were plotted using the software SigmaPlot 9.0 (Systat
Software, Inc.).

Found at doi:10.1371/journal.pbio.0060170.sg001 (213 KB AI).

Figure S2. Little or No Correlation between SOD1 Aggregation
Propensity, SOD1 Instability, or the Sum of Aggregation Propensity
and Instability with fALS Patients’ Age of Onset

The relationship between SOD1 aggregation propensity (A, D),
instability (B, E), or sum of aggregation propensity and instability (C,
F) with fALS patients’ age of onset are presented. The linear
regressions presented in (A–C) were weighted by the number of
patients for each mutation using SPSS version 15.0 (SPSS, Inc.). The
correlation between the size of each data point and the number of
patients for (A-C) is shown as an inset in (C). The linear regressions
presented in (D–F) were treated equally regardless of the number of
patients for each mutation (unweighted) using the software
SigmaPlot 9.0 (Systat Software, Inc.). The age of onset data presented
in these six graphs are from 649 patients with 29 different fALS-
causing SOD1 mutations with reported stability values. Aggregation
propensity, instability, and sum of aggregation propensity and
instability were obtained as described in the Materials and Methods
section. Aggregation propensity, instability, or sum of aggregation
propensity and instability has little or no correlation with patients’
age of onset.

Found at doi:10.1371/journal.pbio.0060170.sg002 (261 KB AI).
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