Prenatal Organochlorine Exposure and Measures of Behavior in Infancy Using the Neonatal Behavioral Assessment Scale (NBAS)

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Published Version
doi:10.1289/ehp.10553

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4892214

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Prenatal Organochlorine Exposure and Measures of Behavior in Infancy Using the Neonatal Behavioral Assessment Scale (NBAS)

Sharon K. Sagiv,¹ J. Kevin Nugent,²,³ T. Berry Brazelton,² Anna L. Choi,¹ Paige E. Tolbert,⁴ Larisa M. Altshul,¹ and Susan A. Korrick¹,⁵

¹Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA; ²Brazelton Institute, Division of Child Development, Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA; ³University of Massachusetts at Amherst, Amherst, Massachusetts, USA; ⁴Department of Environmental and Occupational Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA; ⁵Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

BACKGROUND: Previous literature suggests an association between organochlorines and behavioral measures in childhood, including inattention.

OBJECTIVE: This study was designed to assess whether prenatal organochlorine exposure is associated with measures of attention in early infancy.

METHODS: We investigated an association between cord serum polychlorinated biphenyls (PCBs) and \(p,p' \)-dichlorodiphenyl dichloroethene (DDE) levels and measures of attention from the Neonatal Behavioral Assessment Scale (NBAS) in a cohort of 788 infants born 1993–1998 to mothers residing near a PCB-contaminated harbor and Superfund site in New Bedford, Massachusetts.

RESULTS: Medians (ranges) for the sum of four prevalent PCB congeners and DDE levels were 0.19 (0.01–4.41) and 0.30 (0–10.29) ng/g serum, respectively. For the 542 subjects with an NBAS exam at 2 weeks, we observed consistent inverse associations between cord serum PCB and DDE levels and NBAS measures of alertness, quality of alert responsiveness, cost of attention, and other potential attention-associated measures including self-quieting and motor maturity. For example, the decrement in quality of alert responsiveness score was –0.51 (95% confidence interval, –0.99 to –0.03) for the highest quartile of exposure to the sum of four prevalent PCB congeners compared with the lowest quartile. We found little evidence for an association with infant orientation, habituation, and regulation of state, assessed as summary cluster measures.

CONCLUSIONS: Our findings provide evidence for an association between low-level prenatal PCB and DDE exposures and poor attention in early infancy. Further analyses will focus on whether organochlorine-associated decrements in attention and attention-related skills in infancy persist in later childhood.

Organochlorines, including polychlorinated biphenyls (PCBs) and \(p,p' \)-dichlorodiphenyl dichloroethene (\(p,p' \)-DDE), the major degradation product of \(p,p' \)-dichlorodiphenyl trichloroethane (\(p,p' \)-DDT), though banned in the U.S. in the 1970s, are highly persistent in the environment and in human tissue. These contaminants cross the placenta and have been associated with reduced birth size (Fein et al. 1984; Hertz-Picciotto et al. 2005; Longnecker et al. 2001; Sagiv et al. 2007) and effects on subsequent neurodevelopment (Schantz et al. 2003).

Several previous studies have investigated the association between prenatal PCB exposures and behavior in infancy using the Neonatal Behavioral Assessment Scale (NBAS) (Jacobson et al. 1984a; Lonkey et al. 1996; Rogan et al. 1986; Stewart et al. 2000). These studies, which summarize the NBAS scores using seven summary cluster measures developed by Lester et al. (1982) and later revised by Jacobson et al. (1984b), found the most consistent associations with increased number of abnormal reflexes (particularly hyporeflexia); in addition, decreased autonomic maturity and habituation, and, less commonly, poorer range of state scores were found in association with PCB exposures. Studies have also found associations between PCBs and infant visual recognition memory, potentially an early indicator of attention, using the Fagan Test of Infant Intelligence (Darvill et al. 2000; Jacobson et al. 1985).

Early life experience (including prenatal exposures) and health status are increasingly recognized as having enormous potential to affect subsequent childhood and, even adult, health (Kuh et al. 2003). However, behavioral or related functional health outcomes are difficult to measure in early infancy; there are few tests available for this age group, and generally such assessments have limited reproducibility and poor long-term predictive value (Gorski et al. 1987). Although an efficient data reduction technique, the seven summary NBAS clusters may not detect important behavior patterns captured by individual NBAS items.

For the current study, we hypothesized a specific association between prenatal organochlorine exposure and measures of attention in early infancy, and used individual NBAS items to characterize young infants’ attention skills. Previous literature reports associations between PCBs and attention among school-age children and adults (Grandjean et al. 2001; Jacobson and Jacobson 1996, 2003; Peper et al. 2005; Vreugdenhil et al. 2004). To investigate whether these associations could be detected in early infancy, we conducted a prospective cohort study of cord serum organochlorines and attention-related outcomes as measured by the NBAS among infants born to mothers residing near a PCB-contaminated harbor.

Materials and Methods

Study population. Study participants were a subset of infants from a birth cohort whose mothers resided adjacent to a PCB-contaminated harbor in New Bedford, Massachusetts, and were recruited at the time of the infant’s birth between 1993 and 1998. The parent cohort includes 788 mother–infant pairs participating in ongoing studies of prenatal PCB and organochlorine pesticide exposure and subsequent infant and child development. The cohort was recruited from a local hospital with approximately 2,000 births per year, about 10% of whom were available for recruitment during times when a study examiner was on site, and met study eligibility criteria. Mother–infant pairs were eligible to participate if the mother was ≥18 years of age, had lived in one of four towns (New Bedford, Acushnet, Fairhaven, Dartmouth) adjacent to the contaminated New Bedford Harbor for at least the duration of her pregnancy, and spoke English or Portuguese. Infants too ill to undergo neonatal examination or born by cesarean section were excluded. Preterm infants (<37 weeks gestation) and multiple births were excluded from the current analysis.

Address correspondence to S.K. Sagiv, Harvard School of Public Health, Channing Laboratory, 181 Longwood Ave., Boston MA 02115 USA. Telephone: (617) 525-4210. Fax: (617) 525-2578. E-mail: sharon.sagiv@channing.harvard.edu

We thank K. DeMelo, M. McLennan, T. Ranuga, R. Stolyar, D. Sredl, C. Chen, and D. Raposo.

This work was supported by grant P42 ES05947 from the National Institute of Environmental Health Sciences, National Institutes of Health (NIH). S.K.S. was additionally supported by grant T32 MH073122 from the National Institute of Mental Health, NIH. The authors declare they have no competing financial interests.

Received 12 June 2007; accepted 22 January 2008.
Laboratory measurements of exposure. Cord blood samples for organochlorine analyses were collected at the infant’s birth; the serum fraction was removed after centrifugation and stored at –20°C. All sample analyses were performed by the Harvard School of Public Health Organic Chemistry Laboratory (Boston, Massachusetts). Laboratory personnel were blinded to infant outcomes. Cord serum samples were analyzed for 51 individual PCB congeners and two chlorinated pesticides [p,p’-DDE and hexachlorobenzene (HCB)]. Laboratory analytic methods and quality control procedures are described elsewhere (Korrick et al. 2000). Briefly, liquid–liquid extraction was used according to procedures developed by the Centers for Disease Control and Prevention with modifications to conform to ultratrace-level analyses (Korrick et al. 2000). Extracts were analyzed by gas chromatography with electron capture detection on a Hewlett-Packard 5890 Series II GC (Hewlett Packard, Palo Alto, CA) with temperature and pressure programming capabilities and a split/splitless injector. Samples with possible phthalate contamination or a coeluting substance detected in blanks were checked by confirmatory analyses on a Hewlett-Packard 6890 GC with a Micro-ECD and a capillary column of different polarity. Where results differed, the lower value—considered more accurate because it indicated separation of the PCB congener from an interfering coeluting peak—was reported (Erickson 1997).

Quantitation was based on the response factor of each individual PCB congener or pesticide relative to an internal standard. PCB concentrations were reported as individual congeners, after the amount of analyte in the procedural blank was subtracted, and as the sum of all congeners assayed (ΣPCB) in units of nanograms per gram serum. Lipid content could not be determined for study subjects because of insufficient sample volume (1.5–4 mL) and was therefore measured for 12 randomly selected cord bloods from discarded, anonymous samples collected at the study recruitment site; values were reproducible (1.7 ± 0.3 g/L) and consistent with lipid content in cord blood reported elsewhere (1.8 ± 0.07 g/L) (Denkins et al. 2000).

The method detection limits (MDLs) for individual PCBs ranged from 0.002 to 0.04 ng/g of serum, with most MDLs < 0.01 ng/g; respective MDLs for DDE and HCB in serum were 0.07 and 0.02 ng/g (Korrick et al. 2000). Ninety-six percent of samples had DDE levels above the MDL; from < 1% (congener 22) to 91% (congener 153) of samples had PCB congeners above the MDL (Korrick et al. 2000). Where no measurable quantity of analyte was detected, a value of zero was used in our analyses. We used quantifiable values below the detection limit to optimize statistical power and avoid biased exposure estimates associated with censoring at the MDL (Kim et al. 1995). Reproducibility of serum analyses was good; the ΣPCB within-batch coefficient of variation (CV) was 3% and the between-batch CV was 20% over the 5 years of analysis, with similar performance for pesticides.

Cord blood samples for lead measurement were analyzed at the Harvard School of Public Health Trace Metals Analysis Laboratory (Boston, Massachusetts). Samples were collected at birth in EDTA-containing Vacutainer tubes for trace metal analyses. Analyses employed isotope dilution inductively coupled plasma mass spectrometry (Sciex Elan 5000; PerkinElmer, Norwalk, CT) with standard instrument operating and data collection parameters. Quality control and assurance procedures included analyses of procedural blanks, duplicates, spiked samples, and standard reference material to monitor for contamination, accuracy, and recovery rates. Recovery rates for QC and spiked samples were 90–110%, and precision was < 5%. The detection limit was 0.02 µg/dL.

Neonatal outcome assessment. Newborns were examined twice with the NBAS (Brazelton and Nugent 1995). The first assessment took place between the first and third days of life (referred to as the birth exam), and the second was administered between 5 and 22 days, 80% of which fell between 8 and 20 days, (referred to as the 2-week exam). The NBAS assesses the infant’s behavioral capacities, including his or her ability to respond to the environment, such as the ability to orient and habituate to visual or auditory stimuli, both animate and inanimate; the quality of motor tone and activity levels; and the infant’s level of state regulation (i.e., amount of crying and the infant’s capacity to regulate his or her asleep, alert, crying states). The NBAS exam takes approximately 30 min to administer and contains 28 behavioral items, 18 elicited items (including neonatal reflexes), and up to 9 supplementary items, designed to capture the quality of newborn behavioral responsiveness. Each of the NBAS behavioral items is assigned a score (ranging from 1 to 9), according to established scoring criteria, with a higher score typically indicating better performance and a lower score indicating poorer performance (there are some items in which the opposite is the case or where the midpoint is optimal). Neonatal assessments were performed by three study staff members trained in administration and scoring according to the inter-rater reliability criteria established by the NBAS manual (Brazelton and Nugent 1995). Interobserver scoring agreement was calculated before the beginning of the study and then at least biannually thereafter; inter-rater agreement was established at ≥ 90%.

The focus of the current study was infant attention, and we analyzed eight a priori selected NBAS behavioral items to identify the infant’s capacity for attention or abilities potentially associated with attention, such as state regulation and motor maturity. Table 1 lists all outcomes analyzed. The individual behavioral items analyzed for this study were alertness, consolability, self-quieting activity, hand-to-mouth facility, irritability, elicited and spontaneous activity, and motor maturity. NBAS supplementary items were designed to evaluate the infant’s ability to cope with the examination and maintain an alert state (Brazelton and Nugent 1995). Two supplementary items measuring alertness were selected for inclusion in the analysis: a) quality of alert responsiveness; b) cost of attention. The NBAS behavioral and supplementary items are divided into two clusters: orientation and habituation. Table 1 presents the items examined.

<table>
<thead>
<tr>
<th>Table 1. NBAS outcome measures.</th>
<th>Capacity measured</th>
<th>NBAS item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual NBAS items</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attention</td>
<td></td>
<td>Alertness</td>
</tr>
<tr>
<td>State</td>
<td></td>
<td>Quality of alert responsiveness</td>
</tr>
<tr>
<td>Motor function</td>
<td></td>
<td>Consolability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-quieting activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hand-to-mouth facility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irritability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elicited activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spontaneous activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motor maturity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average score for response to visual and auditory stimuli</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average score for habituation to light, rattle, bell, and pin prick items</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average score for self-quieting and hand-to-mouth items</td>
</tr>
<tr>
<td>NBAS clusters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orientation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation of state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never in state for assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of orientation items</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery from birth experience</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Supplementary NBAS items. *Child never reached alert or awake state in which he or she was able to focus attention on stimuli. Dichotomized variable as all orientation items missing, and data on at least one orientation item. *Improved performance from birth exam to 2-week exam on individual NBAS items.
of alert responsiveness, which assesses the level of "processing" alertness as opposed to a simple awake "eyes open" state, and b) cost of attention, which measures the degree to which the motor and physiologic systems were stressed as a result of the infant’s efforts to attend to the stimuli.

As a secondary analysis we also analyzed three of six previously defined behavioral clusters (Jacobson et al. 1984b; Lester et al. 1982) selected a priori as those that potentially reflect skills associated with attention. Each cluster score was computed as the mean of individual behavioral items associated with that cluster; where more than half the items for a cluster were missing, the cluster score was omitted. The three clusters were a) orientation [tracking of visual animate (human face) and inanimate (red ball) stimuli and auditory animate (human voice) and inanimate (rattle) stimuli and the duration and quality of the infant’s alertness]; b) response decrement or habituation (habituation to light, rattle, bell, and pin prick stimuli); and c) regulation of state (self-quieting activity and hand-to-mouth facility).

Several subjects were missing scores for all individual items in the orientation cluster, presumably because they never achieved an alert or awake state in which they were able to focus attention on visual or auditory stimuli. Failure to reach a robust alert state for evaluation may be informative of attention-associated problems. To explore this possibility, we created a dichotomous variable called "never in state to do orientation items" and coded as a) missing data for all orientation items and b) data on at least one orientation item.

The main analyses focused on NBAS outcomes collected at the 2-week exam, which may be a better indicator of infant behavior because the infant will have likely recovered from the demands associated with the birth experience (Lester 1983; Lester et al. 1985). We also assessed whether the infant’s ability to recover from the birth was associated with organochlorine exposure by comparing performance for the individual items on the birth exam with the 2-week exam. For this analysis we focused on whether an infant scoring in the lowest two-thirds of the item on the birth exam advanced to a better score on the 2-week exam (i.e., lowest third advanced to middle or highest third, or middle third advanced to highest third). Infants scoring in highest third on the birth exam were omitted because they did not have the opportunity to improve their score. We created a dichotomous outcome and assessed whether exposure to PCBs or DDE was associated with failure to recover or advance to a higher score.

Statistical analysis. We measured 51 PCB congeners and investigated behavioral outcomes in relation to two congener groups: a) the sum of four prevalent PCB congeners: 118, 138, 153, and 180; and b) the computed toxic equivalent (TEQ) for the sum of the five dioxin-like mono-ortho PCB congeners measured: 105, 118, 156, 167, and 189, computed on a lipid basis and weighted with toxic equivalency factors (TEFs) (Van den Berg et al. 1998). Although these PCB groupings are highly correlated with each other (correlation coefficients = 0.94), we conducted separate analyses to explore potentially different

Table 2. Distribution of baseline characteristics for mothers and term infants with an NBAS exam approximately 2 weeks after birth, New Bedford, 1993–1998 (n = 542).

<table>
<thead>
<tr>
<th>Maternal characteristics</th>
<th>No. (%)</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>542</td>
<td>26.3 ± 5.5</td>
<td>17–40</td>
</tr>
<tr>
<td>Age category (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 20</td>
<td>70 (12.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20–29</td>
<td>311 (57.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30–34</td>
<td>117 (21.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 35</td>
<td>44 (8.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race/ethnicity (9 missing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>419 (78.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>26 (4.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>36 (6.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>52 (9.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education (9 missing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 11th grade</td>
<td>100 (18.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school graduate</td>
<td>204 (38.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some college</td>
<td>229 (43.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual household income (38 missing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< $20,000</td>
<td>192 (38.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$20–39,999</td>
<td>157 (31.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ $40,000</td>
<td>155 (30.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marital status (9 missing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>306 (57.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never married/separated/divorced</td>
<td>227 (42.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>205 (37.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>220 (40.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two or more</td>
<td>117 (21.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumed local fish (9 missing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>53 (9.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>480 (90.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol consumption during pregnancy (9 missing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 serving/month</td>
<td>481 (90.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–2 servings/month</td>
<td>14 (2.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 2 servings/month</td>
<td>38 (7.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of servings per month</td>
<td>0.6 ± 2.8</td>
<td></td>
<td>0–38.4</td>
</tr>
<tr>
<td>Used illicit drugs before birth (12 missing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>74 (14.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>456 (86.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Born in U.S. (11 missing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>422 (78.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>109 (20.5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Infant characteristics			
Gestational age (weeks)	542	39.8 ± 1.1	37–42.5
Birth weight (g)	542	3,401 ± 434	1,901–5,221
Sex			
Male	274 (50.6)		
Female	268 (49.5)		
Birth year			
1993–1994	162 (29.9)		
1995–1996	210 (38.8)		
1997–1998	170 (31.4)		
Breast-fed > 1 month (29 missing)			
Yes	191 (37.2)		
No	322 (62.8)		

Cord blood measures			
ΣPCB≤2 (ng/g serum)	542	0.25 ± 0.28	0.01–4.41
TEFΣ-PCB (pg/g lipid)	542	6.75 ± 9.73	0–151.49
DDE (ng/g serum)	542	0.48 ± 0.95	0–10.27
Pb (µg/dL) (15 missing)	527	1.45 ± 0.97	0–9.39

toxicologic mechanisms of action for dioxin-like versus non-dioxin-like congener (Schantz et al. 2003). We also investigated associations with \textit{p,p}'-DDE. A nonlinear effect of organochlorines was investigated by dividing exposure into quartiles of the distribution.

We used linear regression analysis to estimate differences in score by level of exposure for the NBAS outcomes scored on a continuous scale; a lower score was associated with a poorer outcome. We also dichotomized 3 outcome measures: \(a\) irritability (high score \(7–9\) vs. normal score \(4–6\)); only 13 subjects scored \(<4\); \(b\) missing orientation data (missing data on all orientation items vs. data on one or more item); and \(c\) failure to recover from the birth experience (failure to advance to a better score from the birth exam to the 2-week exam). Risk ratios were generated for these dichotomous outcomes with log risk models.

Data on covariates came primarily from a questionnaire administered at the 2-week exam. Questions were asked about maternal medical and reproductive histories; typical diet; alcohol, tobacco, and illicit drug use; education; race and ethnicity; occupational and exposure histories potentially relevant to exposures or outcomes of interest; and household income. Trained study personnel also collected information on exposures or outcomes of interest; and house-

Results

Among the 788 infants included in the initial study population, we excluded 6 twins, 24 singleton preterm births, and 36 infants without serum organochlorine measures. Of the remaining 722 infants, 539 had measures for the birth NBAS assessment, 542 for the 2-week assessment, and 408 infants were administered both exams. Table 2 shows characteristics for the 542 mother–infant pairs with the 2-week exam. Mothers were mostly white, >80% graduated from high school, more than a third were low income (household income <$20,000 per year), a little more than half were married, and almost a third smoked during their pregnancy. The mean gestational age at birth and mean birth weight were 39.8 weeks and 3,401 g, respectively, and 37% of infants were breast-fed for at least 1 month. The median cord serum level for subjects included in this analysis was 0.19 ng/g (range, 0.01–4.41 ng/g serum) for the sum of four prevalent PCB congeners and 0.30 ng/g (range, 0–10.27 ng/g serum) for DDE.

Figure 1 shows inverse associations for the two PCB congener groups as well as DDE and measures of attention, including alertness,
quality of alert responsiveness, and cost of attention. Though the \(p \)-for-trend was statistically significant for just one-third of these associations, most of the graphs show a consistent decline in attention-related scores with increasing quartile of exposure.

There were less consistent associations between cord serum organochlorines and state-related items, including consolability, self-quieting activity, and hand-to-mouth facility (Figure 2). We observed inverse associations between only a few organochlorines and state-associated outcomes, and predominantly for self-quieting activity. Irritability was associated with the sum of mono-ortho TEF-weighted PCB congeners (TEQ) and DDE (Figure 3), as shown by increasing risk ratios for high versus normal irritability across quartiles of cord serum levels and significant or near significant \(p \)-values for trend. There was less evidence for increased risk of never being in the appropriate state to respond to orientation (missing data for all orientation items) across quartiles of cord serum PCBs, TEQ, and DDE.

Less consistent associations were also found for motor outcomes, though motor maturity did appear to decline with increasing cord serum PCB, TEQ, and DDE levels (Figure 4). There appeared to be a positive association between cord serum organochlorines and spontaneous activity. There were no consistent associations between organochlorines and any of the three cluster measures (orientation, habituation, and regulation of state) data not shown.

The general pattern of these findings was unchanged when a narrower window of time (10–17 days after birth) was used for the 2-week exam. Findings also remained unchanged when more recent TEF weights were applied (Van den Berg et al. 2006).

Subjects had to have data for both the birth and the 2-week exams to be included in the failure-to-recover analysis. Depending on the item, between 59 and 358 subjects were included. There were no consistent patterns found for PCBs, TEQ, or DDE and failure to recover for any of the NBAS outcomes.

Discussion

Our approach to analyzing the NBAS in the current study was different than previous studies that used the traditional seven summary cluster measures developed by Lester et al. (1982) and later revised by Jacobson et al. (1984b). These previous studies found associations between organochlorines (primarily PCBs) and increased number of abnormal reflexes, decreased autonomic maturity and habituation, and less commonly, range of state (Jacobson et al. 1984a; Lonky et al. 1996; Rogan et al. 1986; Stewart et al. 2001; Jacobson and Jacobson 1996, 2003; Grandjean et al. 2001; Jacobson and Jacobson 1996, 2003; Peper et al. 2005; Vreugdenhil et al. 2004). A study of children born to Lake Michigan fish
consumers reported associations between pre-
natal PCB exposure and poorer performance
on a Digit Cancellation task, which indicates
difficulty with focused attention and concent-
ration, among 11-year-old children who had
not been breast-fed (Jacobson and Jacobson
2003). Associations were also reported among
these same children between PCBs and
poorer freedom from distractibility, a subscale
of the Wechsler Intelligence Scales for
Children (Jacobson and Jacobson 1996).

Associations were not detected, however,
between PCBs and measures of sustained
attention among children in this study at 11
years of age, or at an earlier assessment made
at 4 years of age (Jacobson and Jacobson
Islands study found associations between
PCBs and attention measured by a continu-
ous performance test among children 7 years
of age only in the context of high mercury
exposure, suggesting a potential interaction
between these contaminants (Grandjean et al.
2001). A Dutch study found associations
between PCBs and sustained attention among
9-year-olds, measured by a continuous perfor-
mance tests (Vreugdenhil et al. 2004).

Another study among adults exposed to PCBs
from a contaminated building found associa-
tions with attention as well as distractibility
(Peper et al. 2005).

The present analysis was designed to
investigate whether an association between
organochlorines and attention might be
detected in early infancy. We therefore focused
on 4 congeners, which we believe adequately repre-
sent structurally related classes—dioxin-like PCBs
and TEQ. The correlation between the sum of
51 congeners was also quite high (0.91),
compared with the sum of 4 PCBs; these
4 congeners were more prevalent and likely
measured with more accuracy than the sum of 51
congeners, which may explain the more attenu-
ated effects found for the sum of 51 congeners.

The positive association observed between
organochlorines and spontaneous activity is
consistent with hyperactivity–impulsivity
observed in experimental animal models of
early-life PCB exposure (Berger et al. 2001;
Holene et al. 1998; Rice 2000). Impulsive
responding has been reported among humans
exposed to PCBs. A study designed to
dissociate response inhibition from attention found
associations between PCBs and impulsive
responding among children 8 and 9.5 years of
age but not with sustained attention (Stewart
et al. 2005). These results are consistent with
earlier studies of this cohort in which an
association between PCBs and response inhibi-
tion was reported at 4.5 years of age (Stewart
et al. 2003). The Michigan study also found
associations between PCBs and impulsivity
among 11-year-olds who had not been breast-
fed (Jacobson and Jacobson 2003)

We examined whether organochlorines
impaired the infant’s ability to recover from
the birth experience by assessing changes in
performance between the birth exam and the
2-week exam. Recovery is informative of an
infant’s ability to cope and adapt to the
extraterine environment, and was an origi-
nally intended application of the NBAS
(Brazelton and Nugent 1995). Our findings
for recovery were limited in power, however,
because data were missing for either exam
(both were required).

PCBs are a heterogeneous mixture of con-
geners, potentially with different toxicologic
and pharmacologic modes of action. A considerable strength of this
study was our ability to measure up to 51 dif-
ferent PCB congeners. Though not presented
in the results, effect sizes for the sum of 51
congeners were similar, though slightly attenuated,
compared with the sum of 4 PCBs; these
4 congeners are more prevalent and likely
measured with more accuracy than the sum of 51
congeners, which may explain the more attenu-
ed effects found for the sum of 51 congeners.

The correlation between the sum of 51 and the
sum of 4 congeners was also quite high (0.91),
and we therefore presented only the sum of the
4 congeners, which we believe adequately repre-
ts the sum of all congeners.

To take advantage of congener-specific
information, we grouped congeners into
structurally related classes—dioxin-like PCBs

<table>
<thead>
<tr>
<th>Elicited activity</th>
<th>Spontaneous activity</th>
<th>Motor maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΣPCB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Associations and 95% confidence intervals (CIs) between cord serum levels of the sum of four PCB congeners (118, 138, 153, 180), the sum of mono-ortho TEF-weighted PCB congeners (TEQ), and DDE, and 2-week NBAS measures of motor function (elicited activity, spontaneous activity, and motor maturity), adjusted for infant sex, age at exam, birth year, time since last feeding, NBAS examiner, and maternal birthplace, breast-feeding, and OB risk score for term infants born in New Bedford, 1993–1998.
(TEQ) and non-dioxin-like PCBs (sum of 4 congeners)—that represented potentially different biologic mechanisms in their effect on neurodevelopment. That we did not find a difference in the effect of these two groups on NBAS outcomes was not surprising, because these groups were highly correlated in our study. Categorizing PCBs into such congener classes is important, however, for understanding the mode of action of these different compounds and their relative neurotoxic potency, both of which have implications for risk assessment (Schantz et al. 2003).

A barrier to understanding congener-specific effects stems from lack of knowledge of the biologic mechanism for the observed effect of PCBs on attention. Associations of PCBs with ADHD-like behaviors have been observed in rodents and nonhuman primates, however (Berger et al. 2001; Holene et al. 1998; Rice 2000). PCBs can disrupt dopaminergic functions, as reflected in alterations in dopamine levels in cell culture and in the brains of laboratory animals (Seegal et al. 1997, 2002). This is one possible mechanism whereby PCBs may affect attention-related behaviors, since decreases in cellular dopamine have been correlated with attention disorders such as ADHD (Faraone and Biederman 1998). PCBs and their hydroxylated metabolites can disrupt thyroid homeostasis, another potential mechanism of ADHD-like effect (Hauser et al. 1998; Kimura-Kuroda et al. 2007). For example, early-life hypothyroidism is associated with subsequent ADHD-like behaviors in animal models (Negishi et al. 2005; Siesser et al. 2006). There is evidence that variations in thyroid indices or resistance to thyroid hormone may be associated with ADHD-like behavior in humans (Alvarez-Pedrerol et al. 2007; Hauser et al. 1993; Matohchik et al. 1996; Stein et al. 1995), but this association has not been consistently demonstrated (Stein and Weiss 2003; Toren et al. 1997).

Serum PCB levels in the New Bedford study population were generally lower than in other birth cohort studies of PCB exposure and likely reflect more general population levels. A comparison of 10 studies of diverse locations and birth years found that the New Bedford cohort was at the low range of PCB levels (represented by PCB congener 153) relative to other populations (Longecker et al. 2003). This would have reduced power to detect associations; that we still found consistent associations with attention indicates potential for effects at low PCB levels found in the general population.

It is unclear how much can be learned of an individual’s long-term behavior from observations in infancy. Previous studies find that infant attention is predictive of intelligence in childhood and adolescence (Sigman et al. 1986, 1997). A study of temperament in infancy (5–6 months) and toddlerhood reported significant prediction of impulsivity and inattention among 8-year-old children (Olson et al. 2002). Other studies did not find infant temperament alone to be predictive, but rather that the combination of infant temperament with parental attitude or perception was predictive of behavioral problems later in childhood (Cameron 1978; Oberklaid et al. 1993; Wasserman et al. 1990). These studies suggest that infant temperament and the interaction between the infant and his or her environment are important determinants of later behavioral outcomes.

How well the NBAS predicts attention later in childhood is also uncertain. Some studies report poor correlation between NBAS and behavioral outcomes later in childhood (Risholm-Morthander 1989; Sameroff et al. 1978), whereas another study found behavioral and reflex clusters to be good predictors of later developmental disabilities among a high-risk population (Oghi et al. 2003). An important area for future study will be to examine whether these PCB-associated decrements in attention-related skills in infancy are transient or predict attention-related problems later in childhood.

We did not assess maternal IQ at birth, though we did measure maternal IQ with the Kaufman Brief Intelligence Test (Kaufman and Kaufman 1990) on a subset of the children that were available for testing at 8 years old. When we included maternal IQ as a covariate the exposure–outcome effect was slightly stronger, although the precision was reduced because of the smaller number of children on whom maternal IQ was available. In addition, maternal IQ was not predictive of any of the analyzed NBAS items. Final estimates are therefore reported without adjustment for maternal IQ.

This analysis was limited to subjects who were administered an NBAS exam (539 had an exam around the time of birth, 542 had an exam 1–3 weeks after birth, and 408 had both exams). This process resulted in reduced study power, particularly for the recovery analysis, which required both exams. However, we do not expect that it resulted in bias as organochlorine levels and covariates for these groups were very similar (data not shown).

Every effort was made to schedule infant exams in the second week of life; however, it was difficult to examine young infants at such a narrow age range in a nonclinical, population-based study. The use of a broad time window for the 2-week exam may have introduced some random error into our estimates. Exposure effect estimates for NBAS exams conducted for a more narrow window (10–17 days) were very close to estimates from the broader time window (5–22 days), suggesting that including a broader age range did not bias our results.

We evaluated a number of outcomes for this analysis as well as several categories of PCB congeners and DDE. Multiple comparisons were therefore performed and may be a limitation when interpreting positive findings. Our observation of internal consistency, however, particularly for the attention-associated outcomes, suggests that our findings were probably not attributed to chance.

In summary, we found evidence for an association between low-level prenatal organochlorine exposure measures and attention in early infancy. This observation is particularly notable given both the low-level PCB exposure in our study population and the limitations of behavioral assessments in young infants. The longitudinal design of the New Bedford cohort will enable us to further determine whether a) poor attention-associated skills in early infancy (as measured by the NBAS) persist in later childhood—that is, whether a behavioral pattern seen in infancy predicts later childhood behavioral skills; and b) the observed association of prenatal organochlorine exposure with attention in infancy persists in later childhood. Identifying attention-related deficits as early as infancy, and identifying potentially remediable risk factors for such deficits (for example, PCB exposure), allows for early intervention (and ultimately prevention efforts), which may be important for promoting healthy subsequent neurodevelopment.

References

Lester BM, Als H, Brazelton TB. 1982. Regional obstetric anat-

omy and newborn behavior: a reassessment toward synergis-

Lester BM, Hoffman J, Brazelton TB. 1985. The dynamic struc-

Longnecker MP, Klebanoff MA, Zhou H, Brock JW. 2001. Association between maternal serum concentration of the

DDT metabolite DDE and preterm and small-for-gestational-

ment. Environ Health Perspect 111:65–70.

preschool behavior problems from temperament and other variables in infancy. Pediatrics 91(1):113–120.

Stolte MA, Weiss RE. 2003. Thyroid function tests and neuro-

Stolte MA, Weiss RE, Refetoff S. 1995. Neurocognitive charac-

teristics of individuals with resistance to thyroid hormone: comparisons with individuals with attention-deficit hyper-

Vegeendel HJ, Mulder PG, Emmen HH, Weisglas-Kuperus N. 2004. Effects of perinatal exposure to PCBs on neuropsy-

Schantz SL, Wulidom JJ, Rice DC. 2003. Effects of PCB expo-

Stolte MA, Weiss RE. 2003. Thyroid function tests and neuro-

Stolte MA, Weiss RE, Refetoff S. 1995. Neurocognitive charac-

teristics of individuals with resistance to thyroid hormone: comparisons with individuals with attention-deficit hyper-

Vegeendel HJ, Mulder PG, Emmen HH, Weisglas-Kuperus N. 2004. Effects of perinatal exposure to PCBs on neuropsy-
