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Abstract

Background: Depletion of the circulating actin-binding protein, plasma gelsolin (pGSN) has been described in septic
patients and animals. We hypothesized that the extent of pGSN reduction correlates with outcomes of septic patients and
that circulating actin is a manifestation of sepsis.

Methodology/Principal Findings: We assayed pGSN in plasma samples from non-surgical septic patients identified from a
pre-existing database which prospectively enrolled patients admitted to adult intensive care units at an academic hospital.
We identified 21 non-surgical septic patients for the study. Actinemia was detected in 17 of the 21 patients, suggesting actin
released into circulation from injured tissues is a manifestation of sepsis. Furthermore, we documented the depletion of
pGSN in human clinical sepsis, and that the survivors had significantly higher pGSN levels than the non-survivors
(163647 mg/L vs. 89648 mg/L, p = 0.01). pGSN levels were more strongly predictive of 28-day mortality than APACHE III
scores. For every quartile reduction in pGSN, the odds of death increased 3.4-fold.

Conclusion: We conclude that circulating actin and pGSN deficiency are associated with early sepsis. The degree of pGSN
deficiency correlates with sepsis mortality. Reversing pGSN deficiency may be an effective treatment for sepsis.
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Introduction

Plasma gelsolin (pGSN) is the secreted isoform of cytoplasmic

gelsolin (cGSN), an intracellular actin-binding protein that

regulates cell motility [1]. pGSN circulates in normal plasma at

190–300 mg/L [2]. Similar to cGSN, pGSN also binds actin, a

major body protein that may be exposed or released by cellular

injury. The consistent observation of lowered levels of pGSN in

diverse states of acute injury and inflammation, such as hepatic

failure, malaria, acute lung injury, myonecrosis, and cardiac injury

[3–6], has led to a hypothesis that it participates in the clearance of

actin from the circulation [2]. Further studies have revealed that

critical extents of pGSN depletion in patients subjected to trauma,

burns, major surgery or hematopoietic stem cell transplantation

correlate with poor outcomes, including death [7–9]. In addition,

the finding that pGSN binds inflammatory mediators such as

platelet activating factor and lysophosphatidic acid suggests that its

physiological function may be to localize inflammation and blunt

its systemic effects, and that extensive pGSN depletion due to actin

exposure following injury allows inflammatory mediators to cause

widespread tissue damage [10].

Although tissue injury has not been clearly documented in early

sepsis, low pGSN levels have been reported in sepsis patients [6],

and a recent paper reported reduced pGSN levels in surgical sepsis

patients [11]. From the available information, whether pGSN

depletion results from surgery, sepsis or a combination thereof is

unclear. However, animal models of sepsis reveal pGSN depletion

within hours of septic challenge, and repletion of pGSN

concentrations with recombinant pGSN reduces septic mortality.

Moreover, circulating actin is detectable in the septic animals, and

pGSN replacement converts it from an aggregated to a more

soluble state [12]. We therefore undertook a pilot study to

determine whether actin appears in the circulation of septic

humans and if pGSN decreases correlate with outcomes in non-

surgical sepsis patients.

Methods

Clinical sepsis database and plasma samples
Human plasma samples were selected from a prospectively

enrolled cohort of patients admitted to adult intensive care units at

the Massachusetts General Hospital (MGH), and all aspects of the
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study were approved by the Institutional Review Boards of MGH

and the Harvard School of Public Health. Written informed

consent was obtained from all participants or their appropriate

surrogates. Details of the study have been previously described

[13]. Patients were considered for inclusion in the cohort if they

had any risk factor for acute respiratory distress syndrome

(ARDS), including sepsis, septic shock, trauma, aspiration, or

multiple blood product transfusions. Patients were excluded if they

were immunosuppressed, were under 18 years of age, if a comfort

care directive was in place, or if they had chronic lung disease.

Platelet poor plasma samples were generated from blood collected

in EDTA-containing tubes obtained from patients within 24 hours

of admission and stored at 280uC. We only included patients

admitted between 2001–2003 to minimized differences in clinical

practices and then excluded those patients who had recently

undergone surgical procedures (within one week of intensive care

unit admission), or had concurrent diagnosis of ARDS. Twenty-

one subjects with sepsis or septic shock, as defined by consensus

criteria [14], with available plasma samples and clinical data,

including Acute Physiology and Chronic Health Evaluation

(APACHE) III scores, from this database were identified for the

current study. pGSN and albumin levels were measured blindly as

described below, and the results correlated with 28-day mortality

data documented by the study database. Circulating actin was

assayed by immunoblotting as described below. In addition,

normal control plasma samples were obtained from seven

volunteers (ages 22–40, four males and three females) from our

laboratory.

Gelsolin and Albumin Measurements
pGSN was measured in triplicate by its ability to stimulate actin

nucleation as previously described [15]. Gelsolin quantification by

the actin nucleation assay correlates well with levels obtained from

Western blotting measurements [9]. The assay is highly specific, as

evidenced by virtually zero activity in plasma of LPS treated

gelsolin-null mice [16]. Actin or lipids complexing to pGSN do not

affect pGSN’s actin nucleation activity [17].

Albumin levels were measured colorimetrically using a com-

mercial kit (Stanbio, Boerne, TX) according to the manufacturer’s

instruction.

Western Blot Analysis
Each plasma sample was diluted 1:5 and subjected to Western

Blot analysis for actin. Each sample was heated at 85uC for

3 minutes in SDS-sample buffer (Boston Bioproducts, Worcester,

MA) then analyzed by SDS-PAGE using 12% Tris-Glycine Gel

(Invitrogen, Carlsbad, CA) and transferred to PVDF membranes

(Millipore, Bedford, MA). After blocking the membrane overnight

in 5% non-fat dry milk in Tris-buffered saline (TBS) with 0.05%

Tween 20, primary antibodies were added and incubated at room

temperature for 1 hr. To assay for plasma actin, a rabbit

polyclonal anti-actin antibody (A2103, Sigma, St. Louis, MO)

was used at a 1:2000 dilution. Bound primary antibodies were

probed with HRP-linked anti-rabbit IgG’s (Cell Signaling,

Beverly, MA) at 1:2000 dilution. Chemiluminescence of HRP

was developed with LumiGLO (Cell Signaling, Beverly, MA).

Exposed and developed photofilm was scanned (Hewlett-Packard

ScanJet, Palo Alto, CA).

Statistics
Summary data are presented as mean6SD. Differences

between groups were compared with the Fisher exact test for

dichotomous variables and the Student t test for continuous

variables with a normal distribution. Pearson correlations were

used to assess associations between continuous variables. Logistic

regression was performed to identify risk factors for mortality in

univariate analyses. In order to facilitate direct comparisons,

pGSN levels and APACHE III scores were grouped into quartiles

prior to analysis. Variables with p less than 0.1 in univariate

analysis were then used as independent variables in a stepwise

logistic regression analysis, with a p less than 0.05 criterion for

retention of variables in the final model. The multivariate

procedure was validated by bootstrap bagging with 1,000 samples

as has been previously described [18]. In the bagging procedure,

repeated samples were generated with replacement from the

original set of observations. For each sample, stepwise logistic

regression was performed entering the predictors with p less than

0.1 at univariate analysis. Those factors identified as significant

predictors in 50% or more of the analyses (median rule) were

considered reliably statistically significant at p,0.05. Regression

analyses were performed using SAS version 8.0 (SAS Institute,

Cary, NC). Receiver operating curve characteristics were

performed using Prism 4 (Graphpad Software, La Jolla, CA).

Results

21 non-surgical patients with plasma samples available for this

study from our sepsis database were included in this study. The

mean6SD age was 66618 years and 61.9% were men. Subjects

were critically ill with a mean APACHE III score of 75627.

Overall, 6 deaths occurred within 28 days of admission yielding a

mortality rate of 29%. Descriptive data by survivor status are

displayed in Table 1. Non-survivors had higher APACHE III

scores and were more likely to be men.

Circulating actin is detectable in septic patients
Actin was identified in 81% (17/21) of plasma samples from

septic patients but in none of 7 normal volunteers (p = 0.0003)

(Figure 1). Circulating actin was detectable in 100% (6/6) of non-

survivors but in only 73% (11/15) of survivors, although the

difference was not statistically significant. In addition, pGSN levels

and APACHE III scores did not differ significantly between

patients with or without circulating actin. Because of species and

isoform differences between the actins used as immunogens for the

anti-actin antibodies and the blood samples examined as well as

reference actin protein available for calibration, we could not

precisely determine the actual amount of actin protein in the

plasma samples. However, a minimal estimate based on

comparing immunoblots of patient samples with purified human

platelet actin is that actin-positive septic patient samples contained

25–50 mg actin protein/ml.

Table 1. Patient demographics and clinical information.

28 Day Mortality

Survivor Non-Survivor P Value

N 15 6

Age 66617 67614 0.93

Gender (M:F) 7:8 6:0 0.046

APACHE III 68625 93624 0.045

doi:10.1371/journal.pone.0003712.t001

Gelsolin, Actin and Sepsis
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Sepsis survivors had higher admission pGSN levels than
non-survivors

The mean pGSN level in this cohort was 142 mg/L which is

substantially lower than the average pGSN levels (207 mg/L) of

our normal controls (p = 0.01, Figure 2A). The reported mean of

pGSN is about 250 mg/L in a population of healthy controls [6].

Consistent with our hypothesis that pGSN levels reflect severity of

illness, pGSN levels correlated inversely with Apache III scores,

although the association did not achieve statistical significance

(r = 20.35, p = 0.12). In addition, a trend was found for males to

have lower pGSN levels than females (125656 mg/L vs.

170650 mg/L, p = 0.08), although this difference also did not

meet criteria for statistical significance. No association was found

between pGSN levels and either age or albumin levels.

pGSN levels were significantly lower in non-survivors compared

to survivors (89648 mg/L vs. 163647 mg/L, p = 0.01) as shown

in Figure 2B. The depletion of pGSN was not due to non-specific

protein loss, since albumin levels were not significantly different

between survivors and non-survivors (Figure 2C).

Low pGSN levels predict mortality in sepsis patients
The OR for 28-day mortality was 3.44 (95% CI: [1.04–11.43])

for each quartile reduction in pGSN levels. In contrast, the OR for

28-day mortality with each quartile increase in APACHE III score

was 3.28 ([0.97–11.1]), which was of borderline statistical

significance (p = 0.06). In stepwise regression analysis including

actin presence, APACHE III scores, albumin levels, age and

pGSN levels, pGSN was the only independent mortality predictor.

Receiver operating curves (ROC) of pGSN levels and APACHE

III scores with 28-day mortality as outcome is shown in Figure 3.

pGSN levels showed moderate predictive ability with an area

under the curve of 0.86 (p = 0.01). In contrast the area under the

curve using APACHE III score to predict 28-day mortality was

0.81 (p = 0.03). Using a cutoff of 113.6 mg/L, pGSN has 66.7%

sensitivity and 93.3% specificity for predicting 28-day mortality.

Figure 1. Actinemia occurs in human sepsis. Western Blot (WB) of plasma from septic patients and normals staining for actin shows that actin is
present in the plasma of 17/21 patients, while Western Blot of three representative normals had no detectable actin in circulation.
doi:10.1371/journal.pone.0003712.g001

Figure 2. Degree of pGSN depletion is associated with sepsis
mortality. A. Septic patients had lower pGSN levels compared to
normal controls (p = 0.01). B. Septic patients who survived at 28 day of
admission had significantly higher pGSN levels than those who did not
survive (p = 0.004). C. Albumin levels did not differ between survivors
and non-survivors.
doi:10.1371/journal.pone.0003712.g002

Figure 3. ROC analysis of pGSN and APACHE III. Receiver
operating curves of pGSN levels (solid line) and APACHE III scores
(dotted line) identifying 28-day mortality in septic patients are
generated. Area under curve is 0.86 for pGSN (95% confidence interval
of 0.68–1.05, p = 0.011), and 0.81 for APACHE III (95% confidence
interval of 0.60–1.02, p = 0.03. A pGSN level cutoff of ,113.6 mg/L
yields a 66.7% sensitivity and 93.3% specificity with a likelihood ratio of
10.
doi:10.1371/journal.pone.0003712.g003
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Discussion

In this pilot study, we report for the first time that actin is

detectable in plasma of non-surgical septic patients and that low

pGSN levels strongly associate with mortality in these patients. We

found that pGSN levels of non-surgical septic patients were

significantly lower than our controls; however, it is important to

note that our healthy controls were younger. The correlation

between pGSN levels and outcome appears to be superior to

APACHEIII, a severity score that incorporates a wide range of

physiologic and clinical data. Our data suggest that pGSN

depletion may be an important pathology of sepsis. This is

consistent with the results of the study by Wang et al. examining

surgical sepsis patients. Interestingly, Wang et al. reported much

lower pGSN levels (0–50 mg/L in sepsis patients) compared to our

study. Different methods of assaying pGSN (ELISA vs. functional

nucleation) likely accounted for the difference; however, using the

ELISA assay, Wang et al. reported much lower pGSN levels in

healthy controls than those reported in the literature

[2,3,6,9,19,20]. It is possible that the ELISA method used by

Wang et al. may underestimate true levels of circulating pGSN.

Based on its actin-binding property, pGSN has been categorized

as part of the extracellular ‘‘actin-scavenging’’ system that

counteracts actin toxicity when actin is released into the

extracellular space [2]. Accordingly, the degree of pGSN depletion

should reflect the degree of tissue injury that may lead to

significant exposure of actin to the extracellular space. Indeed, low

pGSN levels associate with poor outcomes in trauma [9] and

critically ill surgical patients [8,11], and in patients who received a

cytotoxic conditioning regimen prior to hematopoietic stem cell

transplantation [7].

Our observation that circulating actin is detectable early in

septic patients suggests that tissue injury occurs at or near the onset

of sepsis. Similar observations have been made in animal models of

sepsis [12]. The origin of the circulating actin in sepsis is not clear;

however, microparticles generated from circulating blood cells and

endothelium in sepsis are possible candidates [21,22]. Further

investigation is warranted to test this speculation and to identify

the location of the initial damage incurred in sepsis as the source of

circulating actin.

In addition to protein molecules such as actin, A-b protein [23],

and fibronectin [24], pGSN binds and modulates bioactive lipids,

such as endotoxin [25], lysophosphatidic acid (LPA)[26] and

platelet activating factor (PAF) [10]. pGSN can interfere with

PAF’s ability to activate platelets and neutrophils [10]. This effect

may partially explain how exogenous pGSN replacement

significantly enhances survival of septic animals [12], and blunts

the inflammatory response in animal models of lung injury [27]

and burns [28]. Based on these data, we propose that pGSN

functions as an important endogenous guard against overwhelm-

ing inflammation from tissue injuries. Therefore, a pGSN deficient

state associated with sepsis may be a modifiable risk factor for

increased mortality and morbidity. Additional studies are needed

to explore pGSN’s importance in sepsis.
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