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Abstract
Background: High density oligonucleotide tiling arrays are an effective and powerful platform for
conducting unbiased genome-wide studies. The ab initio probe selection method employed in tiling
arrays is unbiased, and thus ensures consistent sampling across coding and non-coding regions of
the genome. These arrays are being increasingly used to study the associated processes of
transcription, transcription factor binding, chromatin structure and their association. Studies of
differential expression and/or regulation provide critical insight into the mechanics of transcription
and regulation that occurs during the developmental program of a cell. The time-course
experiment, which comprises an in-vivo system and the proposed analyses, is used to determine if
annotated and un-annotated portions of genome manifest coordinated differential response to the
induced developmental program.

Results: We have proposed a novel approach, based on a piece-wise function – to analyze
genome-wide differential response. This enables segmentation of the response based on protein-
coding and non-coding regions; for genes the methodology also partitions differential response with
a 5' versus 3' versus intra-genic bias.

Conclusion: The algorithm built upon the framework of Significance Analysis of Microarrays, uses
a generalized logic to define regions/patterns of coordinated differential change. By not adhering to
the gene-centric paradigm, discordant differential expression patterns between exons and introns
have been identified at a FDR of less than 12 percent. A co-localization of differential binding
between RNA Polymerase II and tetra-acetylated histone has been quantified at a p-value < 0.003;
it is most significant at the 5' end of genes, at a p-value < 10-13. The prototype R code has been
made available as supplementary material [see Additional file 1].

Background
Use of DNA microarrays has become commonplace for
monitoring the expression levels of thousands of genes
simultaneously [1]. The gene expression signature repre-

sents the steady state level of RNA in cells and can be uti-
lized to detect cellular response to an exogenous
stimulation originating from a treatment, disease or other
sources [2-4]. In understanding the dynamics of transcrip-
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tional regulation it is imperative to both identify and
quantify the response of the loci manifesting differential
changes in a comprehensive, genome-wide manner. This
requires an exhaustive probing of both the protein coding
and non-coding regions of the genome. Tiling array tech-
nology has facilitated unbiased genome-wide interroga-
tion. The subsequent challenge is one of bioinformatics,
requiring statistical interpretation of voluminous data
with potentially low signal to noise ratio (SNR) to detect,
characterize and quantify differential regulation. In
response to this challenge we have proposed generalized
SAM (gSAM), an extension to the methodology which
forms the basis of Significance Analysis of Microarrays
(SAM) [5].

The analytical paradigm
Classically, a 2x fold change (FC) in gene expression level
has been a surrogate for establishing differential change.
Regions of the genome with reduced coding potential
might not exhibit such FCs. In fact the stringency of the 2x
requirement can introduce a strong false negative bias. A
more direct approach is to determine if the FCs are signif-
icantly different from zero. Hence the null hypothesis
(H0) for differential expression/modification is that there
is no change in the mean response (μ) of a locus due to a
change in its condition from A to B (Eqn. 1). The p-value
is simply the probability that FC values drawn from such
a distribution are reproducible. Therefore, a low p-value
(<0.05) implies that is it highly unlikely that the meas-
ured differential response is a consequence of random
chance alone. The Student t-test is a classical parametric
test used to assign the significance levels (Eqn. 2).

There are obvious deficiencies in this analytical paradigm;
the primary one arises from the fact that microarray data
follows a non-normal distribution [6]. It can be argued
that the t-test results remain asymptotically correct for any
distribution but only if the number of replicates tend to
infinity. This makes an experiment logistically difficult
and cost-prohibitive. Thus, in a global sense, due to the
inaccurate definition of H0 the classical approach does not

verify if the genes are truly differentially regulated or are
false positives of a stochastic origin.

Multiple hypothesis testing is the other element that
needs to be addressed. Table 1 recounts its fundamental
principles and the error rates as summarized in Benjamini
and Hochberg [7]; the following summary of error rates
utilizes the symbols defined in the table. Fundamentally,
there are two types of error rates [7-11]: type I or false pos-
itive (M0-F) and type II or false negative (T); the former is
associated with rejection of a true null hypothesis and the
latter with the failure to reject the false null hypothesis.
For microarray experiments, control of the type I error
under any combination of the true and false hypotheses is
critical [11]. Briefly, the type I error rates are:

i) Per family error rate (PFER): refers to the expected
number of false positives (Eqn. 3);

ii) Per comparison error rate (PCER): refers to the expected
value of the number of false positives compared to the
number of hypotheses (Eqn. 4);

iii) Family-wise error rate (FWER): refers to the probability
of at least one false positive [7,12-14] (Eqn. 5);

iv) False Discovery Rate (FDR): refers to the expected pro-
portion of false positives among rejected hypotheses
[7,12,15,16] (Eqn. 6);

PFER = E(M0 - F) (3)

FWER = p((M0 - F) > 0) (5)

In general, the procedures controlling the FWER are more
conservative than the ones controlling the PCER or FDR.
Hence the classical Bonferroni correction (FWER) is much
too stringent for array-based differential regulation stud-
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Table 1: Multiple hypothesis testing matrix

Hypotheses: Accepted Hypotheses: Rejected Total

Null: True
(Null: no differential change)

F M0 – F M0

Alternative: True Or Null: False T M1 – T M1
Total S M – S M
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ies, especially encompassing partially coding to non-cod-
ing regions. The SAM algorithm, built on a re-sampling
framework, virtually, increases the number of replicates,
via random permutation of the sample labels; this formal-
izes a refinement to the multiple-testing corrected p-value
and false positive rate (FPR) and is referred to as the q-
value and FDR [5,17-19]. Fundamentally, the test statistic
in SAM (Eqn. 7) is a t-statistic variant where a constant (s0)
is added to the variance term in the denominator. s0, com-
puted empirically controls for a reduction in SNR with
decreasing differential change. Traditionally, the d-statis-
tic is defined as a function of a gene under two conditions
A and B, but in gSAM this has been generalized to a
genomic interval, I.

Basics of gSAM
The purpose of gSAM is to transform genomic intervals of
enrichment originating from changes in RNA levels, bind-
ing/occupancy of transcriptional regulators, modified his-
tones, levels of chromatin modification, among others, to
a temporal/spatial differential signature for these ele-
ments. Unlike gene-centric expression arrays which have a
3' end bias or exon arrays which specifically interrogate
the exons, in tiling arrays multiple probes interrogate a
single locus in an unbiased manner. Here a locus can
encompass multiple transcripts and/or interaction sites of
multiple regulatory elements and can include exons,
introns and un-translated regions (UTRs). Therefore,
instead of computing a gene-level (with 3' bias) differen-
tial measure, in gSAM the differential measurement fol-
lows a piece-wise response model. This is described in
Eqn. 8 where ig, ex, in, UTR correspond to the inter-genic,
exon, intron and un-translated region respectively. Under
this model, the time-series, for example, is subdivided
into a number of logical segments – in this case the under-
lying logic is governed by enrichment – and differential
change is summarized over each segment. Fundamentally,
the definition of the segments is completely independent
of annotations. This enables extension of the methodol-
ogy to beyond the framework of annotations and hence to
those genomes other than human where the annotation is
not as complete. However, the availability of annotation
facilitates visualization of the outcome from a protein-
coding perspective.

The piece-wise system model in gSAM supports two inher-
ent characteristics of transcriptome data – heterogeneity
and superposition of states. This is demonstrated in Eqn.
9 where, for example, the inter-genic component is a
superposition of states with n variable enrichment pat-
terns. According to current knowledge, SAM assumes a
homogenous and static one-gene, one-locus model; the

implicit assumption being that differential response is not
a complex, superposition of responses but is a homoge-
nous/uniform response across all nucleotides comprising
a gene. Consideration of a gene as an atomic entity does
not enable discrimination of the differential response of
alternative isoforms in a developmental transcriptome or
even exons versus introns versus UTRs for a transcript. The
system definition which is the primary point of differenti-
ation between SAM and gSAM consequently impacts the
interpretation of the differential changes at a cellular level.
The following sections elucidate the rationale underlying
gSAM and discuss its impact on transcriptome-level differ-
ential data analysis.

f(Δ)A,B → (f(ig) + f(ex) + f(in) + f(UTR))A,B (8)

f(ig) → χ(ig)1 + ... + χ(ig)n (9)

Methods
Time course experimental design
The development and application of gSAM are presented
here in the context of a differential time-course study con-
ducted in HL60 cell-line, performed as part of the Ency-
clopedia of DNA elements (ENCODE) consortium project
[20-22]. The cells are stimulated by all-trans retinoic acid
(ATRA) for distinct time periods – 0, 2, 8 and 32 hours –
to induce differentiation along the granulocytic lineage.
The biological motivation of the experiments is to study
the associated processes of RNA transcription, the binding
of transcriptional regulators, and to identify regions of
histone modification. The differential RNA transcription
[23-25] comprises a single sample experiment where the
level of RNA is monitored with respect to a baseline as
quantified via negative control probes based on bacterial
sequences. The differential modification study involves a
two-sample chromatin immunoprecipitation on array/
chip (ChIP on chip) experiment [26-34] comprising a con-
trol and treatment. The control is amplified genomic DNA
(without immunoprecipitation), and the treatment is the
chromatin immunoprecipitated sample. The assay proto-
col used in these experiments is not strand specific; this is
a method of sample preparation that does not preserve
information about the strand of the nucleic acids, hence it
cannot be discerned conclusively as to which strand the
observed effects originate from. An example of such
method is conversion of RNA into double-stranded cDNA
(used in these experiments) for measuring RNA abun-
dance. Details regarding the specific assays have been
described in the literature [24,34]. The example biological
datasets used to demonstrate the application of gSAM
include RNA (whole-cell poly A+), a trio of modified his-
tones: H4Kac4-Histone H4 tetra-acetylated lysine
(HisH4), H3K9K14ac2 -Histone H3 K9 K14 di-acetylated
(H3K9K14D), H3K27me3-Histone H3 tri-methylated
lysine 27(H3K27T) and RNA Polymerase II-8WG16 anti-
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body against pre-initiation complex form (RNA PolII). For
each regulation factor investigated, the experiment com-
prises three to five biological replicates, per time-point,
with duplicate hybridizations performed for each.

Tiling arrays – the Affymetrix platform
These arrays employ short oligonucleotide probe-pairs
(pp), of length 25 bases (25 mers), to interrogate a speci-
fied genomic region [35-37]. Each pp includes a perfect
match (PM) and a mismatch (MM). The MM sequence is
identical to its corresponding PM sequence, except for the
central (13th) base. The objective of pairing a PM with a
MM is to estimate the degree of cross-hybridization. A
variety of tiling arrays with different probe and feature res-
olution are used for genome-wide transcription regula-
tion studies [38-40]. The probe resolution defines the
center to center distance between two adjacent probes, in
genomic space. A 22 base-pair (bp) probe resolution for
25 mers implies a 3 bp overlap (on average) between 2
adjacent probes. Currently, the probe resolution of the
arrays encompasses a range from 5 bp-35 bp with probe
synthesis areas of 5μ and 10μ.

Application of gSAM for detection of differential change
gSAM operates on enrichment site-level data and esti-
mates the temporal differential regulation signature. The
H0 in this study is that there is no difference in RNA levels,
histone modification or binding of regulators due to stim-
ulation by ATRA over a designated time-course. Although
the methodology encompasses both PM and MM probes,
it can be extended to PM only arrays or exclude MM
probes. The following sections detail the algorithmic
steps:

I. Preliminary data analysis

II. Definition of the pair-wise system

III. Modeling the input to gSAM

IV. Probe-level signal intensity/enrichment summariza-
tion

V. Summarization of differential response

I. Preliminary data analysis
This section summarizes the steps for the generation of
sites corresponding to RNA or modified histone and/or
RNA PolII binding.

i) Probe-level normalization: This includes median scal-
ing and quantile normalization [41,42] of all PM and MM
probes. The former is a linear operation, where fluores-
cence data from the arrays are scaled relative to the

median intensity distributions of all arrays. The quantile
normalization accounts for linear and non-linear effects.

ii) RNA profiling experiments: The pp signal intensity (SI)
distribution is computed based on PM-MM intensity;
regions of detected RNA referred to as transfrags (tran-
scribed fragments) are then estimated against a baseline
transcription signal derived from both positive and nega-
tive bacterial controls on the same microarray. For the
data presented here, the intensity threshold for transcrip-
tionally positive probes is set based on a 5 percent FPR
[23-25].

iii) ChIP on chip experiments: The probe-level signal
enrichment (SE) profiles are generated based on a com-
parison of the signal intensity of the treatment and con-
trol probe pairs (Eqn. 10). Putative transcriptional
regulatory elements (TREs) are generated per factor on a
per time point basis using the Rank Statistics based site
prediction algorithm [43]. In general, the enriched frag-
ments exhibit the following types of bias [31]:

a) Canonical regulatory sites have a 5'end bias;

b) Non-canonical sites are distal to the annotated
5'ends[22,31,44];

II. Definition of the pair-wise system
This section provides a rationale for the choice of pair-
wise conditions at which the cellular responses are pro-
filed and analyzed.

Cellular response to an exogenous stimulus is not neces-
sarily synchronized; however the reaction is on a very
short time-scale – essentially continuous. In capturing
events over time-points separated on the order of hours, a
discrete time-differential response is generated by sam-
pling a continuous time-signal. The sampling process is
analogous to an accumulator system[45] where the output
state of the system (y) at any given time n is essentially a
summation/accumulation of the response of all its states
(x) up to the present state x[n] (Eqn. 11). Although the
superimposed cellular states measured by the experiment
cannot be de-convoluted, fundamentally because of the
mentioned system characteristic, there is information loss
when the states are profiled at large time intervals. Tempo-
ral resolution therefore is a critical component of the
experimental design. The optimal resolution varies for dif-
ferent responding functional elements, conditions of cell
growth and cell/tissue/organism type, with a likelihood of
non-linear increments in the time-series. In this particular
study, the choice of 0-2-8-32 hours represents the undif-
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PM MMpp
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ferentiated state, an early time point (2 hours), a midway
time point (8 hours) and a moderately late time point (32
hours) based on the previously published profiles of
HL60 differentiation [46,47].

The associated property that needs to be appreciated is
that the differential response follows a cascade connection
model [45]. Here the un-stimulated(baseline) state at the
0 hour serves as the original input to the system; the out-
put(response) at the 2 hour serves as the input to the 8
hour with the output of the 32 hour (latest) being the
overall output. Thus any measurement performed at any
state other than the baseline has a memory of the system
even prior to its current state.

These two properties, motivates the quantification of the
temporal differential response as a pairwise time-forward
system encompassing very specific reference and target
time-points; Eqn. 12 generalizes this concept. A time-for-
ward analysis implies that samples obtained at (T-n)th and
Tth(where n<T) time-points comprise the reference and
target respectively. Here the reference precedes the target
time-point, and may or may not represent the un-stimu-
lated condition. While measurement of a response
between two time-points might seem trivial, given the
underlying accumulator and cascade connection proper-
ties, the choice of these time-points is critical; a pairwise
combination at random, without appropriate de-convolu-
tion will result in erroneous interpretation of the underly-
ing biology. Measurement of first order effects, which is
the difference between two contiguous time-points pro-
filed, is simpler to interpret than higher order effects,
which include differential profiling across non-contigu-
ous time-points potentially involving non-linear effects.

For the described time-series experiment, a measurement
of an increased differential response from 0 to 8 hours,
without knowledge of the 2 hour time-point, does not
uniquely characterize the underlying differential mecha-
nism. Any of the following are equally probable for a
given locus:

i) Between 0 and 8 hours, there is a steady increase in
response to ATRA stimulus;

ii) There is an initial decrease in the response between 0
and 2 hours, with a subsequent increase between 2 and 8
hours;

iii) There is a rapid increase in response between 0 and 2
hours with a significantly slower decrease in response
between 2 and 8 hours;

Quantification of the first order response slopes signifi-
cantly reduces the complexity of interpretation. All results
presented here comprise the first order differential analy-
sis. Although, gSAM is presented in a temporal context, it
is equally applicable in a spatial one; this facilitates quan-
tification of differential response across tissue-types
derived from normal (reference) and diseased (target)
sites, for example.

III. Modeling the input to gSAM
This section summarizes the logical segmentation of the
enrichment regions which constitutes the input model for
gSAM.

Based on published research [23-25,48-50], presumed
non-coding transcripts of yet unknown functionality are
widespread in the genome. Thus the analysis of differen-
tial response should not be biased toward protein-coding
genes but be based on a generalized framework. The gen-
eralization in gSAM arises primarily from the piece-wise
modeling of the input, which simultaneously accommo-
dates for responses from genic and inter-genic regions.

The gSAM piece-wise model introduced in Eqn. 8–9 is
elaborated in Eqn. 13–14. Fragmented enrichment sites –
histone/RNA PolII binding sites, transfrags of canonical
and/or non-canonical origin, emanating from the coding
and/or non-coding regions of the genome, independent
of annotation, serve as the input. Eqn. 13 defines the
probe-specific input, where the atomic entity is a probe-
pair; the differential response is estimated individually for
each pp encompassing an enrichment site (ε).

Input = {pp | pp ∈ ε} (13)

Eqn. 14 defines a probe-set specific input; here, a probe-set
(α/β), which is a cluster of probe-pairs, interrogates a
sequence of nucleotides spanning ε. This suggests a heter-
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ogeneous model which at the most generalized level is a
superposition of genic (g) and inter-genic (ig) states. The
genic state can be further partitioned, based on annota-
tions, into elements such as exons, introns and UTRs.
Analysis can be performed independently on each ele-
ment or on the cumulative elements. The flexibility of
selective inclusion of genic elements enhances the locali-
zation and specificity of estimation of gene-expression
effects in various pathways. For example, this enables the
localization of activity in regulatory elements with a
3'UTR bias [51]. A response aggregated over the entirety of
the genic components would not elucidate this. The inter-
genic state is a mixture model as well, encompassing vari-
ants in terms of functional and sequence complexity. It
can be partitioned based on regulatory potential, for
example presence of CpG islands associated with gene
expression, regions of sequence conservation, or sequence
motifs for transcription factor(s). The framework to selec-
tively integrate elements in the model, solely driven by co-
regulation effects, highlights the adaptability and power
of gSAM.

IV. Probe-level signal intensity/enrichment summarization
This section details the probe-specific summarization of
signal intensity/enrichment, for pair-wise sample (s).

Subsequent to the setup of the gSAM model, a probe-spe-
cific or probe-set specific log transformed SI or SE is com-
puted per replicate(r ∈ s) and time-point (t ∈ s). This
constitutes the input value in gSAM. For a probe-set based
system, the transfrags/binding sites are used to define the
domain over which the intensity/enrichment summary is
computed. Frequently, the enrichment sites as determined
in the reference and target pairs have non-identical spatial
bounds. This might be because of biological reasons: the
same locus might not be enriched (expressed) at two dif-
ferent time-points; alternatively, this might be due to edge
artifacts in the definition of enrichment sites [43], or a
combination of both. This incongruity of bounds requires
a formal definition of domains based on the segmenta-
tion of enriched fragments that are unique to, versus com-
mon in both the reference and target samples. Once the
domains are defined for a pair-wise sample, they are held
constant across all replicates in the relevant reference and
target. The following describes the definition of domains
and estimation of domain-specific summaries:

i) The first step involves outlier removal. The low com-
plexity filter (LCF) estimates the median absolute devia-
tion (MAD) of the SE/SI of all pp belonging to a fragment.
All fragments with a MAD value of zero are assumed to
represent signal from low complexity repeat probes and
are therefore eliminated. It is possible that this step intro-
duces a false negative bias, by eliminating enriched frag-
ments composed of a shorter run of probes; this is not

detrimental, since the statistical confidence obtained from
less than three contiguous probes(66 nucleotides) – is low
(data not shown). Independent of LCF enriched frag-
ments with a minimum of three probe-sets is retained.
Since these filters address a tiling design and/or sequence
specific properties, their effect is assumed to be equivalent
for all replicates and is therefore assessed based on a single
replicate. Additionally, the MAD serves as a metric of co-
regulation. Based on the cumulative MAD distribution, as
estimated across all enriched fragments, a user defined
threshold can be determined and only fragments with less
than the MAD cutoff can be retained for analysis. This fil-
ter is replicate quality dependent and should be used with
caution, since it can introduce incongruity of bounds.

ii) In this step, the enriched fragments are ordered and
labeled – independently in the reference and target –
based on their genomic location. It is probable that the
bounds of a single enrichment site in the reference might
overlap with multiple sites in the target (or vice-versa). In
this case, the single reference site (R) has n associated tar-
get labels, where n corresponds to the number of distinct
target sites (T1...Tn) it overlaps with. This labeling scheme
identifies the membership of fragments and their relation-
ship across the reference and target.

iii) This step entails identification of genomic segments
with overlapping (including partial overlaps) spatial
bounds of enrichment between the reference and target. A
union of the bounds of the overlapping regions is created.
This is referred to as the overlapping enrichment domain
(OED) distribution for a given sample(s) (Eqn. 15). The
OED therefore comprises a mixture of enriched segments:
a common enrichment fraction between reference and tar-
get, and a unique fraction with evidence of enrichment in
either the reference or target.

iv) In a given OED, the probes interrogating the intersect-
ing and unique enrichment fractions comprise the Frag-
mentDomainI (FDI) and FragmentDomainU (FDU),
respectively (Eqn. 17–18).

v) This step localizes genomic segments with non-overlap-
ping bounds of enrichment between the reference and tar-
get. By definition, these segments have no enriched
probes in their counterpart samples and these are referred
to as null probes. This is referred to as the non-overlapping
enrichment domain (NOED) (Eqn. 18).

vi) Subsequent to the segmentation, there exist three dis-
tinct types of enrichment domains: FDI, FDU and NOED.
Elements of each domain are denoted by start and stop
coordinates to specify their bounds (Eqn. 15) and their
reference and target specific labels. For a pair-wise analysis
these domains are uniquely labeled and ordered based on
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their genomic location. A comparison of the labels across
the domains – FDI and FDU – potentially identifies differ-
ential response from alternative isoforms and/or provides
a tool to isolate differential signal from selective genic ele-
ments, for example UTRs. Since the enrichment sites are
generated in the first-place via a multi-replicate analysis,
the spatial bounds of the above domains are held con-
stant across all replicates within a given reference or target.

OEDs = (EnrichmentR ∫ EnrichmentT)s 

where EnrichmentR ∩ EnrichmentT > 0 (15)

FDIs = (EnrichmentR � EnrichmentT)s where FDIs ⊂ OEDs

(16)

FDUs = OEDs - FDIs (17)

NOEDs = (EnrichmentR ∩ EnrichmentT = Φ)s where Φ : nullset
(18)

vii) RNA transcription: The gSAM test-statistic operates on
the log transformed probe-pair signal intensity (SIpp). For
a domain-specific input, a trimmed mean signal inten-
sity(TRSIdrt) estimate (Eqn. 19) is generated for each of the
domain elements on a per replicate(r), per time-point (t)
basis. This estimate considers all probes belonging to an
element in a given domain and uses an optimal trim fac-
tor of κ = 0.2.

viii) ChIP on chip: gSAM operates on the winsorized
mean (robust estimator) (Eqn. 20) of the SE of all probe-
pairs per element per labeled domain; these estimates are
also computed per replicate and per time-point. In Eqn.
20, n refers to the number of probe-pairs in an element of
a given domain and k refers to the number of smallest and
largest observations that are replaced with (k+1)th smallest
and largest observations respectively.

ix) The null probes in NOED are not set to zero, but their
true signal intensities considered. This obviates the miss-
ing data problem in gSAM.

TRSIdrt = TrimmedMean((log(SI1...SIpp)),0.2)drt

(19)

Fig. 1(A–B) presents the schematics of input bounds to
gSAM. In this example, 0 and 2 hours constitute the refer-

ence and target, respectively. In panel A the probes and
enrichment regions are represented by red and light blue
bars, respectively; panel B demonstrates the domains
defined in Eqn. 15–18; FDU: 1, 3, 5, 7; FDI: 2, 6, NOED:
4. Fig. 1C applies the domain definition to biological
data, where the top five SE graphs (blue) are representa-
tive of five replicates for the reference and the bottom five
graphs (yellow) are representative of the target; all graphs
have been scaled identically. Additionally, there are three
levels of annotation between the reference and target
graphs; the annotations in blue and yellow are represent-
ative of enrichment fragments unique to the reference and
target, respectively; the annotation in red is representative
of the intersecting enrichment fragments. Peaks represent-
ative of the binding of putative TREs are evident upstream
of and at the 5'end of the HIC gene as well as in the first
few exons and in the introns. This data is visualized in the
Integrated Genome Browser (IGB) [52].

The sample-size can be improved by considering probe-
specific as opposed to domain-specific input values. This
comes at the cost of computational time and potential
increase in noise; it requires a post-differential analysis
data clustering, followed by the application of a more
conservative FDR-based significance threshold for down-
stream significance analysis. Alternatively, gaussian
smoothing of the probe-level data can also enhance the
SNR. Finally, it has been validated that the differential
transcription/regulation outcome under the probe and
domain-specific inputs are consistent with one another
(R2~0.91). All data presented here, unless specifically
noted is generated using domain-specific input. For either
types of input, no probe-specific correction is required,
since in a pair-wise analysis, signal from identical probes
are summarized for both the reference and target samples.

V. Summarization of differential response
This section summarizes the differential response of a
pair-wise system. This is encapsulated by the four ele-
ments in Eqn. 21:

Γ = (d - statistic,δ,FDR,FC) (21)

i) D-statistic: A variant on the t-statistic, it is a standard-
ized differential change index. Fig. 2A presents a compar-
ison of the t-statistic (green) and d-statistic (black)
distributions. The additional variance term in the latter is
responsible for the shrinkage in the tails, consequently
boosting the peak centered about zero. Use of the t-statis-
tic as an estimator of differential change potentially
increases the FPR; the d-statistic essentially controls it,
thereby optimizing the sensitivity and specificity for dif-
ferential detection. In the original SAM publication [5],
the core bootstrapping step to generate the null d-statistic
distribution is carried out across untreated controls and
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samples treated with ionizing radiation. For ChIP on chip
experiments, the labels on the treatment and control rep-
licates are shuffled across the time-pairs in a balanced
manner -with equal number of replicates and entries in
the reference and target time-pairs – to generate a null
(expected) distribution. For RNA transcription the signal

intensity across the time-points are permuted to generate
the null. Fig. 2B presents the observed (y-axis) versus
expected (x-axis) d-statistic distribution.

ii) δ: The direction of differential change, often referred to
as up or down regulation in the gene expression terminol-

(A-B) A schematic defining FragmentDomainI, FragmentDomainU and NOEDFigure 1
(A-B) A schematic defining FragmentDomainI, FragmentDomainU and NOED. In this example, 0 and 2 hours constitute the 
reference and target, respectively. In panel A the probes and the enrichment regions are represented in red and light blue 
respectively; in panel B, the enrichment fragments FragmentDomainU: 1, 3, 5, 7: FragmentDomainI:2, 6; NOED:4. (C): This is 
an IGB visualization of the fragmented enrichment domains as defined in the reference (blue) and target (yellow). The SE 
graphs represent biological data from 5 replicates each for reference and target. There are three levels of annotation between 
the reference and target graphs; the annotations in blue and yellow are representative of enrichment fragments unique to the 
reference and target, respectively; the annotation in red is representative of the intersecting enrichment fragments. Peaks rep-
resentative of the binding of putative regulatory elements are evident upstream of and at the 5'end of the HIC gene and in the 
first few exons and in the introns.
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ogy, is also referred to as positive/negative/null differen-
tial shift in gSAM.

iii) FDR: Significance of the differential change is quanti-
fied via the FDR or q-value [18,19]. Analogous to the p-
value, a measure of significance in terms of the FPR, the q-
value is a measure of significance in terms of the FDR. Q-
value is the minimal FDR at which a differential change is
deemed significant.

iv) FC: Microarray-based FC is a commonly used discrim-
inator for differential change. This essentially estimates
true biological change over background by comparing sig-
nal intensity/enrichment between the reference and target
pair.

Theoretically, any/combination of the output metrics (Γ)
can be used for the segmentation of significant versus
non-significant differential response. An early method
suggested by Tusher et al [5] is that of using a delta (±Δ)
envelope about a d-statistic of zero, to define a null
domain – such that regions above and below the positive
and negative Δ cutoff indicate up-regulation and down-
regulation, respectively. This is elucidated in Fig. 2B,
where the Δ envelope is shown in green. This is a symmet-
ric approach about the d-statistic but does not guarantee

symmetric FDR bounds for both up and down regulated
regions. Researchers [53] have discussed the dependence
of the outcome of SAM, specifically, the variation in the
list of significant genes, as a function of the initial thresh-
old. The Results discusses the inter-relationship amongst
the output metrics, and contrasts the biases introduced by
each in the context of transcriptome data.

Results
The results for the following are presented here: RNA tran-
scription, binding of RNA PolII, and modification of his-
tone factors: HisH4, H3K9K14D (both acetylated),
H3K27T (methylated). All samples are hybridized to
Affymetrix [20-22,37] ENCODE tiling arrays of 22 bp
(average) probe resolution and 10μ feature resolution.
The ENCODE array interrogates approximately 1 percent
of the human genome – a coverage of 15 Mb of the non-
repeat portions of the 30 Mb – and does not include
regions from chromosomes 3, 17 and Y. Prior to the dif-
ferential analysis, enriched elements: transfrags [23-25]
and putative TREs [43] are identified. The predictive algo-
rithm, gSAM is applied to enriched elements of inter-
genic, intronic and exonic origin, encompassing the
entirety of protein-coding and non-coding regions. The
output of gSAM is a ranked list of differentially changing
transfrags or TREs per pair-wise time-point.

(A) This represents the t-statistic (green) versus d-statistic (black) distribution; the shrinkage in the tails of the latter is due to the additional variance termFigure 2
(A) This represents the t-statistic (green) versus d-statistic (black) distribution; the shrinkage in the tails of the latter is due to 
the additional variance term. (B): This is a scatter-plot of the observed (y-axis) versus expected (x-axis) d-statistic distributions, 
where the open circles represent the data points. The delta (±Δ) envelope (green) defined about a d-statistic of zero, indicates 
a null domain – such that regions above and below the positive and negative Δ cutoff indicate up-regulation and down-regula-
tion, respectively.
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The following summarizes the results after application of
gSAM:

I. Segmentation metrics for estimation of differential
response;

II. Differential expression of annotated and un-annotated
transcribed RNA;

III. Differential regulation of putative TREs;

IV. Mono-phasic versus multi-phasic differential regula-
tion clusters;

V. Loci specific examples;

I. Segmentation metrics for estimation of differential 
response
This section elucidates the relationship of the segmenta-
tion metrics – FC, FDR/q-value and d-statistics.

Fig. 3A representing HisH4 differential data at the 0–2
hour interval, but generalizable to all samples, shows the
relationship of FDR, d-statistic and logarithmic fold
change distributions along the three axes. The data cor-
roborates the following:

i) There is a strong positive correlation between the com-
puted d-statistic and FC;

ii) The FDR(q-value) has an inverse relationship with the
absolute value of the d-statistic;

(A) Distribution of the FDR versus d-statistic versus log fold change as shown in the representative 0–2 hour HisH4 dataFigure 3
(A) Distribution of the FDR versus d-statistic versus log fold change as shown in the representative 0–2 hour HisH4 data. (B) 
0–2 hour HisH4 data, corroborates that no length based bias is introduced the estimation of the d-statistic and/or FDR.
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iii) The relationship between FDR and FC is nuanced. Loci
(blue oval), exhibiting down regulation (-) at 0.1 percent
FDR correspond to a minimum FC of 1.15; in contrast,
loci (red oval) exhibiting up-regulation(+) at 0.1 percent
FDR correspond to a minimum FC of 4.7. This highlights
instances where the arbitrary choice of the 2x FC thresh-
old can result in false positives as well as false negatives.

In general terms, the results underscore the importance of
the choice of segmentation metrics, since this affects the
gene-significance ranking.

Microarrays tend to compress the real FC; hence an
observed small change might indicate a more significant
underlying differential. The following results corroborate
the stringency of a 2x FC threshold in these transcriptome
experiments. For RNA mapping data, the median FC as
computed exclusively in exons, across all time-intervals, is
1.59. The median, computed across all transfrags of genic
and inter-genic origin is reduced to 1.21–1.35 (across
time-intervals). In contrast to the median value (50th per-
centile), a FC of 2x corresponds to 82nd – 96th percentile
(across time intervals); this indicates the introduction of a
potentially significant false negative bias, if 2x is used to
estimate significant differential change. Similar observa-
tions have been made for the differential modification
data. For H3K9K14D the median FC ranges from 1.19–
1.27 over the time intervals; the 99th percentile values
range from 1.62–1.79. The other acetylated histone,
HisH4, exhibits slightly higher median FC ranging from
1.22–1.43 with the 99th percentile of the distribution
ranging from 1.89–2.14. For RNA PolII, the median range
is from 1.28–1.32 with the 99th percentile of the distribu-
tion ranging from 1.9–2.36.

Results show a R2~0.997 between t-statistic and d-statistic.
P-value is however not considered for segmentation of
differential change. The existences of multiple cutoffs
associated with p-values, which as Lee et al [54] describe
introduce an artificial binarization of bound-unbound
states for each protein interaction. Change in the p-value
threshold from 0.001 to 0.05 results in an increase of the
regulator-promoter interactions by an order of magni-
tude. However, the q-value (FDR), which makes use of the
bounds on the d-statistic that may be asymmetric (Fig.

3A), is a measure of significance that can be associated
with each region.

Finally, it is important to investigate the impact of frag-
mentation (introduced via domain creation) on the seg-
mentation metrics. Fig. 3B represents 0–2 hour HisH4
data, where the y-axes in the left and right figures corre-
spond to the fragment length and the x-axes correspond to
the d-statistic and percent FDR respectively. This corrobo-
rates that no length-based bias is introduced in the estima-
tion of the d-statistic and/or FDR (q-value). A
predominantly negative shift in the d-statistic bias indi-
cates that there is increased de-acetylation in the 2 hour
(target) compared to the 0 hour (reference). Hence the d-
statistic is not expected to be symmetric about the point of
no change or zero. All differential expression/regulation
data discussed from this point forward utilize FDR as the
segmentation metric.

II. Differential expression of annotated and un-annotated 
transcribed regions
This section summarizes the RNA transcription data.

In these experiments each of the four time points are rep-
resented by three biological replicates (B1-B3), with each
sample hybridized in duplicate. Thus gSAM utilizes six
samples per time-point. The median R2 across all repli-
cates and over all time intervals is 0.9 with a median slope
of 1.12, attesting to high reproducibility across samples.

The analyses identify and quantify distinctly different
temporal and spatial expression profiles. The highest and
lowest fraction of differential expression, when summa-
rized across all transfrags, is observed during the 8–32
hour and 2–8 hour time intervals, respectively. Down-reg-
ulation dominates the former and up-regulation the latter
interval. Complete results are tabulated in Table 2. On the
whole, down-regulation is statistically more significant
and 2.4–2.8 percent of the down-regulated fraction has a
FDR less than 12 percent. The annotated transfrags dem-
onstrate dominant up-regulation throughout the entire
time-course, with 16x (16.17 versus 0.52) higher up-regu-
lation, at FDR less than 12 percent, observed between 0–
2 hours. Transfrags in the non-coding regions and introns
demonstrate a dominant down-regulation at comparable

Table 2: Temporal differential expression profile observed in RNA transcription study

Time-Interval Source Observed Differential 
Expression

Fraction: Down Regulated

0–2 hour All transfrags (genic+intergenic) 34% 62% of 34%
2–8 hour All transfrags 19.75% 28% of 19.75%
8–32 hour All transfrags 53.8% 53% of 53.8%
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statistical significance. The piece-wise model of gSAM
highlights the observation that not all exons of a transcript
demonstrate consistent FC. The observed variance in dif-
ferential expression across exons of transcripts is reduced
from 2.25 to 0.25 upon exclusion of terminal exons. Since
the assay is not strand specific, it can be hypothesized that
the increased variance may reflect effects of differential
expression arising from overlapping transcripts. The
hypothesis has to be validated via experiments such as
strand-specific Northern blots.

The differential responses across the ENCODE regions
vary significantly. The changes in the expression level

range from approximately 30 percent of the interrogated
bases on chromosome 8 to un-detectable in that on chro-
mosome 10. The general trend that is consistent across the
chromosomes is an increase in the percent bp that is dif-
ferentially expressed as a progression of time, as summa-
rized in Fig. 4. This is potentially due to the fact that as the
time intervals increase, the observed differential response
incorporates residual changes from the prior state(s) –
upholding the assumption of an accumulator system in
gSAM.

III. Differential regulation of putative TREs
This section summarizes the ChIP-chip data.

The histogram summarizes the differential expression profiles in each ENCODE region on each chromosomeFigure 4
The histogram summarizes the differential expression profiles in each ENCODE region on each chromosome. Chromosome 
region specific differential expression is observed across the time-points – 30 percent change on chromosome 8 to no detect-
able change on chromosome 10. Globally, the highest fraction of differential expression when summarized across all transfrag 
is observed between 8–32 hours (53.8 percent),. The most statistically significant (FDR ≤12 percent) changes are also observed 
between 8–32 hours.
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For modified histones and RNA PolII each of the four time
points are represented by five biological replicates (B1-B5)
with each sample hybridized in duplicate. Thus gSAM uti-
lizes ten samples per time-point. The reproducibility in
the ChIP on chip samples is more variable compared to
the RNA samples. For HisH4 across all time-points, R2

ranges from 0.6–0.71. For H3K27T, R2 ranges from 0.54–
0.7 with 32 hour contributing to the low end. For
H3K9K14D, R2 ranges from 0.6–0.77 with maximal varia-
tion at 32 hours. For RNA PolII, R2 is approximately 0.53
percent. In all cases, the ENCODE regions on chromo-
some 4, which only interrogates un-annotated regions, is
a significant contributor to the low end of the correlation
distribution. While the permutative framework in gSAM
provides resilience against the variance, the overall
reduced reproducibility does affect the outcome by result-
ing in an increased FDR. This can introduce a false nega-
tive bias in the segmentation of differential sites. This bias
can be exacerbated, if poor reproducibility is coupled with
too few replicates available for permutation. This premise
has been tested in a simulation experiment where inter-
replicate reproducibility is reduced via artificial introduc-
tion of noise such that the R2 for HisH4 is reduced to
<0.50. This resulted in an average increase of FDR by 6
percent.

The IGB visualization in Fig. 5 shows an example of
enrichment fragments within and upstream of the second
intron of the HIC gene (pink). The upstream fragment is
possibly un-annotated (UA), in so far as no RefSeq anno-
tation is available. The top four tracks represent the HisH4
p-value graphs at 0 (red), 2 (light-blue), 8 (dark-blue) and
32 (green) hours, scaled appropriately for comparison;
the subsequent track-pairs represent the d-statistic (top)
and FDR (bottom) for the 0–2 (red), 2–8 (cyan) and 8–32
(blue) hour time intervals. The horizontal lines associated
with the FDR data demarcate the 5 percent threshold.

There are four salient observations, in this data:

i. The putative TREs at the 5'end and upstream of the
5'end of HIC exhibit temporally distinct differential regu-
lation profiles. For the 0–2 hour interval both manifest
down-regulation, followed by up-regulation between 2–8
hours and subsequent down-regulation between 8–32
hours. This differentiation would not have been evident if
broader time-intervals were selected, attesting to the
importance of the temporal resolution in overall experi-
mental design.

ii. The piece-wise model in gSAM facilitates tracking of the
variable levels of differential regulation throughout a
putative TRE, as well as the associated modulation in FDR.
The 0–2 hour interval the most significant (less than 5
percent FDR) differential change is associated with the

peak of the d-statistic in the second intron. This is not
afforded by SAM in the current mode.

iii. Although no annotation is available for the differential
regulation observed upstream of HIC, the observed differ-
ential activity is also significant at less than 5 percent FDR
(0–2 hours). Due to the underlying permutative frame-
work the FDR estimates of the novel and known regions
are on par with one another. This putative and novel TRE
constitutes a perfect co-regulation candidate for valida-
tion via alternative biochemical means.

iv. gSAM is a signal enrichment based metric, but as is evi-
dent from the figure, there is a strong correlation – R2 >
0.965 – with the p-value based enrichment peaks [42].

While a single example is presented above, the observa-
tions can be generalized across the genome. In general,
the d-statistic defines the footprint of the putative TRE,
and the FDR differential, frequently facilitates identifica-
tion of the peak of the TRE.

Very few of the biological factors show significant differ-
ential change at 5 percent FDR. The following summarizes
the significant changes observed in interrogated genic
annotation, which is inclusive of exons, introns, UTRs and
250 base-pairs upstream and downstream of 5' and 3'
ends respectively. For predictions at 5 percent FDR,
among the histone factors HisH4 shows maximal change;
22.9 percent of interrogated genic annotation manifest
down-regulation between 0–2 hours, followed by 6 per-
cent exhibiting up-regulation during 2–8 hours. No signif-
icant changes are observed between 8–32 hours. For RNA
PolII maximal changes are observed between 2–8 hours;
at 5 and 7 percent FDR approximately 1 and 5 percent of
the interrogated genic annotation exhibit up-regulation,
respectively; the observed increase in differentially regu-
lated loci potentially implies that the choice of 5 percent
FDR might be too stringent for the case of RNA PolII. On
the basis of loci-level coverage, the ranked list of factors
undergoing significant differential change is: HisH4 >>
RNA PolII > H3K27D, H3K9K14D. A catalog of loci-level
gSAM predictions of differential regulation have been pre-
sented in Section V.

IV. Mono-phasic versus multi-phasic differential regulation 
clusters
This section discusses the classification of the observed
differential modification pattern.

The differential pattern observed in the pair-wise analysis
can be broadly classified into the following three phases
(summarized in Eqn. 22):
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i. A positive differential shift(δ+) is indicative of increased
activity in the target with respect to the reference;

ii. A negative shift(δ-) is indicative of the converse;

iii. A null shift (δnull), is indicative of no change in enrich-
ment response.

At any time-interval the putative TREs for most factors
show a mixture of the above-defined differential phases.
This defines two or more population of loci, where a frac-
tion, f1, up-regulated, f2, down-regulated and (1- f1 -
f2)remain unchanged. This results in two clusters: mono-
phasic or one with a near homogenous differential
change, where f1 >> f2 (vice-versa) and multi-phasic which
exhibits a mixture of phases. Mathematically, multi-pha-
sic modes are estimated by fitting greater than one gaus-
sian curve to the d-statistic distribution. While this
observation is not novel, gSAM provides a tool to identify
and quantify these different phases. In reality, no factors
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D-statistic versus FDR relationship at putative TREs, across the time-series (IGB view)Figure 5
D-statistic versus FDR relationship at putative TREs, across the time-series (IGB view). Examples of enrichment fragments are 
observed within and upstream of the second intron of the HIC gene (pink). The upstream fragment is possibly un-annotated 
(UA), in so far as no RefSeq annotation is available. The top four tracks represent the HisH4 p-value graphs at 0 (red), 2 (light-
blue), 8 (dark-blue) and 32 (green) hours, scaled appropriately for comparison; the subsequent tracks represent the d-statistic 
(top) and FDR (bottom) pair for the 0–2 (red), 2–8 (cyan) and 8–32 (blue) hour time intervals. The horizontal lines associated 
with the FDR data refer to the 5 percent threshold in each case.
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exhibit a purely mono-phasic mode; RNA PolII, and the
acetylated histones -HisH4 and H3K9K14D – are repre-
sentative of a distribution where the mono-phasic mode
is the dominant one. In contrast, the methylated histone
– H3K27T – manifests a distinctly mixed distribution. Fur-

thermore, the loci can switch between the mono-phasic
and multi-phasic modes across different time intervals.

Fig. 6 is representative of the density estimate (based on a
gaussian kernel) of the d-statistic distribution for HisH4
which approximates a mono-phasic behavior. It is evident
that in the 0–2 hour (black) interval, a significant percent-
age of the loci manifest, δ- phase, as indicated by the mode
of the d-statistic at -1.7 with a heavy left tail. Between 2
and 8 hours (blue) the mode is shifted to +1.6 with a
heavy right tail, indicative of a pre-dominant δ+ phase or
up-regulation at 8 hours. The mode for the 8–32 hour
(red) interval approximates the null shift but still exhibits
a predominant down regulation. In the biological context
of quantifying differential modification of tetra-acetylated
histone (HisH4), δ+ and δ- are potentially indicative of
acetylation and de-acetylation respectively, in response to
stimulation by ATRA.

Fig. 7 is shows the density estimate of the d-statistic distri-
bution for H3K27T in the exons (green), introns (black)
and un-annotated (blue) regions of an ENCODE region
on chromosome 1. At the chromosomal level of organiza-
tion, the observed differential modification trends for

A representative density profile of the d-statistic for change in H3K27T histone modification between 0 and 2 hours of retinoic acid treatment for the ENCODE region on chromo-some 1Figure 7
A representative density profile of the d-statistic for change 
in H3K27T histone modification between 0 and 2 hours of 
retinoic acid treatment for the ENCODE region on chromo-
some 1. The curves of different colors illustrate differential 
change for the H3K27T modification in exonic (green), 
intronic (black) and intergenic (blue) regions. The shift into 
the negative territory for the d-statistic for all classes of 
regions suggest is a consistent downward trend for this mod-
ification between 0 and 2 hours.

Example: For HisH4 a certain percentage of loci manifest up-regulation, while others manifest down-regulation and yet others exhibit no differential changeFigure 6
Example: For HisH4 a certain percentage of loci manifest up-
regulation, while others manifest down-regulation and yet 
others exhibit no differential change. The time intervals 0–2 
hr, 2–8 hr and 8–32 hr are shown in black, blue and red 
respectively.
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H3K27T across all annotation types (exon/intron/un-
annotated) are consistent; it shows pre-dominant down-
regulation as evident by the centering about -0.7. It is con-
ceivable that for other chromosomes/factors there is a
dominant phase-discordance, identifying loci where
potentially inhibitive and non-inhibitive regulatory
mechanisms are at play. gSAM analysis provides a tool to
identify and de-convolute the differential effects of these
mechanisms.

There is significant co-localization, in the genome, of the
differential binding enrichment observed for RNA PolII
and HisH4. The significance is highest at p-value <0.003
between 0–2 and 2–8 hours intervals. Over 8–32 hours
the p-value while still significant drops to 0.01–0.03. This
significance is particularly striking in view of the fact that
the array based FC is essentially less than two-fold. There
is substantial overlap between the differentially modified
regions for RNA PolII and the acetylated histone – HisH4.
The overlap can be partitioned into genic (RefSeq-based)
and inter-genic regions, encompassing 65 and 35 percent,
respectively. The coverage of the genic partition extends
across 45 percent of all genes interrogated on the
ENCODE array. Using the piece-wise model in gSAM, the
genic overlap is further partitioned to estimate the 5' ver-
sus 3' versus intra-genic bias and the results have been
summarized in Table 3. Bootstrapping establishes the pre-
dominant 5' bias of 73 percent is significant at p-value <
10-13.

In a global sense, the dominant phase of the differential
binding of the methylated factor (H3K27T) is anti-corre-
lated with RNA PolII and the acetylated factor (HisH4).
H3K27T and RNA PolII exhibit an overall 51.89 percent
co-localization in genic regions, but the coverage of the
genic partition encompasses only 20.1 percent of all the
genes profiled by the ENCODE array. Bootstrapping
establishes the pre-dominant 5' bias of 57.5 percent is sig-
nificant at a p-value < 10-7; results are summarized in
Table 3. There is less than 1 percent co-localization
between HisH4 and H3K27T; this makes biological sense
since the former is associated with active genes while the
latter is associated with repressed, silenced genes.

V. Loci-specific examples
This section outlines certain clustering strategies for differ-
entially changing loci.

The gSAM model together with the FDR based segmenta-
tion provides a powerful tool to generate a predictive list
and clustering of loci that undergo differential modifica-
tion. Some examples are:

i) Intra or inter-factor segmentation within a specified/
across different time-interval(s);

ii) Intra and inter-factor segmentation FDR and/or d-sta-
tistics based;

iii) Segmentation based on inter-factor co-regulation pat-
tern.

Table 4 lists all the overlapping loci (on opposite strands)
that show significant differential binding for HisH4 at dif-
ferent time intervals. These loci are potentially reflective of
bi-directional regulation activity, although further experi-
mental validation is required. The caveat to this analysis is
that this predictive list includes only loci where greater
than 90 percent of the probes or enrichment domains
exhibit consistent co-regulation patterns – potentially
introducing a false negative bias. The FDR threshold for
the analysis is set at 5 percent, although there are a few
instances where loci representing FDR as high as 6.7 per-
cent have also been included; this tolerance is allowed for
cases where at this cutoff a sharp increase in FDR to greater
than 15 percent is observed. The instances listed as NA are
representative of cases where the observed differential
modification is at a significantly higher FDR as compared
to the counterpart loci on the opposite strand. The Anno-
tation segregates the data obtained from domains that are
common to the overlapping loci ("+"), versus the
domains that are unique to each locus. For the majority,
the differential changes observed in the unique and inter-
secting domains are consistent in strength (diff change)
and direction of change (Acetylation summary). Also, for
the majority, opposing differential trends are observed
between the 0–2 hours and 2–8 hours time intervals.

Table 3: Overlapping differential modification in genic versus inter-genic regions

Overlap: 
Inter- genic

Overlap: 
Genic

Overlap 
Coverage: % 
genes 
profiled by 
the ENCODE 
array

Overlap: 
5'end

Overlap: 
Internal to 
genes

Overlap: 
3'end

p-value: 5'end 
overlap

RNAPolII- HisH4 45% 65% 45% 73.1% 51.9% 7.7% 10-13

RNAPolII- H3K27T 48.11% 51.89% 20.1% 57.5% 30% 12.5% 10-7
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Functional definition assembled from Gene Ontology
data can be used to augment this clustering.

Tables 5, 6 provide a loci-specific ranking based on FDR
threshold. These are potentially optimal candidates for
biochemical validation. In the analysis presented here

only the top 10th percentile at a 5 percent FDR is shown. It
is an interesting observation that the rank ordering of the
loci is not preserved across time-points. This could poten-
tially reflect variable functions of loci at different states of
development. This methodology provides a tool for the
study of the developmental transcriptome, for instance.

Table 4: HisH4 – Ranked list of differentially changing loci on overlapping strands, generated with a 5%FDR threshold

Factor Time
Interval

Chr Annotation Strand Diff
change

Acetylation
Summary

%FDR GO

HisH4 00_02 1 TCFL1 AS -1.539 - 3.43 Transcription Factor Like1
HisH4 00_02 1 TCFL1 + PIP5K1A -2.166 - 2.70
HisH4 00_02 1 PIP5K1A S -2.373 - 2.72 Signal transduction
HisH4 02_08 1 TCFL1 AS 1.343 + 6.74
HisH4 02_08 1 TCFL1 + PIP5K1A 1.545 + 6.74
HisH4 02_08 1 PIP5K1A S NA NA NA

HisH4 00_02 5 GDF9 AS NA NA NA Growth differentiation factor9
HisH4 00_02 5 GDF9 + QP-C -1.129 - 4.11
HisH4 00_02 5 QP-C S NA NA NA Part of the mitochondrial respiratory chain

HisH4 00_02 5 FGF1 AS -1.169 - 2.67 Fibroblast growth factor
HisH4 00_02 5 FGF1 + ARHGAP26 -1.169 - 2.67
HisH4 00_02 5 ARHGAP26 S -1.502 - 2.67 Rho GTPase activating protein

HisH4 00_02 6 C6orf150 D24 AS NA NA NA
HisH4 00_02 6 C6orf150+MTO1 -2.857 - 2.31
HisH4 00_02 6 MTO1 S -2.623 - 2.31
HisH4 02_08 6 C6orf150 AS NA NA NA MTO1: Cellular respiration
HisH4 02_08 6 C6orf150+MTO1 1.786 + 4.04
HisH4 02_08 6 MTO1 S 1.695 + 4.04

HisH4 00_02 6 SNX3 AS -2.600 - 2.31 Intracellular signalling cascade
HisH4 00_02 6 LACE1 S -1.954 - 4.35 Unknown
HisH4 02_08 6 SNX3 AS -0.849 - 4.04
HisH4 02_08 6 SNX3+LACE1 0.828 + 4.04
HisH4 02_08 6 LACE1 S 0.849 + 4.04

HisH4 00_02 7 GCC1 AS NA NA NA DNA binding protein
HisH4 00_02 7 GCC1 + ARF5 -1.574 - 1.54
HisH4 00_02 7 ARF5 AS NA NA NA Enzyme activator activity

HisH4 00_02 22 EIF4ENIF1 AS NA NA NA Translation initiation factor
HisH4 00_02 22 EIF4ENIF1 + SFI1 -1.407 - 4.95
HisH4 00_02 22 SFI1 S NA NA NA Spindle assembly associated(yeast)

HisH4 00_02 22 SYN3 AS NA NA NA Cell-cell signaling
HisH4 00_02 22 SYN3+TIMP3 -1.253 - 4.95
HisH4 00_02 22 TIMP3 S NA NA NA Enzyme Inhibitor activity

HisH4 00_02 21 GART AS -2.343 - 2.18 Cellular biosynthesis/catalytic activity
HisH4 00_02 21 GART+SON -2.120 - 2.28
HisH4 00_02 21 SON S -1.000 - 5.03 DNA binding

HisH4 00_02 X CXorf12 AS -0.855 - 3.18
HisH4 00_02 X CXorf12+IRAK1 -0.840 - 3.09
HisH4 00_02 X IRAK1 S -1.234 - 1.87 Interleukin-1 receptor binding
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Some examples of clustering based on inter-factor co-reg-
ulation are listed below. The most significant (listed in
order) differential changes in both HisH4 and RNA PolII
are observed at the following genes: PIK4CB (chr. 1) >
DDX18 (chr. 2) > STK11IP (chr. 2) >SNX27 (chr. 2).
PCDH15 (chr. 10) exhibits a significant differential bind-
ing site exclusively between the 2–8 hour intervals. RNA
PolII and H3K27T exhibit co-binding to TRPM8 (chr. 2).
Non-overlapping binding sites are observed for HisH4
and H3K27T on the GRM8 (chr. 7). These observations
are significant at an FDR ≤12 percent.

Discussion
gSAM can be applied to any type of differential mecha-
nism experiment; the differential changes can be pre-
dicted, partitioned and ranked at any level – genic, sub-
genic and/or inter-genic. An exclusively gene-level esti-
mate, as with SAM, does not have the sensitivity to deter-
mine these changes. While a FDR of 5 percent has been
used for segmentation, under certain scenarios this might
be too stringent. If a known TRE is not predicted by gSAM
it simply implies that element does not manifest a differ-
ential change under the FDR threshold used for data seg-
mentation. An optimal threshold estimate is to determine
the steepest gradient in the FDR distribution and consider
its mid-point as the ideal value.

There is a caveat to the piece-wise model; it does not track
the change of individual probe membership in genic com-

ponents according to the expression of spliced isoforms. It
does not track and hence account for the possibility that
an individual probe can and probably is measuring over-
lapping and yet different transcripts. Analogous to all dif-
ferential analysis, gSAM is based on the principle of co-
regulation of a probe-set. If different overlapping tran-
scripts have variable direction of change, either the effects
cancel out or the resultant change represents the predom-
inant trend similar to a majority rule in a complex back-
ground. The majority rule also governs the behavior of a
probe-set with mixed membership. The overall outcome
depends on the concordance of change of different tran-
scripts represented by different probes in the piece-wise
assignment and the abundances of the changing tran-
scripts. It will likely be different in different scenarios.

The purpose of the manuscript is to detail algorithms for
predictions of differentially changing loci. The bootstrap-
ping outcome discussed in Results provides computa-
tional validation of gSAM. Quantitative PCR (qPCR) is a
biochemical alternative that can be used for validation.
The comparison between qPCR validation and the array-
based gSAM predictions is qualitative in most regards; in
making conclusions, due consideration should be given
to the nuances discussed. qPCR discriminates at 95 per-
cent sensitivity [43] between an enrichment site (differen-
tially changing or not) and a non-site, and potentially
validates the direction of the differential change. How-
ever, there is no mechanism to precisely equate the fold

Table 5: HisH4: Ranked list of differentially changing loci between 0–2 hours. The list is generated using a 5% FDR

Factor TimePoints(hours) Chromosome Ranked Annotation

HisH4 00_02 21 ATP50
HisH4 00_02 21 C21orf49
HisH4 00_02 21 C21orf55
HisH4 00_02 21 CRYZL1
HisH4 00_02 21 IFNAR2
HisH4 00_02 21 WDR9
HisH4 00_02 21 WRB
HisH4 00_02 21 SH3BGr
HisH4 00_02 21 C21orf4
HisH4 00_02 21 C21orf119
HisH4 00_02 21 HMGN1
HisH4 00_02 21 C21orf62
HisH4 00_02 7 CTNBP2
HisH4 00_02 7 GRM8
HisH4 00_02 7 HIC
HisH4 00_02 7 LOC85865
HisH4 00_02 7 ST7
HisH4 00_02 21 IL1ORB
HisH4 00_02 X BIRC4
HisH4 00_02 X MECP2
HisH4 00_02 21 C21orf59
HisH4 00_02 21 ITSN1
HisH4 00_02 21 IFNAR1
HisH4 00_02 21 FLJ46020
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changes as measured by qPCR and by microarrays. The
qPCR and array-based metrics do not follow a linear rela-
tionship; the correlation between the two improves at
highly significant array-based p-values < 10-7 [43]. This
discordance between the two is partially because array
hybridizations are performed on amplified DNA, while
qPCR is frequently performed on non-amplified immu-
noprecipitated DNA. Consequently, qPCR fold change
cannot be directly equated to the gSAM-based d-statistics.
Finally, the output from gSAM is a relative measure of sig-
nal accumulated in response to an external stimulus,
wherein the change is profiled at two time points. There-
fore, it is important that the qPCR validation be per-
formed at exactly the same time-points for the same
replicates – otherwise data interpretation might be diffi-
cult to impossible.

Conclusion
gSAM provides a powerful extension to SAM by facilitat-
ing the exploration of differential regulation in an unbi-
ased and annotation independent manner. The
assumption of an underlying piece-wise model enables
the isolation of regions of maximal or peak differential
change. These regions can be observed in protein-coding
as well as non-coding regions. Since the proposed method
does not have a coding bias and uses a FDR-based metric
for segmentation of differential regulation, it provides a
predictive mechanism to generate a ranked list of regions
that can be validated by alternative biochemical means

such as qPCR. The FDR-based segmentation also facili-
tates comparison of differentially changing loci across dif-
ferent microarray platforms. The above gSAM predictions
provide some evidence for dynamic changes in the tran-
scriptional regulatory elements. The changes are maximal
in the acetylated histone H4. The correlation of the tem-
poral trends in the other factors with HisH4 indicates the
occurrence of similar dynamics, the exact behavior of
which will need to be validated. Nonetheless, the FDR-
ranked differentially changing loci provide a short-list of
predictions of dynamically changing transfrags and TREs
in the ENCODE region.
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Table 6: HisH4: Ranked list of differentially changing loci between 2–8 hours. The list is generated using a 5% FDR

Factor TimePoints(hours) Chromosome Ranked Annotation

HisH4 02_08 6 C6orf148
HisH4 02_08 6 C6orf150
HisH4 02_08 6 C6orf49
HisH4 02_08 6 DDX43
HisH4 02_08 6 EEF1A1
HisH4 02_08 6 FOXP4
HisH4 02_08 6 FRS3
HisH4 02_08 6 LACE1
HisH4 02_08 6 MGC20741
HisH4 02_08 6 MT01
HisH4 02_08 6 OSTM1
HisH4 02_08 6 SEC63
HisH4 02_08 6 SNX3
HisH4 02_08 6 TFEB
HisH4 02_08 6 KCNQ5
HisH4 02_08 12 SLC2A13
HisH4 02_08 1 KIAA1441
HisH4 02_08 1 PIK4CB
HisH4 02_08 1 POGZ
HisH4 02_08 1 PSMB4
HisH4 02_08 1 PSMD4
HisH4 02_08 1 RFX5
HisH4 02_08 1 SNX27
HisH4 02_08 1 TCFL1
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