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Abstract

Background: Calorie restriction (CR) is the only intervention known to extend lifespan in a wide range of organisms, including
mammals. However, the mechanisms by which it regulates mammalian aging remain largely unknown, and the involvement
of the TOR and sirtuin pathways (which regulate aging in simpler organisms) remain controversial. Additionally, females of
most mammals appear to live longer than males within species; and, although it remains unclear whether this holds true for
mice, the relationship between sex-biased and CR-induced gene expression remains largely unexplored.

Methodology/Principal Findings: We generated microarray gene expression data from livers of male mice fed high calorie
or CR diets, and we find that CR significantly changes the expression of over 3,000 genes, many between 10- and 50-fold.
We compare our data to the GenAge database of known aging-related genes and to prior microarray expression data of
genes expressed differently between male and female mice. CR generally feminizes gene expression and many of the most
significantly changed individual genes are involved in aging, hormone signaling, and p53-associated regulation of the cell
cycle and apoptosis. Among the genes showing the largest and most statistically significant CR-induced expression
differences are Ddit4, a key regulator of the TOR pathway, and Nnmt, a regulator of lifespan linked to the sirtuin pathway.
Using western analysis we confirmed post-translational inhibition of the TOR pathway.

Conclusions: Our data show that CR induces widespread gene expression changes and acts through highly evolutionarily
conserved pathways, from microorganisms to mammals, and that its life-extension effects might arise partly from a shift
toward a gene expression profile more typical of females.
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Introduction

CR reproducibly extends the maximum and average lifespans of

many different species, including some mammals [1] (for review

see [2]). Increased lifespan also has been achieved in many of the

same organisms through mutation of single genes, including key

effectors of the interrelated Insulin/Insulin-like growth factor 1

(Igf1)/Growth hormone (Gh) signaling pathways [2,3]. In the past

few years cellular signaling pathways that interact with these

hormonal pathways have yielded many mutants that extend

lifespan in non-mammals. For example, many lifespan-extending

mutations in the Akt/TOR (TOR, Target of Rapamycin, also

known as Frap1 in mice and other mammals) nutrient-sensing

pathway have been isolated in Caenorhabditis elegans, Drosophila

melanogaster, and Saccharomyces cerevisiae [4–8].

TOR is a kinase that phosphorylates Akt1 [9], and it positively

regulates translation by phosphorylation of at least two substrates:

ribosomal S6 kinase (S6K) and 4E-BP1 (Eif4ebp1), a key

translational repressor protein (for review see [10]). To date, no

lifespan experiment in mammals has demonstrated the clear

involvement of members of the TOR pathway even though this

pathway is clearly involved in nutrient sensing and metabolic

regulation, and likely plays a role in the response to CR. The

sirtuin family of proteins also regulate some aspects of aging and it

has been postulated that the life-extension benefits of CR are

regulated through either the TOR or sirtuin pathways, or possibly

both [11,12]. However, the roles of these pathways remain in

dispute [12].

Many previous aging and CR-related microarray studies have

focused on gene expression changes in liver because it is a primary

regulator of systemic metabolism, and of food energy processing,

storage, and transport, and because it secretes and regulates the

majority of circulating Igf1 [13]. Some studies have shown changes

in transcript levels of key regulatory members of the Gh/Igf1
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pathway [14,15] and have even begun to connect the hormonal

mechanisms governing the effects of CR in mammals to the

cellular mechanisms found in other model organisms, e.g. the

TOR pathway [16,17]. Spindler and colleagues showed that mice

begin to show persistent CR-dependent effects on liver gene

expression as early as two weeks after initiation of CR, and that a

majority of transcript changes at two weeks persist in long-term

CR [18,19]. This suggests short-term CR experiments might be

useful in connecting the underlying mechanisms of CR in mice to

those in other model organisms. However, these animals were fed

only three times a week and fasted for at least 24 hours [19] and

up to 48 hours prior to sacrifice [18]. This potentially masks

important transcript changes that routinely occur differently in

fully-fed versus CR animals, and Bauer and colleagues have shown

that starvation of these durations results in even more and larger

gene expression changes than were found in the CR studies of

Spindler and colleagues [20].

In addition to CR there is another phenotype that confers

greater longevity among many organisms, including most

mammals: female gender [21,22]. While it remains unclear

whether or not female mice live longer in general than males,

lifespans of both male and female mice are extended by CR and it

is quite clear that their lifespans are greatly influenced by sex-

associated variables, including hormonal status and reproductive

history [23,24]. It has been demonstrated that the gene expression

differences between CR and control mice are similar to the

differences found between long-lived dwarf mice and control mice,

and also similar to female mice relative to male mice [25].

However, the shortest duration CR study included in this overall

analysis consisted of 2 months of CR, the size of each of the CR

and gender comparison groups was small (n = 4 and n = 6,

respectively), and certain of these experimental designs included

a period of starvation prior to sacrifice. To eliminate possible

artifacts induced by starvation, Selman and colleagues employed a

16-day step-down CR protocol that avoided pre-sacrifice starva-

tion [16]. Shorter duration studies like those conducted by

Spindler and colleagues and Selman et al. have advantages over

longer studies, in allowing much more rapid progress on the

investigation of experimental regimens and compounds.

Here, we report the results of a two-week CR regimen designed

to investigate the potential of such short-term studies to influence

key gene expression changes. Importantly, prior microarray and

metabolomic studies have provided many new insights into

possible life-extension mechanisms of CR, but none has provided

a systematic analysis of expression changes of genes known or

suspected to be involved in aging-related pathways. In this study,

we address these and related issues using liver microarray data

generated from mice fed either high-calorie diets or short-term (14

days) CR diets absent prolonged starvation. Our results suggest

that CR acts at least partly through highly evolutionarily

conserved pathways, from microorganisms to mammals, and that

the lifespan-extending effects of CR appear to overlap and might

result from the lifespan-extending effects of femaleness.

Results

Dietary regimen dataset generation and statistical testing
To better understand the changes caused by CR, mice were fed

diets high (‘‘HIGHCAL’’) or low (‘‘CR’’) in calories for 14 days and

total liver RNA was used to produce expression profiles using

spotted oligonucleotide DNA microarrays. Food was administered

twice daily to reduce the complications of inducing a starvation

response, including prior to sacrifice. Body weights of most mice

stabilized after the first week and even the weights of most CR mice

reached plateau by 7 to 9 days after initiation of CR. After

background threshold adjustment and normalization our micro-

arrays detected 8,347 non-redundant genes. To statistically test

which genes are associated with CR relative to high calorie feeding,

we used Significance Analysis of Microarrays (SAM) [26]. SAM

performs a moderated t-test on two user-selected groups of

microarray datasets, and returns a set of discriminant genes ranked

in descending order by d, the t-statistic, and calculates a false

discovery rate (FDR) based on random permutations of the data

labels (see Methods). SAM also reports the q-value for each ordered

gene (the lowest FDR at which the gene is called significant) and

several other measures including fold-change values for each gene.

At a restrictive cutoff of q,0.01, 1,897 of 8,347 detected genes

(22.7%) differed between CR and HIGHCAL (3,855 genes

(46.2%) at the permissive cutoff of q,0.1). As shown in Table
S1, Quantitative RT-PCR (Q-RT-PCR) confirmed direction of

change (up or down) of 18 transcripts called by SAM as

differentially expressed, and fold change values in most cases

were larger for Q-RT-PCR (subsequent fold changes given are

microarray values). The 90th percentile number of median false

positives at the permissive cutoff is about 634 genes. This suggests

that even without considering the false negative rate the number of

true positive genes changed significantly by CR can be

conservatively estimated to be over 3,000. All genes called as

significant at both cutoffs are listed in Table S2. Of the 1,897

genes changed by CR at q,0.01, 827 (43.6%) are upregulated and

1,070 (56.4%) are downregulated relative to HIGHCAL (at

q,0.1, 1,693 (43.9%) are upregulated and 2,162 (56.1%) are

downregulated). Figure 1 shows all 3,855 genes in the permissive

list (cutoff q,0.1) in a plot of significance (absolute value of d, |d|)

versus log2 fold change. The shape of this plot shows that even

Figure 1. Plot of significance versus fold change of all
significant genes. Plot of significance (absolute value of d, |d|) versus
log2 fold change, for all 3,855 genes called significant at q,0.1. Ddit4,
the gene with the highest significance score, is shown at upper right.
doi:10.1371/journal.pone.0005242.g001

CR Feminizes Gene Expression
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though the majority of genes are downregulated, many upregu-

lated genes show greater fold-changes and |d| scores than

downregulated genes. Overall, 27 genes were upregulated more

than 10-fold, while only 4 genes were downregulated more than

10-fold. This general asymmetry held true irrespective of the

normalization method used.

CR alters expression of key regulatory genes in conserved
aging-related pathways

As highlighted in Figure 1, the single most significant and one of

the most fold-changed discriminant genes is DNA-damage

inducible transcript 4 (Ddit4), a p53-regulated negative regulator

of the Frap1 pathway [27], which is increased by CR by over 33-

fold (80.1-fold as measured by Q-RT-PCR). In addition, brief visual

inspection of the significance-ranked list of genes reveals that many

other top-ranked genes are involved in a variety of processes related

to aging, hormonal synthesis and signaling, cell cycle regulation and

apoptosis. To begin to further analyze these classes of significant

genes in a systematic way we determined the intersection of these

genes with the human and mouse genes listed in the GenAge

database [28]. As described below, analyses for enriched Gene

Ontology (GO) terms confirmed many of the broader general

categories observed by visual inspection, however, GO terms and

even GenAge annotations currently are too coarse to capture

certain aging-related classes of genes and processes. One important

excluded class among GO terms is genes that are known members

of aging-related pathways but which have not been isolated as

mutants that alter lifespan; key regulators of these pathways are of

particular importance. The GenAge database includes many such

genes. Table 1 lists the intersection of our set of 1,897 significant

genes (q,0.01) with the set of 265 non-redundant mouse and

human genes listed in GenAge plus seven selected genes of this type

that are not listed in GenAge but are among the most significant

differentially expressed genes in our data.

Among aging-related genes upregulated by CR are leptin

receptor (Lepr), cathepsin L (Ctsl), plasminogen activator urokinase

(Plau), cyclin-dependent kinase inhibitor 1A (Cdkn1a) (a.k.a. p21/

Cip), nicotinamide N-methyltransferase (Nnmt), peroxisome prolif-

erative activated receptor, gamma, coactivator 1 alpha (Ppargc1a)

(a.k.a. Pgc-1 alpha), serum/glucocorticoid regulated kinase 1 (Sgk1),

and two Cebp paralogs: CCAAT/enhancer binding protein delta

(Cebpd) and CCAAT/enhancer binding protein beta (Cebpb).

Downregulated genes include aprataxin (Aptx), telomerase reverse

transcriptase (Tert), insulin-like growth factor binding protein, acid

labile subunit (Igfals), and growth hormone receptor (Ghr). Lepr was

upregulated by over 58-fold by CR (49.3-fold by Q-RT-PCR) and

was third in the list of genes ranked by significance. An increase in

Lepr transcript abundance was somewhat expected since this is a

reported result of CR [29] and of starvation [20] but the increase

we observed was about 10-fold greater than seen in these previous

reports. All of the genes in these lists are of possible importance in

the life-extension response to CR but the large fold changes, high

statistical ranks, and known roles in key aging-regulatory pathways

make Ddit4, Nnmt1 and Cdkn1a especially interesting.

4E-BP1 phosphorylation is reduced by CR
The large increase in expression of Ddit4 suggests inhibition of the

Frap1 (TOR) pathway by CR. Frap1 is a protein kinase whose

currently known substrates include the kinases Akt1 and S6K1, and

the translation regulatory protein Eif4ebp1 [9,10]. Recent data

suggest Frap1 enhances initiation of 59-cap-dependent translation of

most mRNA species by phosphorylation of Eif4ebp1, promoting its

dissociation from the translation initiation factor Eif4e [30,31].

Several sites on Eif4ebp1 are phosphorylated but phosphorylation

of Thr69 (human Thr70) is a primary determinant of this

dissociation [31]. Phosphorylation of S6K1 on Thr390 (human

Thr389) is a primary activator of its kinase activity and appears to

regulate translation of ribosome-related transcripts and ribosome

biogenesis, although the mechanism underlying differential regula-

tion of phosphorylation of Eif4ebp1 and S6K1 by Frap1 is currently

unknown [31]. Ddit4 has been shown to strongly inhibit Frap1

activity [32] and simply overexpressing Ddit4 is sufficient for this

inhibition [33]. Therefore, the over 33-fold increase of the Ddit4

transcript in CR mice suggested a reduction of phosphorylated

isoforms of substrates of Frap1 in livers of these mice.

To test this hypothesis we performed Western blots on Eif4ebp1

and S6K. Two primary isoforms of S6K1, p70 and p90, were

detected in our liver samples. We assayed Thr390 of p70 (Thr412

of p90), and for Eif4ebp1 we assayed Thr69, which are recognized

targets of phosphorylation by Frap1. Consistent with the current

model of the regulation of Eif4ebp1 by Frap1, Thr69 phosphor-

ylation of Eif4ebp1 was increased more than 2-fold by high calorie

feeding relative to CR (Figure 2) (P = 6.061024, one-sided

Wilcoxon rank sum test). In contrast, the Thr390 phosphorylated

p70 isoform of S6k1 was undetectable in our liver samples,

including those from TAL-fed mice, while Thr412 of p90 was

detected but no significant change was found in HIGHCAL

relative to CR mice. These results suggest that CR results in

reduced efficiency of initiation of cap-dependent translation

through phosphorylation of 4EBP1 but does not significantly alter

processes dependent upon phosphorylation of S6K1, such as

translation of ribosomal transcripts and ribosome biogenesis [34].

CR alters gene expression within specific gene classes
To further understand and quantify enriched classes of genes

significantly upregulated or downregulated by CR we employed the

GO analysis tool FuncAssociate [35], which returns all overrepre-

sented GO terms for a given set of input genes. We separately

analyzed upregulated, downregulated, and the combined upregu-

lated and downregulated sets of genes using both permissive and

restrictive cutoffs for a total of 6 separate analyses. The number of

terms returned for each of the upregulated (U), downregulated (D),

and combined upregulated and downregulated (C) sets of genes are

as follows: at the restrictive cutoff q,0.01 U = 57, D = 61, and

C = 103; at the permissive cutoff q,0.1 U = 94, D = 99, and

C = 170. All GO terms and statistics can be seen in Table S3.

To more clearly understand the changes in biological function

that result from changes in gene expression, for each GO term we

plotted in a stacked bar graph the relative fraction of upregulated

and downregulated genes associated with that GO term from the

SAM output (q,0.1). Figure 3 shows a selection (culled to

eliminate excessive redundancy) of the GO terms with the largest

fractions of upregulated or downregulated genes. CR results in a

clear relative upregulation of genes involved in protein biosynthe-

sis, rRNA processing, mRNA metabolism and splicing, ribosome,

and regulation of protein translation. Many GO categories consist

mostly of downregulated genes including those involved in

mitochondria, carboxylic acid metabolism, DNA replication,

steroid, cholesterol and lipid metabolism, lysosome, peroxisome,

and glutathione S-transferase activity. Several downregulated GO

classes are involved in protein turnover including endoplasmic

reticulum/ER, isomerase activity, amino acid derivative biosyn-

thesis, protein positioning, and the proteasome.

CR feminizes gene expression overall and within specific
gene classes

Since genes involved in hormone biosynthesis are generally

downregulated in our data and several genes previously demon-

CR Feminizes Gene Expression
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Table 1. Aging-related genes upregulated or downregulated by CR, q,0.01.

Gene Gene name
Fold
Change FC Rank Stat Rank Function

Ddit4* DNA-damage-inducible transcript 4 33.3 6 1 Frap1 (mTOR) inhibitory tumor suppressor

Lepr Leptin receptor 58.4 3 2 Regulator of adiposity and metabolism

Aptx Aprataxin 22.3 139 6 DNA repair, binds Parp1, Xrcc1, Xrcc4, p53

Cebpd* CCAAT/enhancer binding protein delta 4.3 74 12 Mouse paralog swap increases lifespan

Ctsl* Cathepsin L 4.9 66 14 Activates Plau by proteolytic cleavage

Cdkn1a Cyclin-dependent kinase inhibitor 1A (P21) 10.2 26 24 Key negative regulator of cell cycle

Nnmt* Nicotinamide N-methyltransferase 36.5 5 26 Yeast ortholog NNT1 mediates response to CR

Ppargc1a* Ppargc1a, aka Pgc1-alpha 6.0 52 55 Sirt1-interacting regulator of metabolism

Ctgf Connective tissue growth factor 3.3 97 64 Vascular growth factor; role in aging speculative

Cebpb CCAAT/enhancer binding protein beta 2.2 212 82 Replacing Cebpa with Cebpb extends lifespan

Tert Telomerase reverse transcriptase 22.9 76 88 Telomerase reverse transcriptase

Plau Plasminogen activator, urokinase 2.7 144 92 Overexpression in mice extends lifespan

Sgk1* Serum/glucocorticoid regulated kinase 4.6 72 94 C. elegans ortholog mutation increases lifespan

Map3k5 Mitogen activated protein kinase kinase kinase 5 2.0 274 107 Involved in stress response and apoptosis

Ar Androgen receptor 22.8 79 132 Androgen receptor; dihydrotestosterone receptor

Igfals* Insulin-like growth factor binding protein ALS 22.4 116 133 Regulator of Igf1 signaling

Blm Bloom syndrome homolog (human) 4.7 67 186 Involved in DNA repair; Wrn paralog

Ghr Growth hormone receptor 22.1 186 190 Mutation increases mouse lifespan

Flt1 FMS-like tyrosine kinase 1 1.4 658 194 Receptor for Vegf

Foxo1 Forkhead box O1 1.5 540 228 Ortholog of lifespan-extending C. elegans daf16

Nr3c1 Nuclear receptor subfamily 3 21.5 647 233 Glucocorticoid receptor

Stat3 Signal transducer and activator of transcription 3 1.7 414 233 Signal transducer and activator of transcription 3

Tnfrsf6 Tumor necrosis factor receptor superfamily 21.5 682 244 Fas; roles in apoptosis, development and cancer

Jak2 Janus kinase 2 21.4 854 246 Associated with many genes linked to aging

Ercc3 Ercc3 21.3 1079 265 Involved in DNA repair

Gsta4 Glutathione S-transferase 21.7 393 271 Involved in oxidative protection

Gclc Glutamate-cysteine ligase 22.0 230 316 Overexpression in fruitflies extends lifespan

Jun Jun oncogene 2.1 237 328 Pathway regulates aging in fruitflies and worms

Nfkbia Nfkb inhibitor 1.5 513 339 Inhibitor of NF-kappa-B

Txn1 Thioredoxin 1 21.5 716 350 Overexpression in mice extends lifespan

Sncg Synuclein 22.0 237 354 Synuclein, gamma

Mapk9 Mitogen activated protein kinase 9 21.3 1142 395 Regulator of apoptosis and stress response

Ppara Peroxisome proliferator activated receptor alpha 22.3 131 414 Regulates fatty acid metabolism

Foxo3 Forkhead box O3 1.5 511 421 Orthologs regulate aging in fruitflies and worms

Egfr Epidermal growth factor receptor 1.7 420 432 Regulator of cellular proliferation

Top2a Topoisomerase (DNA) II alpha 21.5 596 465 Topoisomerase indirectly linked to Wrn and Atm

Hspa8 Heat shock protein 8 1.6 467 466 Heat shock 70 kDa protein 8

Tfdp1 Transcription factor Dp 1 21.3 1203 527 Involved in cell senescence, cell cycle, apoptosis

Lmnb1 Lamin B1 21.5 644 593 Part of nuclear lamina, interacts with Lmna1

Pdpk1 3-phosphoinositide dependent protein kinase-1 1.3 1114 594 Phosphorylates and activates AKT1

Cat Catalase 22.0 216 623 Overexpression extends mouse lifespan

Cebpa CCAAT/enhancer binding protein alpha 21.6 424 698 Replacing Cebpa with Cebpb extends lifespan

Vcp Valosin containing protein 21.3 1359 710 ER protein/regulator of protein aggregation

Gclm Glutamate-cysteine ligase 21.5 580 841 Overexpression in fruitflies extends lifespan

Pik3r1 Phosphatidylinositol 3-kinase 21.4 799 857 Involved in metabolism and insulin signaling

Arhgap1 Rho gtpase activating protein 1 21.3 1250 884 Androgen receptor; dihydrotestosterone receptor

Apex1 Apurinic/apyrimidinic endonuclease 1 21.3 1357 1001 Repairs oxidative DNA damage

Xrcc5 Xrcc5 21.3 1241 1017 Involved in DNA repair /chromatin remodeling

Mapk3 Mitogen activated protein kinase 3 21.2 1683 1063 Involved in stress response signaling

Genes are upregulated (positive fold-change values) or downregulated by CR, and are listed in the GenAge mouse and human database except for seven manually
selected genes marked with an asterisk (*). Aging-related annotations come from GenAge [28] and other annotations come from Entrez Gene [73]. Fold change (FC)
rank and statistical (Stat) ranks from SAM; separate statistical ranks are given for upregulated and downregulated genes.
doi:10.1371/journal.pone.0005242.t001
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strated to display sexually dimorphic expression are found at the

top of our statistical and fold-change rankings, we suspected CR

might have an overall feminizing effect on gene expression. To test

this hypothesis we compared our data to the male versus female

liver expression microarray data of Yang and colleagues which

were collected using 334 total microarrays (one microarray per

liver sample; 165 male and 169 female mice) [36]. Of the 1,897

genes in our restrictive list, 872 were found in their study to be

more highly expressed in either male or female (1,711 of 3,855

genes in our permissive list).

Figure 4 displays the frequencies (at both permissive and

restrictive cutoffs) of each of four classes of genes: increased by CR

and more highly expressed (UP) in females, increased by CR and

UP in males, decreased by CR and displaying lower expression

(DOWN) in females, and decreased by CR and DOWN in males.

The percentage of genes displaying feminized expression is higher

among the set of genes upregulated in CR than among genes

downregulated in CR. Separate Chi-square analyses of CR-

upregulated genes and CR-downregulated genes at both the

restrictive and permissive cutoffs show a significant bias toward a

female pattern of expression. We also used FuncAssociate to

determine the overrepresented GO category associations of each

of these four gene sets. As shown in Table 2, genes downregulated

and masculinized by CR are involved in immune response; genes

upregulated and feminized by CR are involved in general

metabolism and protein biosynthesis; and genes downregulated

and feminized by CR are involved in enzymatic catalysis, and

protein modification and transport through the Golgi and

endoplasmic reticulum. These results suggest that CR has a

generally feminizing effect on gene expression, which involves

protein metabolism and turnover, which might contribute to the

lifespan extension effects of CR.

Discussion

A primary focus of biomarker and lifespan studies has been

calorie restriction (CR). Spindler and colleagues first showed that

two weeks of CR (40% reduction relative to ad libitum) causes

many changes in mouse gene expression that persist in the long

term [19]. But the small number of increased or decreased

transcripts found in their experiments, prolonged periods of

starvation of animals including prior to sacrifice, and a report by

Bauer and colleagues showing that a greater number of transcripts

are changed by starvation alone highlighted the need for a strategy

to minimize starvation [19,20]. Selman and colleagues subse-

quently utilized a 16-day CR protocol that steps down from 90%,

to 80%, and finally to 70% caloric intake (30% CR), and which

avoids pre-sacrifice starvation. We employed a hybrid strategy that

utilizes a CR treatment similar to that administered by Spindler

and colleagues (approximately 40% CR for 2 weeks), but that

avoids the induction of a starvation response. To enrich for

chronic CR-related gene expression responses and to minimize the

starvation response, we fed mice twice daily, including about half a

day prior to sacrifice. This approach is more consistent with CR

assays in organisms with constant food access, including yeast,

nematodes, and fruitflies. Using this approach we found that CR

alters liver expression of at least 3,000 genes. Comparisons of lists

of genes most significantly associated with CR to those listed in

GenAge allowed us to systematically discover important aging

regulatory genes in our data, although current limitations of both

GenAge and Gene Ontology annotations motivated a search for

additional aging-related genes among the genes displaying the

most significant expression differences between CR and high-

calorie feeding.

Nnmt, Cdkn1a, and Ddit4 are of particular interest because of

their high statistical rankings, large fold-changes and because all

three appear to play key roles in aging regulatory pathways. Other

notable upregulated genes are Lepr, Cebpd, Cebpb, Ctsl, Plau, Sgk1,

and Ppargc1a (Pgc-1 alpha), and notable downregulated genes

include Aptx, Tert, Igfals and Ghr. Previous microarray studies of

CR have shown changes in Ddit4, Ghr [29] and Sgk1 [37] but not in

most of these other genes. Bauer and colleagues reported the

upregulation of leptin receptor (Lepr) with starvation, and in our

data it is upregulated about 50-fold as measured by both

microarray and Q-RT-PCR [20]. Leptin is closely associated

with the neuroendocrine responses of starvation, CR, and body

size [38]; however, the direct role of leptin in aging and its

modulation by CR remain uncertain, but a primary regulatory

role of leptin in the adaptive response of CR has been proposed

[39]. Two pairs of these genes are notable because they are

functionally related. Ctsl encodes a protease that cleaves Plau, and

Cebpd and Cebpb are paralogs (they are also homologs of Cebpa,

which appears farther down Table 1). Neither Ctsl nor Cebpd has

been directly implicated in aging; however, our results suggest they

might be involved in the lifespan regulation observed in mutants in

the other member of these pairs.

Both Ppargc1a and Nnmt have been shown to function in sirtuin-

related pathways. Ppargc1a is a multifunctional regulator of

metabolism and mitochondrial biogenesis, and has been linked

to regulation of glucose homeostasis, CR and a possible role in

aging through a physical interaction with Sirt1 in liver [40]. Nnmt

encodes Nicotinamide N-methyl transferase which produces N1-

methyl nicotinamide from the vitamin B3 precursor nicotinamide.

Nicotinamide partly or completely abrogates yeast lifespan

Figure 2. CR-induced phosphorylation changes in Eif4ebp1. Western blots of unphosphorylated Eif4ebp1 (4EBP1) and Thr69 phosphorylated
Eif4ebp1 (p4EBP1) for calorie restricted (CR) and high-calorie-fed (HIGHCAL) mice. Labels at top indicate individual mouse sample codes. CR, Calorie
Restriction; FHC, Fixed High Calorie feeding; TAL, True Ad Libitum feeding. TAL1, TAL3, and TAL4 are from livers used to make the RNA pool TAL-P.
CR1, CR7, and CR8 are from livers used to make the RNA pool CR-P1. CR4, CR5, and CR6 are from livers used to make the RNA pool CR-P2. FHC3 and
FHC3B are separate samplings of the same liver.
doi:10.1371/journal.pone.0005242.g002
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Figure 4. CR feminizes overall gene expression. Fractional distributions of all genes changed by CR and which display sexually dimorphic
expression in the data of Yang et al. Percent numbers are percent of all genes displaying both specific directional changes from CR and sexually
dimorphic expression and corresponding numbers of genes in each of these four classes are given in parentheses. Deviation from expected
frequencies was determined by a chi-square test for upregulated genes and separately for downregulated genes, at each q-value cutoff.
doi:10.1371/journal.pone.0005242.g004

Figure 3. GO categories with largest relative fractions of upregulated or downregulated genes. Each stacked bar graph displays the
relative upregulated or downregulated fractions of the total number of genes (n = 100%) significantly altered by CR within a given GO category
returned by FuncAssociate (adjusted p,0.05). The upregulated fraction is shown in red and the downregulated fraction is shown in blue.
doi:10.1371/journal.pone.0005242.g003
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extension by CR, possibly by increasing cellular levels of NADH, a

competitive inhibitor of the Sir2 protein [41,42]. Overexpression

of human NNMT in yeast increases rDNA silencing, a phenom-

enon linked to sirtuin-mediated extension of life span [41].

Overexpression in yeast of NNT1, the yeast homolog of Nnmt, also

increases rDNA silencing, increases lifespan which is not further

increased by glucose restriction, and restores full lifespan extension

by calorie restriction in a pnc1 mutant [41,42]. Tsuchiya and

colleagues showed that elevated nicotinamide blocks CR-induced

lifespan extension in yeast lacking sirtuins [43]. This suggests a

Sir2-independent mechanism for abrogation of lifespan extension

by nicotinamide. Taken together, these results suggest that NNT1

overexpression in yeast recapitulates a Sir2-independent life

extension mechanism governed by CR. Our data showing that

its mammalian homolog, Nnmt, is among the most statistically

significant and most upregulated genes (increased by approxi-

mately 48-fold as measured by Q-RT-PCR) in response to CR,

strongly suggests that CR in mammals might be mediated by a

similar and highly evolutionarily conserved mechanism.

Our results confirm those of others suggesting that regulation of

DNA replication and repair, apoptosis, and cell proliferation play

important roles in the CR response. Aprataxin (Aptx) is one of the

most significant downregulated genes and is involved in the repair

of multiple types of DNA lesions and interacts with the DNA

repair and stress-response proteins Parp1, Xrcc1, Xrcc4, and p53.

The p53-regulated key regulator of apoptosis and cell cycle

progression Cdkn1a (increased by approximately 22-fold as

measured by Q-RT-PCR) is among the most significant

upregulated transcripts in our data and is regulated post-

translationally by Akt phosphorylation [44,45]. Telomerase

reverse transcriptase (encoded by Tert, decreased by approximately

2.9-fold) is also a key regulator of cell proliferation and apoptosis,

and has been found in a multiprotein complex with Akt, S6K and

Frap1 (TOR) [46].

The Frap1 pathway genes Ddit4 and Sgk1 also have not

previously been shown to be involved in regulating aging in

mammals. However, it has been shown that Ddit4 expression

changes in response to CR in both rats and mice [16,17], that the

Akt/TOR pathway regulates lifespan in multiple species [4,5,7,8],

that Sgk1 acts in this pathway to regulate nematode lifespan [6],

and that Ddit4 regulates this pathway in mammals [32,47]. In C.

elegans SGK-1 acts to mediate DAF-2/Igf1 signaling in a complex

with Akt kinases and partial deletion or knockdown of SGK-1

increases lifespan [6]. The expression of Ddit4 is regulated by

hypoxia, cellular energy stress, and by p53 and p63 in response to

DNA damage and reactive oxygen species (ROS) [33,47,48]. Ddit4

and its paralog Ddit4l are evolutionarily conserved and the fruitfly

orthologs Scylla and Charybdis appear to function in a similar

manner. Overexpression of Scylla and/or Charybdis results in

smaller cell size and small flies, and loss of both genes results in

larger cells and flies [49].

Recent data from Ellisen and colleagues suggest that a primary

Ddit4 mechanism of action is to competitively bind inhibitory 14-3-

3 proteins that otherwise bind to the Tsc2 protein, part of the

tuberous sclerosis complex that inhibits Akt/Frap1 signaling when

Tsc2 is unbound [32]. Hypoxia or energy stress triggers the

binding of 14-3-3 proteins by Ddit4, freeing Tsc2 to suppress

Frap1 kinase activity and reduce phosphorylation of its substrates.

These authors showed that mouse embryo fibroblasts (MEFs)

deleted for Ddit4 demonstrate increased proliferation and

anchorage-independent growth resulting from dysregulation of

Akt/Frap1 pathway signaling [32]. They further demonstrated

that Ddit4-mediated inhibition of Frap1 occurs even in the

presence of constitutive Akt activation. Subcutaneous injection

into nude mice of MEFs containing constitutively activated Akt

results in slow-growing tumors, and the additional deletion of Ddit4

causes much more rapid tumor growth. These data suggest that

Ddit4 is a tumor suppressor acting on the Frap1 pathway

downstream of Akt, and Ddit4 downregulation has recently been

described in a subset of human cancers [32].

Since overexpression of Ddit4 in cultured mouse cells is sufficient

to inhibit activation of the Frap1 pathway, greatly reducing

phosphorylation of S6K1 and ribosomal protein S6 [33], the over

33-fold increase that CR elicits in Ddit4 in our experiments

suggested a strong CR-dependent downregulation of Frap1

signaling in liver. This was confirmed by Western blots of Thr69

of Eif4ebp1 [47,50]. Sharp and Bartke also found decreased

phosphorylation of Eif4ebp1 in livers of Ames (Prop1df) dwarf

mice, but they also found decreased phosphorylation of the p70

and p85/p90 isoforms of ribosomal S6K [51]. Jiang and

colleagues also reported decreased phosphorylation of Thr389 of

liver p70S6K in rats undergoing 4-week CR, as well as decreases

in overall Frap1 kinase activity and phosphorylation of critical

residues on Eif4ebp1, Akt and Tsc2 [52]. We did not find S6K to

be differentially phosphorylated between CR and HIGHCAL

mice. This result needs to be investigated further since

Table 2. GO categories associated with groups of genes displaying CR-regulated and sex-biased expression.

Genes UPREGULATED in CR Genes DOWNREGULATED in CR

CR and Female UP CR and Female DOWN

Overrepresented GO Attributes Overrepresented GO Attributes

P-adj Number GO Attribute P-adj Number GO Attribute

,0.001 31 0005840: ribosome 0.001 42 0005783: endoplasmic reticulum

,0.001 64 0009058: biosynthesis 0.023 32 0005794: Golgi apparatus

,0.001 217 0008152: metabolism 0.031 199 0003824: catalytic activity

CR and Male UP CR and Male DOWN

Overrepresented GO Attributes Overrepresented GO Attributes

P-adj Number GO Attribute P-adj Number GO Attribute

- - NONE ,0.001 34 0006952: defense response

Columns display GO attribute categories associated with genes upregulated or downregulated in CR (q,0.1) and also relatively upregulated in either female or male sex
according to the data of Yang et al. [36]. Adjusted p-values and number of genes are given for each category.
doi:10.1371/journal.pone.0005242.t002
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phosphorylated p70S6K, a primary phosphorylation target of

Frap1, was not detectable in our samples, and it therefore appears

that phosphorylation of p70 and p90 isoforms are differently

regulated from one another, and from Eif4ebp1. Nevertheless,

increased phosphorylation of Eif4ebp1 and the large increase in

the Ddit4 mRNA transcript together suggest CR results in

inhibition of the Frap1 pathway in liver to inhibit translational

initiation. It will be of interest to determine which of these

observed post-translational changes persist in long-term CR.

Dhahbi and colleagues have shown that certain genes display

oscillatory expression over the initial weeks of CR [19]. Thus, it is

possible or even likely that key post-translational modifications also

oscillate, or that the 2-week CR protocol used in this and similar

studies is too short to induce important post-translational and

other phenotypic alterations that occur in long-term CR.

Our GO analysis shows that CR results in relative upregulation

of genes within GO categories associated with ribosomes,

translation initiation and elongation, and protein biosynthesis,

suggesting that protein biosynthesis and processing machinery

remain at fairly high levels. Our Western blot data suggest that

translation is more tightly regulated through Frap1-dependent

phosphorylation events. It is quite interesting that genes encoding

ribosomal proteins and translation initiation and elongation factors

are almost uniformly upregulated in response to CR, but

translation appears to be downregulated. These findings are

consistent with the possibility that many of the effects of CR are

mediated to some degree through the control of protein synthesis

and degradation. This possibility is supported by the findings that

lifespan can be extended by mutations in translational regulatory

proteins and in many individual ribosomal proteins in both yeast

and C. elegans (see [53] for review), and less directly in more

complex organisms by the observation that tryptophan restriction

extends lifespan in rats [54] and methionine restriction extends

lifespan in both rats and mice [55,56]. Consistent with this model,

downregulated GO categories in our data include several involved

in protein turnover including endoplasmic reticulum/ER, isom-

erase activity, amino acid derivative biosynthesis, proteasome core

complex, and protein positioning and transport.

Our GO analysis also shows that CR results in relative

downregulation of genes within GO categories associated with

peroxisomes, lysosomes, mitochondria, and metabolism of lipids,

cholesterol, and steroid hormones. Our results are in some cases

consistent with but also contrast the GO analyses reported by

Selman and colleagues resulting from mice treated with acute CR

for 16 days [16]. They also found that genes involved in lipid and

steroid metabolism were upregulated but in contrast to our results

they found a subset of lipid metabolism genes downregulated; they

found the GO category for lipid metabolism (GO:0006629) among

both upregulated and downregulated categories. Also in opposi-

tion to our findings, they found mitochondrion (GO:0005739) and

membrane fraction (GO: 0005624) to be upregulated categories,

and metabolism (GO:0008152) to be downregulated. However, we

found a much larger number of differentially expressed genes in

each category, which might provide an explanation for these

discrepancies. For example, even at the restrictive cutoff used in

our analysis there are 345 differentially expressed genes in the

metabolism GO category compared to 181 in their data. These

additional genes might be responsible for the disparate findings.

Our results also show a clear alteration in hormone biosynthesis

and suggest that even short-term CR biases expression changes

toward a more feminine profile. This hypothesis was confirmed by

comparing our data to the whole-genome survey of sexually

dimorphic gene expression performed by Yang and colleagues on

165 male and 169 female mice [36]. This confirms the findings

made by Swindell in an analysis of longer duration (between 2 and

17 months) CR experiments on male mice, and sexually

dimorphic expression on small groups of female and male mice

(n = 6 in each group) [25]. Overall, our results showing

downregulation of genes involved in sterol, steroid, and sex

hormone production by CR suggest a possible primary or

significant contributory mechanism for some of the hormonal

changes in response to CR in several species, including humans.

Even more importantly, these changes further tie CR to key

hormonal and cellular effectors of aging in model organisms, and

possibly even in humans, since in humans and most other

mammals females live longer than males [21,22].

However, even though CR extends lifespan in both male and

female mice there are two primary barriers to establishing simple

relationships between CR, gender, hormones, and lifespan, and

extrapolating mouse and other rodent results to humans and other

primates: 1) there is clear disagreement among prior reports

regarding the effects of CR on various hormone levels in rodents,

humans and other primates [57–60]; and, 2) there is disagreement

among previous studies regarding gender effects on mouse

lifespan. Reports of CR-induced changes of important hormone

biomarkers such as GH, IGF1, and DHEA-S (dehydroepiandros-

terone sulfate) are variable across and even within species. These

variable results are counterbalanced somewhat by the fact that the

effects of CR on insulin levels and the insulin axis appear to be

mostly consistent across species [57,60]. Insulin is a key longevity

biomarker but the insulin axis is complex and is regulated by many

other hormones, including sex and adrenocortical hormones [60].

Importantly, it remains unclear whether or not there are gender

differences in mouse lifespan. One large and early study suggests

females live longer than males, especially virgin females [24]. This

study from the Jackson Labs remains among the largest, with data

on thousands of mice, but later data from this same facility cast

doubt on these prior results, as improved conditions allowed far

greater lifespans [24]. More recent but still unpublished data from

this facility on 3,744 mice of 32 different laboratory strains suggest

that females might not live longer [61], supporting prior data

presented by others including Ingram et al. [62]. Until final data

from this and other high-quality studies are published, whether or

not there is a difference between male and female mouse lifespan

will remain an open question. Nevertheless, our data raise some

intriguing questions including 1) are hormonal aspects or other

determinants of gender also important regulators of lifespan; and

2) what might be the effect of CR on gene expression in female

mice? It is possible that the response will be similar to what we

found in male mice, i.e. many of the same genes will change in a

trajectory away from male expression levels. It will be important to

test this possibility and determine whether or not CR induces

feminizing gene expression changes in organisms that have a clear

female lifespan advantage, such as humans, and whether such

changes might influence lifespan.

Materials and Methods

Animals and dietary regimens
Nine-month-old retired breeder ICR male mice were obtained

from Harlan Breeders (Indianapolis, IN). Animals were kept in a

positively pressurized HEPA air-filtered animal room with 12-hour

light/dark cycles. A total of 35 mice were fed 3 specified dietary

regimens. Six mice were fed a True Ad Libitum (TAL) diet of

which they ate as much as they desired, 12 mice were fed calorie-

restricted diets of 73 kcals per week (CR), and 17 mice were fed a

diet of 110 kcals per week (Fixed High Calorie, FHC). Recovered

food from TAL mice suggested an average consumption plus loss
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of 149 kcal/week, however, a small amount of the food clearly was

lost in bedding, and a more accurate estimate is probably between

120 and 130 kcal/week. Therefore, we estimate the approximate

percent calorie reduction for each fixed-calorie diet relative to

TAL is 10% to 15% for FHC and 40% to 45% for CR. Calorie

reduction of CR relative to FHC is 34%. All mice were given non-

acidified water ad libitum throughout regimen treatment.

Mice were fed freshly hydrated food every twelve hours at the

beginning and end of the light cycle. Purified diets differing in caloric

composition but similar in macronutrient ratios to AIN-93M (Diet

No. F05312, Bioserv, Frenchtown, NJ) were assembled from

individual ingredients and vitamin and mineral mixes (Bio-Serv,

Frenchtown, NJ). These diets consisted of the following approximate

caloric composition: 10% fat, 15% protein, and 75% carbohydrate.

Animals were fed 12 to 16 hours prior to sacrifice and remaining food

was removed after feeding FHC and TAL mice. Animals were

sacrificed by rapid decapitation. Tissues were immediately harvested

and flash frozen in liquid nitrogen, placed in polypropylene tubes and

placed in cryogenic storage for future processing. All animal housing

and experiments were performed in compliance with prevailing local,

state, and federal regulations of Waltham, MA, USA, and according

to the guidelines of Suckow et al. [63] and the Institute for Laboratory

Animal Research (ILAR) [64].

To assess the possibility of minimizing expenses over the long-

term some RNA samples were combined into pools of 3 prior to

cDNA synthesis and hybridization to single microarrays. Pooling

of RNA samples for microarray analysis has been reported to

reduce intrasample variance and results in averaging of most

genes, but does not otherwise affect the analysis [65]. In our

experiments all microarrays of pooled samples were analyzed

identically with microarrays from individual samples. The 8 CR

microarrays consist of 6 microarrays from individual samples and

2 microarrays each produced using pooled RNA samples from 3

other individual mice. The 15 high calorie microarrays consist of 3

individual and 1 pool of TAL samples and 8 individual and 3

pooled FHC samples.

Microarray experiments
Spotted, long oligonucleotide microarrays representing

,19,000 genes, duplicates and controls (17,752 non-redundant

genes and ESTs) were used to interrogate mRNA abundance

(GEO platform accession GPL6761; GEO Samples GSM283874

through GSM283896). The oligonucleotide library was designed

by Compugen and manufactured by Sigma-Genosys. Liver

samples were taken from cryogenic storage and fragmented in

liquid nitrogen. Total RNA was purified by Qiagen RNeasy Mini

kit. Briefly, several small pieces totaling 200 mg taken from

different locations from an individual liver were homogenized in

Qiagen guanidine isothiocyanate lysis buffer, and then subsequent

steps were performed according to the Qiagen protocol. All pools

of RNA were made by combining equal amounts of each

individual RNA sample subsequent to purification and quantifi-

cation of RNA samples from the individual livers. Microarray

design and preparation, sample labeling, and microarray hybrid-

ization and scanning services were performed by the Harvard

Partners Center for Genetics and Genomics (now Partners Center

for Personalized Genetic Medicine). Stratagene Universal Mouse

Reference RNA was chosen as a control for two-color hybridiza-

tion [66]. Fluorescent labels were incorporated directly during

cDNA synthesis using the ChipShot direct labeling and cleanup

system according to the manufacturer’s instructions (Promega,

Madison, WI). Total liver RNA was labeled with Cy3 and control

RNA was labeled with Cy5. Following dye incorporation and

sample cleanup, sample cDNA and control cDNA were mixed

together with spiked controls that aid in hybridization calibration,

and then the mixed sample was hybridized to the microarray

surface using a Maui Hybridization System (Biomicro, Salt Lake

City, UT). Microarrays were washed and scanned at 532 nm and

635 nm wavelengths on an Axon 4000B microarray scanner

(Axon Instruments, Union City, CA).

Microarray data collection, processing, and analysis
Scanned data were collected and processed using GenePix 4.1

software (Axon Instruments, Union City, CA). Genes with median

spot intensities below 50 for liver expression for both CR and

HIGHCAL were culled from the data set to give a set of 9,550 genes

and controls for normalization. These culled data were normalized

using the CARMAweb implementation of the limma package for R.

Median background was subtracted from median foreground signal

using the normexp method followed by loess within-array normal-

ization and then scale between-array normalization [67,68]. To

further eliminate genes near background in these normalized data we

set a median expression threshold value of 90 for either CR or

HIGHCAL. These adjustments gave a final normalized and culled

set of 8,347 genes and controls for statistical testing. For testing of

significance we used the software package, Significance Analysis of

Microarrays (SAM) and implemented the two class unpaired option

[26]. SAM computes and returns a ranked list of significant genes and

several statistics, including the modified t-statistic d, and the median

false discovery rate (FDR). The FDR increases with the number of

genes called significant and is the median number of genes falsely

called significant from all permutations divided by the number of

genes called significant at a user-specified cutoff. The q-value is the

lowest FDR at which a given gene is called significant. For group 1 we

chose all 15 microarrays from all high-calorie-fed mice (HIGHCAL)

and for group 2 we chose all 8 CR microarrays. We included gene

duplicates and controls in the SAM procedure but removed them

after, leaving a non-redundant set of 8,347 genes.

For GenAge associations we used only mouse genes and mouse

orthologs of human genes listed in GenAge. For human genes we

conservatively used only mouse orthologs that share the same

function and assigned Entrez gene name listed in the Homologene

database (release 59). For GO classification we used the web tool

FuncAssociate [35]. FuncAssociate uses a Monte Carlo simulation

approach and returns all overrepresented GO classes for a given

set of input genes relative to the gene universe from which this

subset is derived, along with several descriptive statistics, including

P-value based on Fisher’s exact test, and adjusted P-value based on

1000 null hypothesis simulations to correct for simultaneous

testing of multiple non-independent hypotheses. We analyzed six

different sets of genes using FuncAssociate: upregulated, down-

regulated, and all genes, from both permissive and restrictive data

sets. FuncAssociate analyses were run using the unordered input

option. The input gene universe for FuncAssociate consisted of all

genes on our microarrays, which FuncAssociate culled down to a

final set of 17,851 unique genes.

Western blots and quantitative RT–PCR
For Western blots mouse livers (100 mg) were homogenized in

16 NuPAGE LDS loading buffer (cat. #NP0007, Invitrogen,

Carlsbad, CA) with 16protease inhibitor mix (cat. #8340, Sigma-

Aldrich, St. Louis, MO), 16Phosphatase Inhibitor Cocktail Set 1

(cat. #524624, Calbiochem, San Diego, CA) and 16Phosphatase

Inhibitor Cocktail Set 2 (cat. #524625, Calbiochem, San Diego,

CA). The homogenates were sonicated for 15 seconds to reduce

viscosity, and centrifuged at 15,0006g for 10 minutes to remove

insoluble material. Samples were subjected to standard SDS-

PAGE and probed by Western blot using phospho-specific
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antibodies against phospho-4E-BP1 (Thr70) (cat. #9455, Cell

Signaling Technology, Danvers, MA), phospho-p70 S6 kinase

(Thr389) (cat. #9205, Cell Signaling Technology, Danvers, MA)

and phospho-p70 S6 kinase (Thr421/Ser424) (cat. # 9204, Cell

Signaling Technology, Danvers, MA). Membranes were stripped

using Restore Western Blot Stripping Buffer (cat. #21059, Pierce

Biotechnology, Inc., Rockford, IL) for 30 minutes at 37uC, and

were reprobed with antibodies directed against total p70 S6 kinase

(cat. #9202, Cell Signaling Technology, Danvers, MA) or total

4E-BP1 (cat. #9452, Cell Signaling Technology, Danvers, MA).

Membrane bound HRP-conjugated secondary antibody was

detected using SuperSignal West Femto Maximum Sensitivity

Substrate (cat. #34095, Pierce Biotechnology, Inc., Rockford, IL).

Quantitation of protein bands was performed using Quantity One

software (Bio-Rad Laboratories, Inc., Hercules, CA).

We used quantitative RT-PCR (Q-RT-PCR) to verify micro-

array results for specific genes of interest. A listing of primers used

in Q-RT-PCR assays can be found in Table S4 and all fold-

changes can be found in Table S1. Two control transcripts

(Masp2 and D3Ucla1) were chosen; of all transcripts with high but

non-saturable expression levels, they were among the transcripts

with the lowest variance across all tested regimens. Primers that

amplify a predicted amplicon of at least 100 bases and less than

250 bases were favored over others. All of the primers for Q-RT-

PCR were designed to span exon junctions so as to avoid

amplification of any potential contaminating genomic DNA.

Nevertheless, in addition to ‘‘no RNA’’ negative control reactions

for each primer, for all RNAs we performed ‘‘no RT’’ PCR

reactions (i.e., without reverse transcriptase) in order to ensure that

there is no contaminating genomic DNA that would result in

amplification products in the Q-RT-PCRs. First strand cDNA

synthesis was performed with 10 mg of total RNA, random

hexamers, and SuperScriptIII Reverse Transcriptase (Invitrogen).

Each quantitative PCR reaction was carried out in iCycler IQ

Real-Time Detection Systems (Bio-Rad), in a total volume of

25 ml, which contained 16 iQ SyBr Green Supermix (BioRad)

and 200 nM forward and reverse primers. PCR amplification for

each cDNA sample was performed in at least triplicate wells. The

quantitative PCR conditions were as follows: 3 min at 95uC,

followed by a total of 45 three-temperature cycles (30 sec at 95uC,

30 sec at between 60.5uC and 65.0uC, and 45 sec at 72uC).

Relative gene expression data analysis was carried out with the

standard curve method [69,70], and statistical significance of fold-

changes was calculated using a t-test, requiring a P-value of at least

0.05 for significance [71,72].

Supporting Information

Table S1 Quantitative RT-PCR fold-changes and array fold-

changes for selected transcripts. Positive fold changes are ratios of

CR/HIGHCAL and negative fold changes are negative values of

ratios of HIGHCAL/CR. Unless denoted as not significant (NS)

all listed RT-PCR values are significant at P,0.05.

Found at: doi:10.1371/journal.pone.0005242.s001 (0.02 MB

XLS)

Table S2 All genes significantly changed in CR relative to

HIGHCAL. Fold changes are provided by Significance Analysis of

Microarrays (SAM) software, and are approximate values averaged

over all CRmax/HIGHCAL conditions. Negative fold changes are

represented as the negative inverse (-HIGHCAL/CRmax). Stat

Score (d) is the modified t-statistic returned by SAM. FC Rank is the

ranking of genes in descending order from largest to smallest fold

change and separate rankings are provided for upregulated and

downregulated genes. Separate statistical rankings are provided for

upregulated and downregulated genes and are combined into a

single list. q-value is given as a percent from SAM and the restrictive

set of genes comprises those with a q-value,1.0%.

Found at: doi:10.1371/journal.pone.0005242.s002 (0.75 MB

XLS)

Table S3 Significantly over-represented Gene Ontology (GO)

terms returned by FuncAssociate at an adjusted P-value cutoff of

p,0.05. GO terms are listed in descending order of significance for

each input gene set. Six sets are shown: genes UPREGULATED by

CR, genes DOWNREGULATED by CR, and the combined list of

genes both up- and DOWNREGULATED by CR, for both

statistical cutoffs, q,0.01 and q,0.1. Rank is the position in the

attribute list ranked by significance of association with the given

query; N is the number of genes in the query with this attribute; X is

the number of genes overall in the query universe with this attribute;

LOD is the natural log of the odds ratio; P is the single hypothesis

one-sided P-value of the association between attribute and query

(based on Fisher’s Exact Test); and P-adj is the adjusted P-value:

fraction (as a %) of 1000 null-hypothesis simulations having

attributes with this single-hypothesis P value or smaller.

Found at: doi:10.1371/journal.pone.0005242.s003 (0.10 MB

XLS)

Table S4 Primer sequences used for Q-RT-PCR.

Found at: doi:10.1371/journal.pone.0005242.s004 (0.02 MB

XLS)

Acknowledgments

We thank Shireen Jyawook of the Partners Center for Personalized Genetic

Medicine for technical assistance in the microarray experiments, and John

Quackenbush and Joao Pedro de Magalhaes for critical reading of the

manuscript.

Author Contributions

Conceived and designed the experiments: PE. Performed the experiments:

PE JbW. Analyzed the data: PE JbW MLB. Contributed reagents/

materials/analysis tools: PE MLB. Wrote the paper: PE.

References

1. McCay C, Crowell M, Maynard L (1935) The effect of retarded growth upon

the length of life span and upon the ultimate body size. J Nutrition 10: 63–79.

2. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell

120: 449–460.

3. Liang H, Masoro EJ, Nelson JF, Strong R, McMahan CA, et al. (2003) Genetic

mouse models of extended lifespan. Exp Gerontol 38: 1353–1364.

4. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation

of longevity and stress resistance by Sch9 in yeast. Science 292: 288–290.

5. Kaeberlein M, Powers RW, 3rd, Steffen KK, Westman EA, Hu D, et al. (2005)

Regulation of yeast replicative life span by TOR and Sch9 in response to

nutrients. Science 310: 1193–1196.

6. Hertweck M, Gobel C, Baumeister R (2004) C. elegans SGK-1 is the critical

component in the Akt/PKB kinase complex to control stress response and life

span. Dev Cell 6: 577–588.

7. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, et al. (2004) Regulation of

lifespan in Drosophila by modulation of genes in the TOR signaling pathway.

Curr Biol 14: 885–890.

8. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, et al. (2003) Genetics:

influence of TOR kinase on lifespan in C. elegans. Nature 426: 620.

9. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and

regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098–

1101.

10. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and

metabolism. Cell 124: 471–484.

11. Bishop NA, Guarente L (2007) Genetic links between diet and lifespan: shared

mechanisms from yeast to humans. Nat Rev Genet 8: 835–844.

12. Kennedy BK, Steffen KK, Kaeberlein M (2007) Ruminations on dietary

restriction and aging. Cell Mol Life Sci 64: 1323–1328.

CR Feminizes Gene Expression

PLoS ONE | www.plosone.org 10 April 2009 | Volume 4 | Issue 4 | e5242



13. Sjogren K, Jansson JO, Isaksson OG, Ohlsson C (2002) A transgenic model to

determine the physiological role of liver-derived insulin-like growth factor I.
Minerva Endocrinol 27: 299–311.

14. Amador-Noguez D, Yagi K, Venable S, Darlington G (2004) Gene expression

profile of long-lived Ames dwarf mice and Little mice. Aging Cell 3: 423–441.
15. Miller RA, Chang Y, Galecki AT, Al-Regaiey K, Kopchick JJ, et al. (2002) Gene

expression patterns in calorically restricted mice: partial overlap with long-lived
mutant mice. Mol Endocrinol 16: 2657–2666.

16. Selman C, Kerrison ND, Cooray A, Piper MD, Lingard SJ, et al. (2006)

Coordinated multitissue transcriptional and plasma metabonomic profiles
following acute caloric restriction in mice. Physiol Genomics 27: 187–200.

17. Linford NJ, Beyer RP, Gollahon K, Krajcik RA, Malloy VL, et al. (2007)
Transcriptional response to aging and caloric restriction in heart and adipose

tissue. Aging Cell 6: 673–688.
18. Cao SX, Dhahbi JM, Mote PL, Spindler SR (2001) Genomic profiling of short-

and long-term caloric restriction effects in the liver of aging mice. Proc Natl

Acad Sci U S A 98: 10630–10635.
19. Dhahbi JM, Kim HJ, Mote PL, Beaver RJ, Spindler SR (2004) Temporal

linkage between the phenotypic and genomic responses to caloric restriction.
Proc Natl Acad Sci U S A 101: 5524–5529.

20. Bauer M, Hamm AC, Bonaus M, Jacob A, Jaekel J, et al. (2004) Starvation

response in mouse liver shows strong correlation with life-span-prolonging
processes. Physiol Genomics 17: 230–244.

21. Burger JM, Promislow DE (2004) Sex-specific effects of interventions that extend
fly life span. Sci Aging Knowledge Environ 2004: pe30.

22. Promislow DE (1992) Costs of sexual selection in natural populations of
mammals. Proc R Soc London Ser B 247: 203–210.

23. Weindruch R, Walford RL, Fligiel S, Guthrie D (1986) The retardation of aging

in mice by dietary restriction: longevity, cancer, immunity and lifetime energy
intake. J Nutr 116: 641–654.

24. Hoag WG (1963) Spontaneous Cancer in Mice. Ann N Y Acad Sci 108:
805–831.

25. Swindell WR (2007) Gene expression profiling of long-lived dwarf mice:

longevity-associated genes and relationships with diet, gender and aging. BMC
Genomics 8: 353.

26. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays
applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:

5116–5121.
27. Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, et al. (2006) A global map of p53

transcription-factor binding sites in the human genome. Cell 124: 207–219.

28. de Magalhaes JP, Costa J, Toussaint O (2005) HAGR: the Human Ageing
Genomic Resources. Nucleic Acids Res 33: D537–543.

29. Fu C, Hickey M, Morrison M, McCarter R, Han ES (2006) Tissue specific and
non-specific changes in gene expression by aging and by early stage CR. Mech

Ageing Dev 127: 905–916.

30. Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N (1996) Rapamycin
blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of

translation. Embo J 15: 658–664.
31. Proud CG (2007) Signalling to translation: how signal transduction pathways

control the protein synthetic machinery. Biochem J 403: 217–234.
32. Deyoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW (2008) Hypoxia regulates

TSC1/2 mTOR signaling and tumor suppression through REDD1-mediated 14

3 3 shuttling. Genes Dev 22: 239–251.
33. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, et al. (2004)

Regulation of mTOR function in response to hypoxia by REDD1 and the
TSC1/TSC2 tumor suppressor complex. Genes Dev 18: 2893–2904.

34. Gingras AC, Raught B, Sonenberg N (2004) mTOR signaling to translation.

Curr Top Microbiol Immunol 279: 169–197.
35. Berriz GF, King OD, Bryant B, Sander C, Roth FP (2003) Characterizing gene

sets with FuncAssociate. Bioinformatics 19: 2502–2504.
36. Yang X, Schadt EE, Wang S, Wang H, Arnold AP, et al. (2006) Tissue-specific

expression and regulation of sexually dimorphic genes in mice. Genome Res 16:

995–1004.
37. Fu C, Xi L, Wu Y, McCarter R, Richardson A, et al. (2004) Hepatic genes

altered in expression by food restriction are not influenced by the low plasma
glucose level in young male GLUT4 transgenic mice. J Nutr 134: 2965–2974.

38. Miller RA, Harper JM, Galecki A, Burke DT (2002) Big mice die young: early
life body weight predicts longevity in genetically heterogeneous mice. Aging Cell

1: 22–29.

39. Shimokawa I, Higami Y, Tsuchiya T, Otani H, Komatsu T, et al. (2003) Life
span extension by reduction of the growth hormone-insulin-like growth factor-1

axis: relation to caloric restriction. Faseb J 17: 1108–1109.
40. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, et al. (2005) Nutrient

control of glucose homeostasis through a complex of PGC-1alpha and SIRT1.

Nature 434: 113–118.
41. Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA (2003)

Nicotinamide and PNC1 govern lifespan extension by calorie restriction in
Saccharomyces cerevisiae. Nature 423: 181–185.

42. Lin SJ, Ford E, Haigis M, Liszt G, Guarente L (2004) Calorie restriction extends
yeast life span by lowering the level of NADH. Genes Dev 18: 12–16.

43. Tsuchiya M, Dang N, Kerr EO, Hu D, Steffen KK, et al. (2006) sirtuin-

independent effects of nicotinamide on lifespan extension from calorie restriction
in yeast. Aging Cell 5: 505–514.

44. Okamura S, Arakawa H, Tanaka T, Nakanishi H, Ng CC, et al. (2001) p53DINP1,

a p53-inducible gene, regulates p53-dependent apoptosis. Mol Cell 8: 85–94.
45. Li Y, Dowbenko D, Lasky LA (2002) AKT/PKB phosphorylation of p21Cip/

WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival.

J Biol Chem 277: 11352–11361.
46. Kawauchi K, Ihjima K, Yamada O (2005) IL-2 increases human telomerase

reverse transcriptase activity transcriptionally and posttranslationally through
phosphatidylinositol 39-kinase/Akt, heat shock protein 90, and mammalian

target of rapamycin in transformed NK cells. J Immunol 174: 5261–5269.

47. Sofer A, Lei K, Johannessen CM, Ellisen LW (2005) Regulation of mTOR and
cell growth in response to energy stress by REDD1. Mol Cell Biol 25:

5834–5845.
48. Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, et al. (2002)

REDD1, a developmentally regulated transcriptional target of p63 and p53,
links p63 to regulation of reactive oxygen species. Mol Cell 10: 995–1005.

49. Reiling JH, Hafen E (2004) The hypoxia-induced paralogs Scylla and Charybdis

inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila.
Genes Dev 18: 2879–2892.

50. Corradetti MN, Inoki K, Guan KL (2005) The stress-inducted proteins RTP801
and RTP801L are negative regulators of the mammalian target of rapamycin

pathway. J Biol Chem 280: 9769–9772.

51. Sharp ZD, Bartke A (2005) Evidence for down-regulation of phosphoinositide 3-
kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR)-dependent

translation regulatory signaling pathways in Ames dwarf mice. J Gerontol A Biol
Sci Med Sci 60: 293–300.

52. Jiang W, Zhu Z, Thompson HJ (2008) Dietary energy restriction modulates the
activity of AMP-activated protein kinase, Akt, and mammalian target of

rapamycin in mammary carcinomas, mammary gland, and liver. Cancer Res 68:

5492–5499.
53. Kaeberlein M, Kennedy BK (2007) Protein translation, 2007. Aging Cell 6:

731–734.
54. Segall PE, Timiras PS (1976) Patho-physiologic findings after chronic

tryptophan deficiency in rats: a model for delayed growth and aging. Mech

Ageing Dev 5: 109–124.
55. Orentreich N, Matias JR, DeFelice A, Zimmerman JA (1993) Low methionine

ingestion by rats extends life span. J Nutr 123: 269–274.
56. Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, et al. (2005) Methionine-

deficient diet extends mouse lifespan, slows immune and lens aging, alters
glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and

stress resistance. Aging Cell 4: 119–125.

57. Walford RL, Mock D, Verdery R, MacCallum T (2002) Calorie restriction in
biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical

parameters in humans restricted for a 2-year period. J Gerontol A Biol Sci Med
Sci 57: B211–224.

58. Lane MA, Black A, Handy A, Tilmont EM, Ingram DK, et al. (2001) Caloric

restriction in primates. Ann N Y Acad Sci 928: 287–295.
59. Ramsey JJ, Colman RJ, Binkley NC, Christensen JD, Gresl TA, et al. (2000)

Dietary restriction and aging in rhesus monkeys: the University of Wisconsin
study. Exp Gerontol 35: 1131–1149.

60. Redman LM, Ravussin E (2009) Endocrine alterations in response to calorie
restriction in humans. Mol Cell Endocrinol 299: 129–136.

61. Yuan R, Paigen B (2008) Aging study: Lifespan and survival curves. http://

phenome.jax.org/pub-cgi/phenome/mpdcgi?rtn=projects/details&sym=Yuan2.
62. Ingram DK, Reynolds MA, Les EP (1982) The relationship of genotype, sex,

body weight, and growth parameters to lifespan in inbred and hybrid mice.
Mech Ageing Dev 20: 253–266.

63. Suckow M, Danneman P, Brayton C (2000) The Laboratory Mouse. Boca

Raton: CRC Press.
64. Institute for Laboratory Animal Research I (1996) Guide for the Care and Use of

Laboratory Animals. Washington, D.C.: National Academy Press.
65. Kendziorski C, Irizarry RA, Chen KS, Haag JD, Gould MN (2005) On the

utility of pooling biological samples in microarray experiments. Proc Natl Acad

Sci U S A 102: 4252–4257.
66. Novoradovskaya N, Whitfield ML, Basehore LS, Novoradovsky A, Pesich R, et

al. (2004) Universal Reference RNA as a standard for microarray experiments.
BMC Genomics 5: 20.

67. Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, et al. (2007) A
comparison of background correction methods for two-colour microarrays.

Bioinformatics 23: 2700–2707.

68. Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods
31: 265–273.

69. Winer J, Jung CK, Shackel I, Williams PM (1999) Development and validation
of real-time quantitative reverse transcriptase-polymerase chain reaction for

monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 270:

41–49.
70. Heid C, Stevens J, Livak K, Williams P (1996) Real time quantitative PCR.

Genome Res 6: 986–994.
71. Liss B (2002) Improved quantitative real-time RT-PCR for expression profiling

of individual cells. Nucleic Acids Res 30: e89.
72. Strand AD, Olson JM, Kooperberg C (2002) Estimating the statistical

significance of gene expression changes observed with oligonucleotide arrays.

Hum Mol Genet 11: 2207–2221.
73. NCBI (2007) Entrez Gene. http://www.ncbi.nlm.nih.gov/sites/entrez.

CR Feminizes Gene Expression

PLoS ONE | www.plosone.org 11 April 2009 | Volume 4 | Issue 4 | e5242


