Predictors of Plasma Concentrations of DDE and PCBs in a Group of U.S. Women.

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1289/ehp.9910775</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:4889499</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Concern about possible adverse health effects, including a possible role in the etiology of hormonal disease such as breast cancer, associated with exposure to dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), and polychlorinated biphenyls (PCBs) has prompted research into the determinants of blood levels of these chemicals in the general population. DDT, an insecticide, was used for agricultural purposes, as well as in public health programs to eradicate malaria (1). DDE is an environmental degradation product and the main metabolite of DDT. DDT was manufactured and used in the United States from 1945 until it was banned in 1972 (2) due to its adverse affects on wildlife (3). Mixtures of PCB congeners were used for many industrial purposes such as coolants and lubricants in transformers and capacitors; as plasticizers, surface coatings, adhesives, and inks; as immersion oils for microscopes; and for microencapsulation of dyes in carbonless duplicating paper (2). PCBs were produced in the United States from 1929 until 1977.

Since the 1940s, the entire U.S. population has been exposed to at least low levels of DDT, its related compounds, and PCBs (2,4). These compounds are stored in adipose tissue, the lipid components of blood, and breast milk. They are resistant to metabolism and have long half-lives; therefore, measurements in humans potentially represent cumulative exposures over many years (5,6). Although adipose levels in the general population have decreased (2,7), residues of these organochlorines are still detected in the majority of persons living in the United States (3).

DDT, DDE, and PCBs are persistent lipophilic compounds and highly resistant to biodegradation in the environment. Even today, many years after manufacture in the United States ceased, they are ubiquitous in air, soil, water, and sediments, albeit at levels much lower than observed in earlier decades (5,6,8). Continuing introduction of DDT and PCBs into the environment occurs in the United States through industrial accidents, improper disposal of old industrial products, and the import of foodstuffs from developing countries where DDT is still used. The primary source of exposure to the general population is through the food chain; these compounds are stored in the fat of fish and dairy and meat products (1,5,6,8,9). Fish obtain organochlorines from the sediments of fresh water bodies; for example, high levels of DDT and PCBs have been repeatedly measured in fish caught in the Great Lakes (10,11). Dairy and beef cattle and poultry and eggs have been exposed to PCBs from animal feed stored in contaminated silos (12,13), as well as from DDT and PCBs in the general environment. Residues of these organochlorines have also been measured in fruits, vegetables, and grains (14).

In this study we evaluated the predictors of plasma concentrations of DDE and PCBs in a group of U.S. women. We considered personal attributes such as age, dietary cholesterol, place of residence, body mass index, and lactation history, as well as extensive dietary intake information collected prior to blood sampling. We chose to evaluate levels of DDE as opposed to DDT because it is found in higher concentrations in blood (15) and is a better reflection of long-term exposure (16).

Methods

Study Population

We studied 490 women who were included in a case–control study of organochlorines and risk of breast cancer, nested in the Nurses’ Health Study cohort (17). The Nurses’ Health Study is an ongoing prospective cohort study established in 1976 when 121,700 registered nurses completed a mailed questionnaire that included items about known or suspected risk factors for breast cancer and other diseases. At enrollment, the participants were between the ages of 30 and 55 years of age and resided in 11 large states in the four regions of the continental United States (Northeast: Connecticut, Massachusetts, New Jersey, New York, Pennsylvania; Western: California, Oregon, Washington; South: Florida, Georgia, North Carolina, Texas, Virginia; Midwest: Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, Wisconsin) or the District of Columbia; and in 1998.

Address correspondence to F. Laden, Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115 USA.

We thank the registered nurses who participated in this study, Rachel Meyer, Michelle LaChance, Kathryn Starzyk, Nancy Niguido, Dorota Gertig, Sherry Yuan, and Sidney Atwood.

Supported by grants U01 CA68298, CA40356, and CA49449 from the National Institutes of Health, by an Institutional National Service Award (5 T32 CA09001-19 to F.L.), and by an American Cancer Society Faculty Research Award (FRA-455 to D.J.H.). Received 22 June 1998; accepted 4 September 1998.
Articles • Laden et al.

Midwest: Michigan, Ohio; South: Florida, Maryland, Texas; West: California). In 1989–1990, 32,826 women sent us one blood sample each, using methods previously described (18). Cases eligible for the nested case–control study were women who did not have a diagnosis of cancer (other than non-melanoma skin cancer) at the time of blood draw and who were subsequently diagnosed with breast cancer prior to 1 June 1992; there were 240 eligible cases. For each case we matched a control on year of birth, menopausal status, month and time of day of blood collection, fasting status at blood draw, and postmenopausal hormone use. To avoid the possibility of any influence of disease on the status of the potential predictors and their relationship to metabolism or storage of DDE and PCBs and to maximize the generalizability of our results, the primary analyses were conducted with data from the 240 control subjects only. Because we did not observe a significant difference in measured levels of PCBs and DDE between cases and controls (17), we used the data from the 240 cases as a validation data set to assess whether associations observed among the controls were reproducible.

Exposure Information

Participants in the Nurses’ Health Study have completed biennial questionnaires updating information on demographic, lifestyle, and medical characteristics since 1976. Each participant in the blood cohort also completed a questionnaire at the time of blood draw. We derived information on possible predictors of PCBs and DDE from either this supplemental questionnaire or the main Nurses’ Health Study questionnaire administered in 1986. We considered region of residence in 1986; 8% of the nurses had moved from their 1976 region of residence. The states represented in the study included the original 11 and New Hampshire in the Northeast; Georgia, Louisiana, North Carolina, and Virginia in the South; and New Mexico, Oregon, and Washington in the West.

We obtained dietary information in 1986 with a semiquantitative food frequency questionnaire. We asked subjects to indicate how often, on the average, they consumed specified amounts of 136 food items. There were nine possible responses for each food item, ranging from never to six or more times per day. We also obtained frequency information on intake of 61 foods in 1980, and used these data to assess associations with diet further in the past, closer to the time when DDT and PCBs were still in use. Details of the results of validation studies of the food frequency questionnaire have been described elsewhere (19).

Laboratory Analyses

The laboratory methods have been previously described in detail (20). Briefly, a polar extract of plasma lipids was further treated with a column chromatographic clean-up and enrichment step and then analyzed by gas chromatography with electron capture detection. All steps were scaled appropriately for 0.50-ml aliquot volumes. We previously demonstrated, using Nurses’ Health Study specimens, that the precision with the use of this volume and an optimized analytic procedure is similar to that with previous procedures using 1-ml and 2-ml aliquots (22). The amount of methanol was optimized (0.3 ml) to create a good interface between the aqueous layer and the ether–hexane extractant (1.25 ml). Results are reported in parts per billion (ppb), i.e., nanograms per milliliter. PCBs are the sum of 16 higher PCB congeners, those with retention times longer than that of DDE (penta-, hexa-, and heptachlorophenyls). On average, four individual congeners [International Union of Pure and Applied Chemistry (IUPAC) 118, 180, 138, and 153] constituted 73% of the total PCBs. The detection limits were less than 1 ppb for both DDE and PCBs, based on 3 × the standard deviation (23) of 24 determinants of a quality control plasma pool having approximately 1 ppb DDE and PCBs. Total plasma cholesterol was determined using a procedure described by Allain et al. (24).

Randomly ordered case–control pairs were sent to the laboratory in batches of 12 pairs; each batch included two blinded split samples from a pool of premenopausal or postmenopausal plasma. For each batch we calculated the coefficient of variation percentage (CV%); the median CV% for DDE was 4.3% and for PCBs, the median CV% was 13.2%. Values were missing for DDE (two cases and two controls) and PCBs (an additional two controls and four cases) due to lost samples or evidence of contamination.

Statistical Analyses

Dietary predictors. Subjects who did not answer the food frequency questionnaire or who were missing information on 30 or more of the 136 food items were excluded from the analysis. Twenty-five people met this criteria, 23 of whom had not answered the dietary questionnaire. For the remaining subjects, blank responses for individual foods were assumed to indicate zero intake of that food. We scaled the responses to times per day and modeled each food as a continuous variable. To decrease the potential spurious influence of extreme values of food frequencies, the upper categories of intake were collapsed until there were at least five observations in the category representing most frequent consumption.

Based on prior publications on the foods that contribute most to organochlorine intake, we focused our primary diet analysis on the 94 food items included in the following food groups: meat, chicken, fish, eggs, dairy, vegetables, fruit, and grains. To determine if any single food item was a significant predictor of organo-chlorine levels, DDE and PCB levels were regressed independently on each food, one at a time. Each food was evaluated in univariate models as well as in models with age, total cholesterol, and region included. The contribution of each group of foods was evaluated by fitting multiple regression models with parameters for age, total cholesterol, region, and for all foods in the group and calculating the log-likelihood ratio test statistic for the group of food parameters.
To develop a prediction equation using all available food item information, the “maximum R²” improvement selection method was employed. The R² (the square of the Pearson correlation coefficient) provides an estimate of the percentage of variation explained by the regression equation. Thus, for each number of parameters, this technique finds the model that explains the most variation. All 136 food items were given the same opportunity to enter into the model after age, cholesterol, and region were forced in. Models with up to 50 dietary variables included were estimated, and the reproducibility of each model was assessed using the validation data set. All analyses were performed with and without the identified potential outliers included and using the original diet values as well as the collapsed values.

The Spearman correlation coefficient between the measured levels of DDE and DDE exposure scores derived from the U.S. Food and Drug Administration (FDA) Total Diet Study 1986–1991 (28) was also used to test the association of reported diet with DDE in blood plasma. An individual’s average daily dietary exposure to DDE was estimated by combining contaminant residue data in table-ready foods with data on their annual diet in 1990, as measured by the food frequency questionnaire (29). Comparable information on PCBs was not available due to the preponderance of nondetects for PCB residues in the Total Diet Study database (28).

Results

Plasma concentrations of DDE ranged from 0.14 to 39.44 ppb, with a mean ± standard deviation (SD) of 7.09 ± 6.06 in the control series (range 0.19–24.66 ppb) and with a mean ± SD of 6.12 ± 4.58 in the case series. Total plasma PCBs ranged from 1.61 to 16.62 ppb (mean ± SD = 5.22 ± 2.35), and from 1.55 to 17.44 ppb (mean ± SD = 5.15 ± 2.77) in the control and case series, respectively. Comparisons of the distribution of breast cancer risk factors for the controls and cases have been published elsewhere (17).

Nondietary Predictors

Age and serum cholesterol were positively correlated with both DDE and PCBs. Age at blood draw ranged from 43 to 69 years old (mean ± SD = 57.7 ± 7.4); the Spearman correlation coefficients between age and DDE and PCBs were r = 0.37 and r = 0.26, respectively (p = 0.0001 for each). Total serum cholesterol levels ranged from 131 to 414.6 mg/dl (mean ± SD = 226.1 ± 38.7). The Spearman correlation coefficient for cholesterol with DDE was r = 0.15 (p = 0.02) and with PCBs was r = 0.23 (p = 0.0003).

The age- and cholesterol-adjusted means of DDE and PCBs for categories of region in 1986, parity, age at first birth, lactation, body mass index, and waist-to-hip ratio are presented in Table 1. DDE levels of residents in the western states were significantly higher than those of other women (West: mean = 11.0; elsewhere: mean = 6.3; p = 0.003). Parity was unrelated to DDE, but the 17 women with late age at first birth (over age 30) had significantly higher levels of DDE, even after adjustment for parity and history of lactation. There was some indication that DDE levels decreased with duration of past lactation, but this trend was not significant. Also, among the 56 women who lactated for 6 months or more, there was no evidence of an inverse linear relationship; the 10 women who lactated more than 24 months had a mean concentration of 7.46 ppb, while the mean for the remaining 46 women was 6.11 ppb (p = 0.50). Mean DDE levels increased slightly with increasing quartiles of body mass index, but the test for trend was not statistically significant. In the multiple regression model controlling for age, cholesterol, residence in the West, body mass index, parity, and lactation, we found that age, cholesterol, and region remained statistically significant predictors for DDE (Table 2).

Lactation greater than 6 months was of borderline statistical significance. Validation of the various models showed that age and the various lactation were the most important predictors of DDE (Table 3). The addition of other variables, including region, did not improve the predictive ability of the model.

The five women with the highest concentrations of DDE (identified as potential outliers) lived in California, and four out of the five had never breast-fed their infants. Removal of these observations did not materially alter the results from those presented above, although the estimates for region and lactation were attenuated.

PCB concentrations were statistically significantly associated only with region of residence and parity (Table 1). Women residing in the Northeast and Midwest had higher concentrations of PCBs than women residing in the West and South (the mean for Northeast and Midwest was 5.6; the mean for other regions was 4.5 ppb; p = 0.0002). PCBs were also elevated in parous women, whether the levels were due to increased intake or increased susceptibility, further study will be needed.

Table 1. Age- and cholesterol-adjusted mean DDE and PCB levels for potential predictors

<table>
<thead>
<tr>
<th>Predictor</th>
<th>DDE</th>
<th>PCBs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean ± SE</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>124</td>
<td>6.06 ± 0.32</td>
</tr>
<tr>
<td>Midwest</td>
<td>41</td>
<td>6.34 ± 0.77</td>
</tr>
<tr>
<td>South</td>
<td>34</td>
<td>7.26 ± 0.90</td>
</tr>
<tr>
<td>West</td>
<td>39</td>
<td>11.02 ± 1.53</td>
</tr>
<tr>
<td>Purity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nulliparous</td>
<td>23</td>
<td>7.17 ± 1.30</td>
</tr>
<tr>
<td>Parous</td>
<td>215</td>
<td>7.08 ± 0.39</td>
</tr>
<tr>
<td>Number of children</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–2</td>
<td>75</td>
<td>7.80 ± 0.70</td>
</tr>
<tr>
<td>3</td>
<td>57</td>
<td>7.08 ± 0.84</td>
</tr>
<tr>
<td>≥4</td>
<td>83</td>
<td>6.47 ± 0.51</td>
</tr>
<tr>
<td>Age at first birth (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤20</td>
<td>8</td>
<td>7.56 ± 1.92</td>
</tr>
<tr>
<td>21–24</td>
<td>111</td>
<td>6.58 ± 0.50</td>
</tr>
<tr>
<td>25–30</td>
<td>79</td>
<td>7.11 ± 0.88</td>
</tr>
<tr>
<td>≥30</td>
<td>17</td>
<td>10.13 ± 1.40</td>
</tr>
<tr>
<td>Lactation (months)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>74</td>
<td>7.77 ± 0.73</td>
</tr>
<tr>
<td>≤3</td>
<td>82</td>
<td>6.89 ± 0.62</td>
</tr>
<tr>
<td>>6</td>
<td>56</td>
<td>6.35 ± 0.62</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.36–21.80</td>
<td>58</td>
<td>6.53 ± 0.88</td>
</tr>
<tr>
<td>21.80–24.33</td>
<td>61</td>
<td>7.09 ± 0.85</td>
</tr>
<tr>
<td>24.33–26.86</td>
<td>60</td>
<td>7.15 ± 0.89</td>
</tr>
<tr>
<td>26.13–43.93</td>
<td>59</td>
<td>7.58 ± 0.70</td>
</tr>
<tr>
<td>Waist-hip ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.34–0.73</td>
<td>42</td>
<td>7.49 ± 0.84</td>
</tr>
<tr>
<td>0.73–0.77</td>
<td>40</td>
<td>6.19 ± 0.84</td>
</tr>
<tr>
<td>0.77–0.81</td>
<td>44</td>
<td>6.70 ± 0.94</td>
</tr>
<tr>
<td>0.81–0.86</td>
<td>44</td>
<td>7.03 ± 0.67</td>
</tr>
</tbody>
</table>

SE, standard error.

*Hypothesis tests: analysis of variance (ANOVA) for region and parity, test for trend otherwise.

Regional: Northeast: Connecticut (n = 11), Massachusetts (n = 21), New Hampshire (n = 1), New Jersey (n = 18), New York (n = 44), Pennsylvania (n = 33); Midwest: Michigan (n = 19), Ohio (n = 22); South: Florida (n = 14), Georgia (n = 1), Louisiana (n = 1), Maryland (n = 9), North Carolina (n = 2), Virginia (n = 1); West: California (n = 36), New Mexico (n = 1), Oregon (n = 1), Washington (n = 1).

*Among parous women only.
regardless of the number of children and age at first birth, compared to nulliparous women (p = 0.001). There was no relationship of PCBs with lactation, body mass index, or waist-hip ratio. Adjusting for all variables in a multivariate model confirmed these observations (Table 2). Age, cholesterol, and region were the only important predictors in the validation analysis (Table 3). As with DDE, the two women identified as potential outliers for PCB levels resided in the high risk region, in this case the Northeast. Again, omission of these observations did not materially change the results. Analyses of the four major congener also showed significant associations with age, cholesterol, and region, with the exception of IUPAC 180; this congener was not associated with region.

Dietary Predictors

There were no meaningful associations between DDE and the dietary variables.

Table 2. Multivariate models for DDE and PCBs regressed on nondietary variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>DDE</th>
<th>PCBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>0.17</td>
<td>0.0003</td>
</tr>
<tr>
<td>Cholesterol (10 mg/dl)</td>
<td>0.20</td>
<td>0.02</td>
</tr>
<tr>
<td>Region</td>
<td>5.01</td>
<td>0.001</td>
</tr>
<tr>
<td>Body mass index</td>
<td>0.16</td>
<td>0.13</td>
</tr>
<tr>
<td>Parity</td>
<td>0.93</td>
<td>0.49</td>
</tr>
<tr>
<td>Age + cholesterol + region</td>
<td>-1.30</td>
<td>0.18</td>
</tr>
<tr>
<td>Age + cholesterol + BMI</td>
<td>-1.69</td>
<td>0.06</td>
</tr>
<tr>
<td>Age + cholesterol + parity</td>
<td>-1.83</td>
<td>0.16</td>
</tr>
<tr>
<td>Age + cholesterol + lactation variables</td>
<td>0.35</td>
<td>0.46</td>
</tr>
<tr>
<td>Age + cholesterol + BMI + parity + lactation variables</td>
<td>0.35</td>
<td>0.46</td>
</tr>
</tbody>
</table>

R² is 0.21 for DDE and 0.17 for PCBs.

*Region = West for DDE and Northeast and Midwest for PCBs.

*PCB levels resided in the high risk region.

Table 3. Validation of models estimated in the control data set for DDE and PCBs: correlation coefficients between observed and predicted values in the validation data set

<table>
<thead>
<tr>
<th>Model</th>
<th>Spearman correlation coefficients<sup>b</sup></th>
<th>DDE</th>
<th>PCBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.30</td>
<td>0.28</td>
<td>0.31</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0.27</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>Region</td>
<td>0.18</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>Age + cholesterol</td>
<td>0.38</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>Age + cholesterol + region</td>
<td>0.38</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>Age + cholesterol + BMI</td>
<td>0.36</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>Age + cholesterol + parity</td>
<td>0.38</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>Age + cholesterol + lactation variables</td>
<td>0.35</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Age + cholesterol + BMI + parity + lactation variables</td>
<td>0.35</td>
<td>0.46</td>
<td></td>
</tr>
</tbody>
</table>

BMI, body mass index.

*All correlation coefficients are statistically significant at p < 0.01.

Table 4. Contribution of food groups to the prediction equation with age, cholesterol, and region^b

<table>
<thead>
<tr>
<th>Food group<sup>b</sup></th>
<th>Variables in group (n)</th>
<th>DDE</th>
<th>PCBs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R²</td>
<td>p-Value<sup>c</sup></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>Meat</td>
<td>8</td>
<td>0.19</td>
<td>0.28</td>
</tr>
<tr>
<td>Chicken</td>
<td>2</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>Fish (all)</td>
<td>4</td>
<td>0.16</td>
<td>0.72</td>
</tr>
<tr>
<td>Dark and other fish</td>
<td>2</td>
<td>0.16</td>
<td>0.76</td>
</tr>
<tr>
<td>Egg</td>
<td>1</td>
<td>0.16</td>
<td>0.64</td>
</tr>
<tr>
<td>Dairy</td>
<td>10</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Vegetables</td>
<td>34</td>
<td>0.28</td>
<td>0.52</td>
</tr>
<tr>
<td>Fruit</td>
<td>22</td>
<td>0.21</td>
<td>0.85</td>
</tr>
<tr>
<td>Grain</td>
<td>12</td>
<td>0.20</td>
<td>0.55</td>
</tr>
</tbody>
</table>

^bRegion = West in analyses of DDE and Northeast and Midwest in analyses of PCBs.

^cServings per day. Meat includes processed meats; hamburger; beef, pork, or lamb as a main course; beef, pork, or lamb in a mixed course; hot dogs; beef liver; chicken liver; and bacon. Chicken includes chicken or turkey with skin and chicken or turkey without skin. Fish includes dark-meat fish, canned tuna, other fish, shrimp, and other shellfish. Dairy includes skim milk, whole milk, cream cheese, sour cream, ice cream, cottage cheese, other cheese, butter, and yogurt. Vegetables includes string beans, broccoli, cauliflower, cole slaw, cooked cabbage, cauliflower, brussels sprouts, raw carrots, cooked carrots, corn, peas, mixed vegetables, beans, alfalfa sprouts, celery, mushrooms, yellow squash, eggplant, yams, canned spinach, raw spinach, kale, iceberg lettuce, romaine lettuce, green peppers, cucumbers, tomatoes, tomato juice, tomato sauce, chilli sauce, tofu, fried potatoes, potatoes, and potato chips. Fruit includes raisins, avocados, bananas, cantaloupes, watermelons, apples, apple sauce, apple juice, pears, canned pears, peaches, canned peaches, fruit cocktail, strawberries, blueberries, prunes, oranges, orange juice, grapefruits, grapefruit juice, other juice, and jam. Grain includes cereal, oatmeal, cooked cereal, white bread, dark bread, English muffin, muffins, brown rice, white rice, pasta, pancakes, and other grains.

^dValue of log likelihood ratio test for group of variables, given that age, cholesterol, and region are in the model.

Ninety-four food items classified as either meat, chicken, fish, eggs, dairy, vegetables, fruits, or grain were included on the 1986 food frequency questionnaire. None of these food groups contributed significantly to the model controlling for age, cholesterol, and residence in the West (Table 4).

We estimated prediction equations for DDE using the full set of dietary variables and assessed the contribution of the dietary variables to the predictive ability of the models in the validation data set. The models with age, cholesterol, region, and one additional variable, two additional variables, three additional variables, and up to 10 additional variables are presented in Table 5. Slightly different sets of variables were selected, depending on whether we used the original values or the collapsed values for each diet item or if we omitted the observations in the extreme categories. In any case, the dietary variables that entered the DDE model based on their contribution to the model fit were either not foods identified in the previous literature as sources of DDE exposure or they had negative coefficients. We chose to present in Table 5 (as well as in Tables 4 and 6) the models obtained with the collapsed values because they used all of the available data and were less dependent on extreme points that might be inconsistent with the majority of the data. Although the fit of the model improved with additional parameters and the coefficients for all individual food parameters were significant at p < 0.05, the predictive ability of the model, as measured by the validation data set, actually decreased with the inclusion of the food variables.

As a further test of the relationship between the diet information collected by the food frequency questionnaire and the levels of DDE measured in the plasma samples, we calculated the Spearman correlation coefficient comparing the measured levels, adjusted for age and cholesterol, with the average daily dietary exposure to DDE estimated from the FDA Total Diet Study 1986–1991 and the 1990 food frequency questionnaire. These two values were not correlated (r = 0.03, p = 0.66).

Eggs and fish were statistically significant predictors for PCB levels, controlling for age, cholesterol, and residence in the Northeast or Midwest (Table 4). The fish group included variables for dark-meat fish (e.g., mackerel, salmon, sardines, bluefish, and swordfish), other fish, canned tuna, and shellfish. The coefficient for dark-meat fish was 8.6 (p = 0.003) and the coefficient for shellfish was -8.4 (p = 0.01); the coefficients for other fish and canned tuna were not statistically significant. The log-likelihood ratio test for the four variables of the fish group incorporated the
positive coefficient for dark-meat fish as well as the negative coefficient for shellfish.

Because the PCB concentration in locally caught fish and locally grown eggs could vary by region, we explored fish and egg intake in regression analyses stratified by region. Eggs and fish (defined either as dark-meat fish only, other fish, or a combined score of both types) were positive predictors of PCB levels for residents of the Northeast and Midwest (Table 6) but not for residents of the West and South. In congener-specific analyses, all four main congeners were positively associated with the summary variable for fish consumption. The regression coefficient was statistically significant for congeners 118 (p = 0.02), 138 (p = 0.02), and 153 (p = 0.01), but not for 180 (p = 0.18).

As with DDE, the addition of food parameters to the model did not improve its predictive ability in the validation data set (Table 5).

Removing the potential outliers of DDE and PCBs did not substantially alter the above results. We also repeated these analyses using the diet information collected in 1980, and we did not observe the positive relationships with foods expected to contain higher levels of organochlorines.

Discussion

The objective of this study was to identify the predictors of plasma levels of DDE and PCBs in a group of U.S. women. We found that levels of DDE and PCBs were positively associated with age and serum cholesterol. Compared to other women, women who resided in the western region of the United States (represented predominantly by California) had higher levels of DDE, and women living in the Northeast and Midwest had elevated levels of PCBs. Dietary information obtained from a food frequency questionnaire 2–3 years before blood draw did not predict concentrations of DDE. There was some evidence of a positive association between fish and egg consumption and PCB concentrations, specifically in women residing in the Northeast and Midwest. Using a group of women with breast cancer as a validation data set, we determined that the most important predictors of DDE and PCBs were age and cholesterol; addition of other variables to the model did not improve its predictive ability.

Previous studies have consistently observed a positive correlation between age and blood levels of DDE and PCBs (2,15,30,31). This phenomenon is probably a function both of age itself and of a birth cohort effect. Older women had a greater opportunity for high level exposures to these compounds because they were alive longer during the period when DDT and PCBs were manufactured and used in the United States. In addition, they have had a longer time to accumulate the metabolites of these compounds in their body. It has also been suggested that metabolism of these compounds might slow down with age (9).

DDE and PCBs are stored in adipose tissue and in the lipid component of blood plasma. It is common practice in the published literature to adjust the plasma concentration of DDE and PCBs by total cholesterol and triglycerides and present the information as a component of lipid (32,33). Because total blood lipids were not available to us, we adjusted for total cholesterol in the regression equations. As expected, total cholesterol levels were positively associated with levels of DDE and PCBs (31).

| Table 5. Validation of models including dietary variable as indicated by R^2 from the best model, with age, cholesterol, region, and up to 10 additional variables estimated in the control data set, and Spearman correlation coefficients between observed and predicted values of DDE and PCBs |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| **DDE (n = 213)** | **PCBs (n = 212)** |
| Additional variables in model | Parameters added to previous model (foods in servings/day) | Sign of R^2 in controls | Spearman ρ | Parameters added to previous model (foods in servings/day) | Sign of R^2 in controls | Spearman ρ |
| 0 | Age (years), cholesterol (mg/dl), Western region | +,+ | 0.15 | 0.37 | Age (years), cholesterol (mg/dl), Northeeast and Midwest region | +,+ | 0.14 | 0.44 |
| 1 | Mustard | + | 0.18 | 0.36 | Raisins | + | 0.19 | 0.38 |
| 2 | Pizza | + | 0.20 | 0.31 | Eggs | + | 0.22 | 0.30 |
| 3 | Crackers | - | 0.23 | 0.30 | Shellfish | - | 0.24 | 0.29 |
| 4 | Tomatoes | + | 0.24 | 0.30 | Dark-meat fish | + | 0.26 | 0.27 |
| 5 | Fried potatoes, cooked cereal (tomatoes removed) | - | 0.26 | 0.31 | Peanut butter | - | 0.28 | 0.27 |
| 6 | Body mass index, beef liver (cooked cereal removed) | +,- | 0.28 | 0.25 | Low-calorie beverage | + | 0.29 | 0.23 |
| 7 | Cooked cereal | - | 0.29 | 0.26 | Yams | + | 0.30 | 0.23 |
| 8 | Raisins | + | 0.31 | 0.29 | Cream cheese, orange juice (yams removed) &,- | 0.32 | 0.24 |
| 9 | Chicken without skin | - | 0.32 | 0.25 | Butter, yams &,- | 0.33 | 0.22 |
| 10 | Hamburger | - | 0.33 | 0.23 | Cream cheese | - | 0.34 | 0.23 |

*Direction of association.

Despite the fact that in each region only a subset of states are represented by the Nurses' Health Study, the regional variation in DDE (highest in the West) and PCB levels (highest in the Northeast and Midwest) reflects the history of the geographic manufacture and use of these chemicals. Data from the Second National Health and Nutrition Examination Survey (NHANES II) showed that populations living in the South and West had higher levels of pesticides in their blood as compared to the rest of the U.S. population (15). Higher concentrations of PCBs in human tissues have consistently been measured in the Northeast and Midwest than in the rest of the United States. From 1972 to 1983, the EPA found that greater percentages of individuals residing in the Northeast were in the highest adipose tissue level category (2). In conjunction with these observations, the U.S. Fish and Wildlife Service survey of concentrations of organochlorine compounds in freshwater bodies in 1981 and 1984 recorded the highest concentrations of PCBs in sites located in the industrial regions of the Northeast, the Great Lakes, and in the upper Mississippi River (34).

Because organochlorines and their metabolites are stored in adipose tissue, we expected to see an association between
body mass index, a measure of adiposity, and plasma levels of these compounds. In a
study of fish eaters from the Great Lakes region, body mass index was a positive pre-
dictor of serum DDT in multivariate analyses, but not of PCBs (35). A recent multi-
center study in Europe observed simi-
lar results for concentrations of DDE in
adipose tissue (36), and a study in Long
Island, New York, found a correlation of
body mass index with DDE in both media
(30). We did not observe any statistically
significant associations with our plasma
specimens and body mass index; however,
there was a suggestion of a positive asso-
ciation with DDE.

Lactation is the primary means of
excretion of DDE and PCBs. In a study of
concentrations of these compounds in
breast milk, levels were highest in the first
lactation period and declined both with
time spent breast-feeding and with number
of children nursed (37). In our study, we
did not observe a significant association
of DDE and PCBs with duration of lactation
although there was a suggestion of an
inverse relation with DDE. Parous women
had statistically significant elevated levels
of PCBs as compared to nulliparous women.
In this study population, only 10 women
lactated for a total of over 24 months, and
most of the women would have lactated at
least 10 years prior to blood draw. It is pos-
sible that we did not detect decreases in
DDE or PCBs due to either the short dura-
tion of lactation or because these women
lactated too far in the past; organochlorine
exposure subsequent to lactation may have
reduced the influence of lactation on plas-
ma organochlorine levels in this age group.

The general population of the United
States and other developed countries was
thought to be exposed to both DDE and
PCBs predominantly through residues in
foods. Dairy products, meat, fish, poultry,
and eggs have been hypothesized to repre-
sent the primary contribution of DDT and
DDE to the U.S. diet. These residues have
also been measured at much lower levels in
vegetables, grains, and cereals (14,38).

A recent study in a German population
of men and women 65–74 years of age
measured plasma organochlorine levels and
consumption of 32 food groups using a 7-
day diet questionnaire administered con-
current to blood draw. They observed only
modest, although statistically significant,
positive correlations between consumption
of beef and lamb and DDT (r = 0.18) and
PCBs (r = 0.13) and between saltwater fish
and PCBs (r = 0.12) (39).

We did not observe associations
between levels of DDE and intake of meat,
dairy, poultry, and fish in the expected
direction. Fruits and vegetables as a group
also did not predict DDE. In addition,
there was no relationship between the
observed plasma DDE concentrations and
the average daily dietary exposure to DDE
estimated from levels measured in different
foods as part of a market-basket survey.

The highest concentrations of PCBs
have been measured in fish (31,40), particu-
larly bottom- dwelling fish, from PCB-
contaminated waters such as the Great
Lakes. In general, PCB- and DDT-contami-
nated fish are caught by local sport fishing
and are not those fish obtained in the mar-
ket (5,6,35). PCBs have also been measured
in meat, poultry, dairy products, and eggs
(6). In this study, consumption of dark-
meat fish and eggs were positive predictors
of PCBs among participants residing in the
Northeast and Midwest. These observations
suggest that fish and eggs obtained regional-
ly may be an ongoing source of exposure to
PCBs in this population. As with DDE,
meat, dairy, and poultry did not predict
plasma PCB concentrations.

There are a number of possible expla-
nations why we did not observe associa-
tions between diet and levels of DDE, and
diet other than fish and eggs and PCBs.
Levels of DDT, DDE, and PCBs in the
food supply have been decreasing substan-
tially over time (9). For example, the esti-
mated dietary intake of DDT and meta-
bolites in the United States was 240 µg/man/day in 1970 and 8 µg/man/day in
1974 (41). For the period 1984–1986,
women of the age range covered in this
study consumed approximately 0.7 µg/day
of total DDT and 0.1 µg/day of PCBs, on
average (42). Also, concentrations in Great
Lakes fish have been decreasing. Hovinga
et al. (35) found that in 1982 current fish
consumption was an important risk factor
for serum DDT and PCB levels; however,
in 1989 fish consumption in the past was
the more relevant exposure. Thus, foods
consumed in 1986 might not have had sig-
nificant levels of these contaminants.

In addition, because of the long half-
lives of DDE and PCBs and their history
of use, changes in diet during the years
before exposure assessment might have
masked our ability to observe an associa-
tion with diet. In an attempt to address
this limitation, we repeated our analyses
with diet information from a reduced food
frequency questionnaire administered in
1980. No significant associations with diet
from this time period and either chemical
were observed.

Levels of organochlorines in food may
vary substantially depending on the source
of the food. Home-grown produce from
residences with high soil contents of DDT
and PCBs could have higher levels of these
compounds than store-bought fruits and
vegetables; Cullen et al. (43) found that
tomatoes grown in a PCB-contaminated
area had elevated levels of PCBs. Our
inability to discriminate between foods
that had the opportunity to be contaminated
and those that did not may have diluted the
predictive value of the contaminated foods.

It is also possible that the food frequen-
cy questionnaire in general was not a sufi-
cient instrument for predicting plasma lev-
els of contaminants. However, previous
studies using this instrument have been
able to show expected relationships be-
tween reported food consumption and
levels of nutrients and contaminants mea-
sured in biological specimens. For example,
fish consumption predicted mercury levels
in toenails (44), and the food frequency
questionnaire predicted levels of β-carotene
and α-tocopherol in plasma (45) and rela-
tive levels of polyunsaturated and trans
fatty acids in adipose tissue (46). There
are few published studies comparing food
intake directly with plasma levels of DDE
and PCBs, with the exception of the eval-
uation of contaminated fish intake. The
actual levels and/or the bioavailability of
DDE and PCBs in other foods might be
too low to be directly detected in plasma.

An additional limitation of this study is
the relatively small sample size. We only
had DDE and PCB measurements avail-
able for 238 and 236 women, respectively,
and the sample size available for the diet
analysis was even smaller (213 for DDE,
212 for PCBs). Therefore, we may not
have had the power to detect weak nondi-
etary and dietary associations.

Errors in the measurements of DDE
and PCBs may have prevented us from
detecting any hypothesized associations.
Measurement error in the outcome variable
will not lead to bias in the regression coef-
cients; however, it will increase the variance.
There was considerable batch-to-batch vari-
bility of PCB measurements, but not
DDE measurements, but the coefficient of
variation obtained from the analysis of
blinded specimens was relatively low. The
fact that we saw the expected statistically
significant associations between age, serum
cholesterol, and region is reassuring. We
did not distinguish between PCB con-
geners. Different congeners have been
detected in specific foods (47,48); as analyt-
ic methods that permit accurate assessment
of specific congeners become available,
examination of specific PCBs may refine
associations with diet and other predictors.

In conclusion, age, serum cholesterol,
and region of residence are strong predic-
tors of plasma concentrations of DDE and
PCBs. Consumption of meat, poultry, dairy, vegetables, and fruits were not predictors of higher levels of these compounds. However, there was some evidence that fish consumption specifically among the population residing in the Northeast and the Midwest, where contamination of sport fish has been documented, was associated with levels of PCBs. These results suggest that specific dietary factors other than fish are not currently a substantial determinant of recent human exposure to DDT and PCBs in the United States.

References and Notes

Articles • Predictors of plasma concentrations of DDE and PCBs

Environmental Health Perspectives • Volume 107, Number 1, January 1999