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Abstract
Background: For real time surveillance, detection of abnormal disease patterns is based on a
difference between patterns observed, and those predicted by models of historical data. The
usefulness of outbreak detection strategies depends on their specificity; the false alarm rate affects
the interpretation of alarms.

Results: We evaluate the specificity of five traditional models: autoregressive, Serfling, trimmed
seasonal, wavelet-based, and generalized linear. We apply each to 12 years of emergency
department visits for respiratory infection syndromes at a pediatric hospital, finding that the
specificity of the five models was almost always a non-constant function of the day of the week,
month, and year of the study (p < 0.05). We develop an outbreak detection method, called the
expectation-variance model, based on generalized additive modeling to achieve a constant
specificity by accounting for not only the expected number of visits, but also the variance of the
number of visits. The expectation-variance model achieves constant specificity on all three time
scales, as well as earlier detection and improved sensitivity compared to traditional methods in
most circumstances.

Conclusion: Modeling the variance of visit patterns enables real-time detection with known,
constant specificity at all times. With constant specificity, public health practitioners can better
interpret the alarms and better evaluate the cost-effectiveness of surveillance systems.

Background
The release of anthrax in 2001, the Severe Acute Respira-
tory Syndrome (SARS) outbreaks in China, Hong Kong
and Toronto in 2002, and the emergence of new diseases
such as West Nile virus have underscored the need for
automated, real-time detection of outbreaks. Several such

detection systems have been deployed in recent years at
the hospital [1,2], city [3-5], regional [6-8] and national
[9-11] levels. Many systems use time series algorithms to
detect aberrant conditions, such as CuSUM [12-14], vari-
ants of the Serfling method [3], multiresolution wavelet-
based models [15], and trimmed seasonal models [16].
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An outcome of any of these statistical methods – whether
or not there is an alarm on any given day – is uninforma-
tive without an estimate of the likelihood that an alarm
signals a true outbreak. This likelihood depends in part on
the specificity of the detection method, equal to the pro-
portion of non-outbreak days for which no alarm is
raised. The specificity is related to the false alarm rate by
the simple equation

false alarm rate = 1 - specificity.

Even small changes in the specificity of the detection
method may have a large impact on the likelihood of a
true outbreak. Despite the importance of knowing the
specificity, analysis of the specificity of outbreak detection
algorithms has been rudimentary, and it is common prac-
tice to report one average value of specificity that is
assumed to reflect the true specificity on any day of the
year or week. Implicit in this is the assumption that the
specificity is constant as a function of time. If this assump-
tion is incorrect – if instead the specificity of an outbreak
detection system is a function of time that deviates signif-
icantly from its average value – then on any given day, a
public health practitioner cannot know the specificity of
the system or the related probability that there is a disease
outbreak, and therefore cannot respond appropriately to
alarms.

The sensitivity of a method, or proportion of outbreaks
detected, is negatively associated with its specificity.
Unlike the specificity, however, it cannot be evaluated
from non-outbreak data. This is because in addition to its
dependence on the specificity, it also depends on the char-
acteristics of an outbreak, including its duration and mag-
nitude. Hence the trade-off between sensitivity and
specificity must be carefully considered in the context of
the outbreak type of interest to ensure that both fall in a
useful range.

We sought to characterize changes in the specificity of
alarms produced by standard time series outbreak detec-
tion methods as a function of time. We further explored
how these changes affect the sensitivity of detection meth-
ods to several outbreak types. We introduced a statistical
technique that allows us to model properties of time series
not captured by traditional models, developing an out-
break detection strategy with constant specificity that may
be used by public health practitioners for biosurveillance.

Methods
Data
Data were collected retrospectively in the emergency
department (ED) of an urban pediatric tertiary care teach-
ing hospital. All patients with respiratory presenting com-
plaints seen in the ED between August 1, 1992 and July
30, 2004 were included in the study. The data were
divided into a six-year training period, and a test period

consisting of the final six years. ED chief complaints were
selected at triage from among a constrained list, and clas-
sified as respiratory or non-respiratory using a previously
validated method [17]. The study was approved by the
institutional review board.

During the study period, approximately 137 patients were
seen each day in the ED. The number of daily visits for res-
piratory complaints varied from 2 to 78. The mean
number of respiratory visits was 21.05, and the standard
deviation was 9.03 (see figure 1). These data and other
hospital visit data time series have previously been shown
to depend significantly on the day of the week and the sea-
son of the year [16,18-20].

Time series algorithms
We implemented five traditional time series models used
for outbreak detection: a simple autoregressive model, a
Serfling model, the trimmed seasonal model, a wavelet-
based model, and a generalized linear model. In addition,
we introduced a model of both the expectation and the
variance based on generalized additive modeling tech-
niques. The input to each algorithm was a time series of
historical daily ED respiratory visit counts, and each
returned a threshold number of visits for the day immedi-
ately following the historical period. An alarm occurred
when the actual number of visits exceeded the threshold.

Autoregressive model
The autoregressive model predicted the number of ED res-
piratory visits using linear regression on the number of
visits during the previous seven days:

E a a Vt k t k
k

= + ⋅ −
=
∑0

1

7
, (1)

Emergency department visits for respiratory presenting com-plaints, August 1, 1992 – July 30, 2004Figure 1
Emergency department visits for respiratory pre-
senting complaints, August 1, 1992 – July 30, 2004. 
Daily time series showing the number of patients presenting 
with respiratory complaints to the emergency department 
during a 12 year period.
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where Et is the predicted number of visits on day t, Vt-k is
the actual number of visits on day t - k, and the coefficients
ak were fitted by least squares regression using training
data.

Serfling method
The Serfling method and its variants have been extensively
used for surveillance of influenza and other diseases
[3,21,22]. Our implementation modeled the number of
daily visits using linear regression on sine and cosine
terms having yearly periodicities to capture seasonal
effects, categorical variables for the day of week, and linear
and quadratic terms. Under this model, the predicted
number of visits on day t was

where dow(t) is the day of the week from 0 to 6, doy(t) is
the day of the year from 1 to 365, and the Kronecker delta
function δx,y is equal to 1 when x = y and 0 otherwise. To
calculate the day of the year during leap years, each day
after February 28 was treated as though it occurred on the
previous day.

Trimmed seasonal model
The trimmed seasonal model is used in the AEGIS system
[23] for statewide real-time population health monitor-
ing, and was implemented as previously described [16].
Beginning with training set data, the average number of
visits was calculated and subtracted from the data. From
this, the average for each day of the week was calculated
and again subtracted. To remove seasonal effects, the aver-
age for the day of the year was calculated after excluding
the highest and lowest 25% of values for each day of the
year, and again subtracted from the data. A first-order
autoregressive, first-order moving average (ARMA) model
was then fitted to the errors. The predicted number of vis-
its Et was calculated by summing the overall average, the
average for the day of the week, the average for the day of
the year, and the ARMA prediction for day t.

Wavelet model
The wavelet-based model was patterned after the wavelet
anomaly detector developed by Zhang et al. [15]. The
method used the number of daily visits in a training set,
V1, V2, ..., Vt-1, to produce a prediction for day t. It con-
sisted of the following steps:

1. A low-frequency wavelet component of the visit signal
having periodicity of more than 32 days was calculated.
This period was selected by Zhang et al. because it
removes seasonal effects while preserving higher-fre-
quency information, and because it is a power of 2, which
is mathematically convenient for wavelet analysis. We
used the Haar wavelet in our implementation of the
model [24].

2. This low-frequency baseline was subtracted from the
original signal, producing a residual for each day in the
training set.

3. The predicted number of visits on day t was the value of
the low-frequency component on the previous day.

Daily alarm thresholds for the autoregressive, Serfling,
trimmed seasonal, and wavelet-based models were calcu-
lated as the sum of the expected number of visits and a
multiple λ of the standard deviation of the model residu-
als on the historical training data. The value λ of was an
adjustable parameter that affected the specificity of each
model.

Generalized linear model
The generalized linear model consisted of a Poisson distri-
bution function, an identity link function, and a linear
predictor that included day of the week, month of the
year, holiday and linear trend terms:

where dow(t) and δx,y are described in equation 2, moy(t)
is the month from 1 (January) to 12 (December), and Ihol-

iday(t) is an indicator function equal to 1 if day t is a holi-
day, and 0 otherwise. An alarm sounded if the value of the
cumulative distribution function of a Poisson random
variable with mean Et exceeded the desired specificity.
This model was found by Jackson et al. [18] to have supe-
rior sensitivity to a variety of outbreak types compared to
several control-chart and exponential weighted moving
average models.

Expectation-variance model

In addition, we developed and implemented a novel
method for outbreak detection that captures changes in
the ED visit standard deviation, as well as in the expected
number of visits. In contrast to previous surveillance mod-
els, which assumed that the variance is constant or pro-
portional to the mean, it did not assume a functional form
for the variance. Instead, the dependence of both the
mean number of visits and the variance was modeled
explicitly. In other applications, several statisticians have
modeled the variance as a function of the same or addi-
tional covariates used to model the mean using iterative
successive relaxation procedures (see, for example, [25]
and [26]). We employed a simplified procedure involving
two distinct models: an expectation model of the daily
expected number Et of respiratory ED visits, and a variance

model of the daily variance  of respiratory ED visits.

The number of daily visits is then modeled as a Gaussian
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with mean Et and variance . Both components are gen-

eralized additive models (GAM's): nonparametric exten-
sions of linear regression models having several variants
depending on the choice of smoothing technique, the
procedure used to find estimates of the nonparametric
functions for multivariate models, and the number of
degrees of freedom for each covariate [27,28].

The GAM of the expectation accepted historical daily visit
counts as input, and modeled them as a function of linear
time to capture a long-term trend, the day of the year to
account for seasonal trends, and the day of the week:

Et = ftrend(t) + fdoy(doy(t)) + fdow(dow(t)). (4)

No smoothing was performed for the day-of-week term,
since many replicates were available for each day of the
week. A Gaussian kernel smoother was used for the trend
term, and a Gaussian kernel smoother with circular
boundaries was used for the day-of-year term since the
day is a periodic covariate. Although a Gaussian was
selected for its ease of interpretation, in general the choice
of kernel function has little effect on the model compared
to the choice of bandwidth [27]. Optimal bandwidths of
the two Gaussian smoothers were estimated by a two-step
procedure. First, to optimize the bandwidth of the day-of-
year Gaussian, the mean predictive squared error (PSE) on
a training set consisting of the first six years of ED visit
data was calculated for a range of bandwidths using 10-
fold cross-validation for a model containing only the day-
of-week and day-of-year covariates. The bandwidth mini-
mizing the mean PSE was chosen, corresponding to a
Gaussian distribution with a standard deviation of five
days. Next, the bandwidth of the kernel used for the trend
term was chosen by using 10-fold cross-validation to esti-
mate the mean PSE on the training set of a model contain-
ing all three covariates for a range of trend bandwidths,
using the previously determined optimal bandwidth of
the day-of-year kernel. The minimizing bandwidth was
again chosen, corresponding to a standard deviation of
eight days. Because the model contained multiple nonpar-
ametric functions, an iterative backfitting procedure was
used to estimate each until the model converged [27].

The residuals of the expectation GAM on the historical
data were squared and used as the input to the variance
GAM. This GAM was also a function of linear time, day-of-
year, and day-of-week variables:

The Gaussian smoothers were chosen to minimize the
PSE on the training data set using the same procedure as
above. The optimal smoothers corresponded to Gaussian

distributions with standard deviations of 6 and 253 days
for the day-of-year and trend terms, respectively.

To set the alarm threshold for a given day, a composite
expectation-variance model consisting of the two GAM's
was trained on the previous six years of data. The alarm
threshold for the next day was calculated as the sum of the
expected number of ED visits, as predicted by the expecta-
tion GAM, and a multiple λ of the expected standard devi-
ation of ED visits, as predicted by the variance GAM:

At = Et + λ·σt (6)

The value of λ was an adjustable model parameter.

All models were implemented using the Matlab software
package, Version 7.0.1 [29]. The Matlab system identifica-
tion, statistics and wavelet toolboxes were used for the
wavelet, generalized linear, and expectation-variance
models.

Model predictions based on historical data
We used the expectation-variance model to generate
alarm thresholds for each day during the test period from
August 1, 1998 to July 30, 2004, which comprised the last
six years of historical data. All of the available data could
not be used for testing because a training period was
required. To predict each threshold, the model was
trained on the previous six years of data, ending the day
before the day to be predicted, and was blind to the actual
number of ED visits on the prediction day. The backfitting
procedures to estimate the model successfully converged
for each day of the study period. The model predictions
for both the expected number of patients and the variance
were always positive numbers throughout the study
period. The average absolute predictive error was approx-
imately four patients during the study period.

For each day, an alarm threshold was produced for each
desired outbreak detection specificity between 0.01 and
0.99 in 0.01 increments. This was achieved by varying the
threshold parameter λ appropriately. For example, to gen-
erate an alarm threshold with specificity s on day T, the
model was trained on the historical visit data, VT-2191, ...,
VT-1. This generated model estimates for the expected
number of visits for each day, ET-2191, ..., ET-1, ET, as well as
estimates for the expected standard deviation of visits, σT-

2191, ..., σT-1, σT. The parameter λ was chosen so that the
fraction of historical days for which the Z-score was at
most λ was as close as possible to the desired specificity s.
That is, λ was chosen to have the property that

σ t
2

σ t g t g t g t2 = + +trend doy dowdoy dow( ) ( ( )) ( ( )). (5)

= + + + ⋅ +f t f t f t g t gtrend doy dow trend doydoy dow doy( ) ( ( )) ( ( )) ( ) ( (λ tt g t)) ( ( )).+ dow dow
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#{t : T - 2191 ≤ t ≤ T - 1 and Vt - Et ≤ λ·σt} ≈ 2191·s.
(8)

The predicted threshold for day T was ET + λ·σT.

Alarm thresholds for each day of the test period and each
desired specificity were similarly calculated for the autore-
gressive, Serfling, trimmed seasonal, and wavelet models.
The alarm threshold for the generalized linear model was
the largest integer At for which the cumulative distribution
function of a Poisson random variable with mean Et was
at most s. With the exception of wavelet model thresholds,
all alarm thresholds were calculated using the six years of
visit data immediately preceding the prediction day. The
wavelet model requires a training period having length
equal to a power of two, so 2048 days of training data
were used.

Detecting variability in the specificity
To determine whether a given model at a particular mean
specificity had constant specificity as a function of the day
of the week, we tabulated the proportion of alarm and
non-alarm days at that mean specificity by day of the
week. A chi-square analysis was performed under the null
hypothesis that all days of the week had an equal fraction
of alarm days. A p-value less than 0.05 indicated that the
specificity was dependent on the day of the week. To
determine whether the specificity was constant as a func-
tion of month and year, we performed similar chi-square
analyses after tallying alarm days by month of the year
and by calendar year of the study, respectively.

Simulated outbreaks
In order to ascertain the sensitivity of the models to out-
breaks, we superimposed three synthetic outbreaks on the
test data set: a flat outbreak of five additional patients per
day for seven days, a linear outbreak which increased from
one to five patients over five days, and a spike outbreak of
10 additional patients in one day. For each model, each
outbreak type, and each day of the test period, we created
a new semisynthetic data set by adding an outbreak begin-
ning on that day to the original data set. We then made an
alarm threshold prediction for each of the outbreak days,
and for each desired specificity between 0.01 and 0.99,
based on training using the semisynthetic data set.

Estimating sensitivity, specificity, and timeliness of 
detection
The actual mean specificity for one model at each desired
input specificity was determined by running the model on
the historical data set. Specificity was estimated by calcu-
lating the fraction of days without alarms for each day of
the week, month of the year, or calendar year. Sensitivity
calculations used the results of applying each of the mod-
els to the semisynthetic data sets. The sensitivity was cal-

culated as the fraction of outbreaks for which there was at
least one alarm day. Exact 95 percent binomial confidence
intervals were calculated for each estimate of sensitivity
and specificity. Timeliness of detection was evaluated for
each method by calculating the mean lag in days between
the start of a flat outbreak and the first alarm sounded.
Missed outbreaks, for which no alarms were sounded on
any day of the outbreak, were excluded from timeliness
calculations. An alarm sounding on the first outbreak day
corresponded to a lag of zero. Timeliness calculations
were calculated at the benchmark specificity values of 0.85
and 0.97.

Comparing outbreak detection among models
To compare the outbreak detection performance of the
expectation-variance model with the traditional models,
receiver-operator (ROC) curves were constructed for all
models. ROC curves show the dependence of the mean
sensitivity on the mean specificity, and the area under the
ROC curve is an indicator of overall performance. The
area was estimated by the trapezoidal method.

Results
Evaluation of specificity trends over time
As suspected, the specificity of the five standard models
was not constant over time. Hypothesis testing indicated
that the specificity of the Serfling, trimmed seasonal and
generalized linear models varied with the study calendar
year and study month (p < 0.05) over a range of mean spe-
cificities between 0.50 and 0.99. The autoregressive model
demonstrated a variable specificity with the study month
and day of the week (p < 0.05) for the same range of mean
specificities, and the wavelet model had variable specifi-
city (p < 0.05) on all three time scales (figure 2). Several
trends in the specificity were apparent when the analysis
was limited to particular values of mean specificity. For
example, at a mean specificity of 85 percent, correspond-
ing to approximately one false alarm each week, the
autoregressive, Serfling, trimmed seasonal and wavelet
models had highest specificity in June and July and low
specificity during the winter months. The specificity of the
autoregressive and wavelet models was highest in the
middle of the week and lowest on Sunday, and the
Serfling, trimmed seasonal and generalized linear models
had higher specificity during certain study years (figure 3).
Similar trends were observed at other mean specificity val-
ues, including 0.90, 0.95, and 0.97 (data not shown).

By contrast, the expectation-variance model specificity
was constant as a function of the study year, study month,
and the day of the week. Hypothesis testing resulted in a
p-value above 0.05 for the entire range of input specifici-
ties on all three time scales, indicating that there was no
evidence to suggest that the specificity was non-constant
on any time scale (figure 2).
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Comparison of sensitivity and timeliness of new and 
traditional methods
The expectation-variance model usually outperformed
traditional approaches in terms of sensitivity. The area
under the expectation-variance model ROC curve was
equal to or greater than that of the five comparison mod-
els for all three outbreak types (table 1).

The expectation-variance method also performed well in
terms of earliness of detection. At a benchmark mean spe-
cificity of approximately 97 percent, it detected a seven-
day outbreak consisting of five additional patients each
day with a shorter lag than the autoregressive, Serfling,
trimmed seasonal, and wavelet models (table 2). The
expectation-variance model also had earlier detection
than these models at 85 percent specificity (data not
shown).

Temporal sensitivity trends
The sensitivity of outbreak detection depends on the size
and shape of an outbreak, as well as on the amount of
noise in the ED utilization signal. Thus even when the spe-
cificity is held constant, it is natural for the sensitivity to
vary with the season, day of the week, and trend. The ED
visit signal had the least noise in the summer and the most
noise in the winter (figure 4). Hence the signal-to-noise
ratio was highest in the summer for any fixed type of out-
break, and the sensitivity of any reasonable detection

strategy should theoretically be greater during the summer
than in the winter. Summer and winter ROC curves for the
expectation-variance and five comparison methods con-
firmed that summer sensitivity was greater than winter
sensitivity when the specificity was held fixed (figure 4
insets). However, at mean specificity values of 85 and 97
percent, plots of sensitivity over time for the autoregres-
sive, Serfling, trimmed seasonal and wavelet models
showed a paradoxical increase in sensitivity to synthetic
outbreaks during winter months compared to summer
months (figure 4). These seemingly contradictory results
occurred because the mean specificity of these four com-
parison models was not the actual specificity during either

Average specificity trends over timeFigure 3
Average specificity trends over time. Average specifi-
city for each calendar year, month, and day of week for the 
five comparison methods during the study period. Data 
shown were recorded for each model implemented at 85% 
mean specificity. Similar trends were observed for all meth-
ods at 97% mean specificity (data not shown).
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the summer or winter. The specificity was significantly
higher during the summer, corresponding to a shift to the
left along the summer ROC curve and a concomitant
decline in summer sensitivity. The opposite occurred in
winter. This anomaly was corrected by the expectation-
variance model (figure 4), since it operated at the same
specificity during all seasons. The generalized linear
model exhibited variable specificity by month, but its spe-
cificity was not highest during the summer months (figure
3), and hence it also had greater summer sensitivity than
winter sensitivity.

Discussion
We found that the specificity of outbreak detection was
not constant for five traditional algorithms. This is impor-
tant because having a standardized interpretation of the
statistical characteristics of an outbreak detection test,
including the specificity, aids public health practitioners
in making rational decisions regarding resource allocation
in the event of an alarm. The positive predictive value
(PPV) of an alarm, the probability that an alarm signals a
real outbreak, bears directly on the priority and extent of
response required. The PPV is related to the specificity by
the equation

where p is the prior probability of an outbreak. Because
the specificity of an alarm strategy affects its PPV, it is cru-
cial to have an accurate estimate of the specificity on any
particular day. Even small differences in the specificity
may have a great impact on the PPV; an alarm strategy at
95 percent specificity may have a PPV nearly twice as high
as the same strategy at 90 percent specificity, depending
on the nature of the outbreak considered and the sensitiv-
ity of the system. A public health practitioner responding
to an alarm in the first case may wish to devote twice as
many resources to investigating the alarm than in the sec-
ond case.

The specificity also affects the overall cost associated with
a surveillance model. Let cTP, cFP, cTN and cFN denote the
costs associated with true positive alarms, false positive
alarms, true negatives, and false negatives, respectively.
Then the expected total cost of an alarm strategy on a
given day is a weighted sum of these costs:

E[cost] = cTP·sens·p + cFN·(1 - sens)
·p + cFP·(1 - spec)·(1 - p) + cTN·spec·(1 - p).

(10)

Lowering the specificity contributes to the cost due to
fruitlessly investigating more false positive alarms,
reflected in the third summand of the equation. At a spe-
cificity of, for example, 99%, one can expect to experience
a false alarm every 100 outbreak-free days. Lowering the
specificity to 97% increases the false alarms to approxi-
mately once per month. The cost equation can also be
used to compare two alarm methods, A and B. Strategy A
is more cost-effective than strategy B if and only if the
expected cost of A is less than that of B:

(sensA - sensB)(cTP·p - cFN·p) <
(specA - specB)(cFP·(1 - p) - cTN·(1 - p)).

(11)

PPV
sensitivity

sensitivity specificity
= ⋅

⋅ + − ⋅ −
p

p p( ) ( )
,

1 1
(9)

Table 1: Comparative detection performance

Detection method Flat outbreak Linear outbreak Spike 
outbreak

Autoregression 0.94 0.90 0.88
Serfling 0.93 0.88 0.89
Trimmed seasonal 0.95 0.91 0.89
Wavelet 0.93 0.87 0.86
Generalized linear 0.95 0.91 0.91
Expectation-variance 0.95 0.91 0.91

ROC curve areas for traditional and expectation-variance detection 
models applied to three different types of outbreaks superimposed on 
respiratory visits to an urban pediatric ED, August 1998 – July 2004.

Table 2: Comparative detection delays

Detection method Mean specificity Mean sensitivity Mean detection lag (days)

Autoregression 0.97 0.40 2.26
Serfling 0.97 0.36 2.37
Trimmed seasonal 0.97 0.42 2.26
Wavelet 0.98 0.38 2.43
Generalized linear 0.95 0.68 1.93
Expectation-variance 0.97 0.58 1.96

Mean lag in detecting outbreaks of five additional patients per day superimposed on the pediatric ED respiratory visits, August 1998 – July 2004. 
Detection lag calculations exclude undetected outbreaks. Hence the sensitivity of the method must be considered when interpreting the detection 
lag.
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Thus the greater the accuracy in the estimates of the spe-
cificity and sensitivity of each method, the prior probabil-
ity of an outbreak p, and the costs of each scenario, the
more accurately a public health department can compare
the cost-effectiveness of the various available surveillance
methods.

It may be desirable under certain conditions to have non-
constant specificity. For example, one may wish to adjust
the specificity so that the PPV is constant as a function of
the day of the week, season, and trend. Alternatively, a
high profile event may merit special attention, requiring
lower specificity surveillance to increase the sensitivity to
outbreaks. The expectation-variance model is preferable
to traditional models in these situations because its specif-
icity is known more reliably than that of traditional mod-
els. Therefore the specificity can easily be adjusted with
time according to public health needs. By contrast, current
models operate with unknown specificity, and adjusting
an unknown quantity presents a difficulty.

To understand the inability of traditional models to main-
tain constant specificity over time, it is useful to recast the
outbreak detection problem in terms of percentiles
instead of means. A perfect outbreak detection model
operating at a specificity of 0.95 would output an alarm

threshold equal to the 95th percentile for each day, above
which an alarm would sound. More generally, a perfect

model at specificity  would model the kth percentile.

The autoregressive, Serfling, trimmed seasonal and wave-
let models assume that the data have normally distributed
errors with constant variance. They thus make a first
approximation to this percentile by modeling the mean,
to which a constant (which depends on k) is added. One
problem with this approach is that the ED utilization sig-
nal is heteroscedastic – that is, its variance is not constant
as a function of time (figure 5). In practical terms, this
means that the kth percentile is sometimes farther from
the signal mean than at other times. Hence it cannot be
captured by adding a constant value to the mean. The
result is that during periods of greatest ED utilization var-
iance, such as the winter months (figure 5), the alarm
thresholds of these traditional models underestimate the
kth percentile, leading to a decreased winter specificity
(figure 3). Conversely, all four models overestimate the
alarm threshold during the summer months, when the ED
utilization variance is lowest. In fact, neglecting the
dependence of the ED visit variance on the day of week,
day of year, or long-term trend when determining the
alarm threshold introduces some degree of systematic
error in the alarm threshold, although it may not be of

k

100

Seasonal trends in the mean and variance of ED visitsFigure 5
Seasonal trends in the mean and variance of ED vis-
its. Mean number of ED visits (left axis, solid blue line) and 
mean variance in ED visits (right axis, dashed green line) as a 
function of the day of year. Data were smoothed using 5-day 
and 11-day moving averages, respectively. The ED utilization 
mean and variance are highest in the winter and lowest dur-
ing the summer.
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Seasonal sensitivity trendsFigure 4
Seasonal sensitivity trends. Average sensitivity for each 
month of the study period for the autoregressive (left), 
trimmed seasonal (center), and expectation-variance (right) 
models when applied to data containing a superimposed 
spike outbreak of 10 additional patients during one day. Data 
shown were collected at a mean specificity of 97%. The sen-
sitivity of the trimmed seasonal and autoregression models is 
higher during the winter than during the summer. Sensitivity 
is higher during the summer than during the winter for the 
expectation-variance model. July receiver-operator (ROC) 
curves lie below February ROC curves for all three models 
(insets). Similar trends were observed for flat and linear out-
breaks.
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sufficient magnitude to cause statistically detectable varia-
tions in the specificity.

Although the generalized linear model does not assume
that the variance is constant, it does assume that the data
are Poisson distributed, and consequently that the signal
variance is equal to the signal mean. However, the actual
signal variance is greater than the mean; the ratio ranges
from approximately one to more than three during the
calendar year (figure 5). The result is that during periods
of high relative signal variance, the specificity of the
method is also relatively high. For example, in October,
both the ratio of signal variance to signal mean (figure 5)
and the specificity (figure 3) are high.

Changes in specificity may also result from systematic
errors in the expected number of ED visits predicted by the
algorithms. For example, our implementations of the
wavelet and autoregression models do not take into
account day-of-week effects on the number of ED visits.
Hence during high-volume days, such as Sundays, these
models underestimate the expected number of visits. This
in turn lowers the alarm cutoff value and the specificity
compared to low-volume days such as Wednesdays. The
Serfling model constrains the seasonal effects of ED utili-
zation to a sine wave. However, the normal seasonal pat-
tern of respiratory visits includes a spring increase that
coincides with the allergy season (figure 5), which cannot
be captured by a sine curve. This causes a May dip in the
specificity of the Serfling model (figure 3).

In addition to the approach considered here, it may be
possible to apply a generalized additive or other model to
the squared residuals of a traditional algorithm. A model
for the alarm threshold would then be constructed in a
similar manner to the expectation-variance model.
Because the specificity is affected by systematic errors in
both the mean and the variance, it would be necessary to
apply a statistical test to ensure that the specificity was
constant.

The expectation-variance model is a general time series
method which could be applied to surveillance of other
syndromes and populations. Implemented here in Mat-
lab, it could easily be imported to other platforms, and it
requires minimal additional computational resources for
public health departments collecting surveillance visit
data. It does, however, have several limitations. While
useful for modeling syndromes that are predictable func-
tions of the trend, season, and day-of-week covariates,
such as respiratory or gastrointestinal illnesses, it would
have limited utility compared to simpler models for rare
or sporadically occurring syndromes. The present study
has evaluated the specificity, sensitivity, and timeliness of
detection using a training set containing six years of data.
However, this much historical data is not always available
for model training. Although the algorithm is easily

adapted to shorter training sets, future work is needed to
assess its performance with such sets. Like other detection
methods, the training data must be free of an outbreak of
interest in order for the specificity estimates to be accurate.
Thus the training set used in the present study would be
useful for detecting anthrax, other bioterrorism events, or
large influenza outbreaks due to changing viral strains,
but not for reliably detecting yearly average influenza out-
breaks present in the data. Like other time series methods,
the model also does not take advantage of geospatial
information or data streams containing different types of
data.

A more subtle limitation of the expectation-variance
model is that its output is a binary variable – the absence
or presence of an alarm. Kleinman et al. [30] proposed an
approach to temporal and spatial surveillance which
instead provides the probability that an observed event
would be expected in the absence of an outbreak. This
approach represents a shift from statistical testing to more
detailed statistical modeling techniques [31]. Although
the current implementation of our method is binary, it
can easily be converted to a "modeling" approach. For
example, a graph of the specificity as a function of the
alarm threshold corresponds to a predicted cumulative
distribution function of the number of visits on any given
day.

In addition to the limitations of the model, our study is
limited in its analysis of sensitivity to various outbreak
types. The sensitivity depends on the time series of addi-
tional outbreak patient visits, of which an infinite array of
possibilities exist. In the absence of outbreak data captur-
ing the essential features of the many diseases and syn-
dromes that may be monitored, we have used synthetic
outbreaks having simple functional forms or "canonical
shapes" [32]. This makes comparisons between types of
outbreaks easy to interpret. Alternatively, the response to
one or more known outbreaks may be evaluated [18,33].
This approach has the advantage that the outbreaks are
inherently realistic, since they are instances of true out-
breaks. However, they may be highly irregular and domi-
nated by stochastic effects. Indeed, there is no guarantee
that they bear resemblance to future outbreaks of the
same or other diseases. The present study offers the prom-
ising conclusion that the expectation-variance model has
good comparative sensitivity for a limited number of arti-
ficial outbreaks, but more detailed study in the context of
outbreaks of interest would be necessary to conclude that
the model is preferable to previous models for real-world
surveillance.

Conclusion
The interpretation of alarms using current outbreak detec-
tion strategies is difficult because the specificity is
extremely variable. The fluctuations in specificity are due
to changes on the same time scales in the variance of the
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(page number not for citation purposes)



BMC Medical Informatics and Decision Making 2007, 7:15 http://www.biomedcentral.com/1472-6947/7/15
ED utilization signal. Unlike previous models, the model
developed here accounts for changes with time of not only
the expected number of ED visits, but also of the variance
of the number of visits. It is our hope that this provides a
useful method for achieving a signaling strategy with
known, constant specificity, enhancing the ability of pub-
lic health practitioners to interpret the meaning of an
alarm.
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