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Abstract

Background: This study describes a large-scale manual re-annotation of data samples in the Gene
Expression Omnibus (GEO), using variables and values derived from the National Cancer Institute
thesaurus. A framework is described for creating an annotation scheme for various diseases that is
flexible, comprehensive, and scalable. The annotation structure is evaluated by measuring coverage
and agreement between annotators.

Results: There were 12,500 samples annotated with approximately 30 variables, in each of six
disease categories – breast cancer, colon cancer, inflammatory bowel disease (IBD), rheumatoid
arthritis (RA), systemic lupus erythematosus (SLE), and Type 1 diabetes mellitus (DM). The
annotators provided excellent variable coverage, with known values for over 98% of three critical
variables: disease state, tissue, and sample type. There was 89% strict inter-annotator agreement
and 92% agreement when using semantic and partial similarity measures.

Conclusion: We show that it is possible to perform manual re-annotation of a large repository in
a reliable manner.

Background
Large repositories of gene expression data are currently
available and serve as online resources for researchers,
including the Gene Expression Omnibus (GEO), the
Center for Information Biology Gene Expression Data-
base (CIBEX), the European Bioinformatics Institute’s
ArrayExpress and the Stanford Tissue Microarray Data-
base [1-4]. Repositories for gene expression data such as

GEO allow for widespread distribution of gene expres-
sion measurements in order to: (1) validate experimental
results, (2) enable progressive accumulation of data that
may support, modify or further develop prior work, and
(3) facilitate use of archived measurements to generate
novel hypotheses that naturally develop from contin-
uous updating of accumulated data. Although GEO
contains a vast amount of measurements from
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numerous samples, the link between measurements and
phenotypic characteristics of each individual sample,
including the sample’s disease and tissue type, is not
readily accessible because they are encoded as free text.
Furthermore, there are no standardized documentation
rules, so phenotypic and/or protocol information resides
in multiple documents and physical locations. Such
information may be included as text describing the
experiment or protocol, sample and sampling descrip-
tions, or may be found only in the published journal
article that may accompany the submission. In order to
increase utility and improve ease of use of this resource,
data should be readily available and easily comprehen-
sible, not only for researchers, but also for automatic
retrieval. In particular, the data have to contain sufficient
detail to allow for appropriate combination of similar
experimental subjects and protocols that may then
collectively facilitate the verification, support, or devel-
opment of new hypotheses.

Many centers have focused on re-annotating biomedical
data with the goal of increasing utility for researchers.
The promise of fast-paced annotation amid rapid
accumulation of data has spurred great interest in
progressive development of automated methods [4,5].
To date, manually annotated data is the de facto gold
standard for most annotation efforts [4,5]. Therefore, it
becomes critical to ensure that manually annotated data
are accurately described and evaluated.

Several attempts directed specifically at annotation of
gene expression data have been performed and remain
the subject of ongoing work. In particular, GEO datasets
(GDS) are being developed to systematically categorize
statistically and biologically similar samples that were
processed using a similar platform within a single study
[6]. The process typically begins with a GEO series
(GSE), defined as an experiment deposited into GEO
that contains descriptions of the samples within the
experiment, usually provided by the investigator. A GSE
is then characterized into a data set. This phase is
performed manually, with reviewers adjudicating
whether or not experiments are comparable, which of
them should belong in a dataset, and what axis
differentiates samples from each other within a dataset.
Some commonly used axes include the disease state and
the cell line. Table 1a illustrates common descriptions
that are given for samples within a GSE that correspond
to various axes. There are 24 distinct axes that are
currently in use. Each GDS, however, only utilizes a few
axes, at the discretion of the curators. In addition, while
the axes used to group samples are controlled, the values
corresponding to these axes are typically provided as free
text. The vocabulary used to describe the values within
an axis is neither standardized nor controlled. To

illustrate, breast cancer is entered as a value for a “disease
state", whereas breast tumor is entered as a value for “cell
line” in the sample excerpted in Table 1b. Moreover, the
reference to breast tumor is ambiguous under “cell line”
because this axis should specifically refer to breast cancer
instead of tumor, given that these cell lines refer to
models of neoplastic diseases.

It is not surprising, therefore, that re-annotating GEO
and other large microarray data repositories is the focus
of several groups. In particular, automatic text processing
is being used to capture disease states corresponding to a
given sample from GDS annotations. In a recently
published article in which the objective was to identify
disease and control samples within an experiment, the
GDS subsets were analyzed using representative text
phrases and algorithms for negation and lexical variation
[5]. Although this algorithm was successful in identifying
62% of controls, the study was evaluated using only 200
samples, and it highlighted an urgent need for a
methodical solution for annotating GEO using a con-
trolled vocabulary. Another study performed re-annota-
tion of the Stanford Tissue Microarray Database using
the National Cancer Institute (NCI) thesaurus [4]. They
were successful in representing annotations for 86% of
the samples with 86% precision and 87% recall, but the
study was evaluated using only 300 samples. While
diagnosis remains as one of the most useful annotation
points for a given experimental sample, there are many
more categories of interest to investigators and users. For
example, treatment interventions, sample demographics
(e.g. age, gender, race), and various phenotypic informa-
tion that affects gene expression. A re-annotation of
these rapidly growing repositories has to take into
account all these variables and the use of a controlled
vocabulary for identifying sample variables and values.

We therefore describe a large-scale manual re-annotation
of data samples in GEO, including variable fields derived

Table 1: (a) taken from GDS showing three axes – "cell line,"
"disease state", and "stress" with corresponding values;
(b) taken from GDS showing cell line descriptors

Type Description

(a)

Cell line HTB26
Cell line HT29
Disease state Breast cancer
Disease state Colon cancer
Stress Caspase inactivated
Stress DNA fragmented
(b)

Cell line Breast tumor
Cell line Colon tumor
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from the NCI thesaurus and corresponding values that
also utilize primarily controlled terminology [7]. The
objective is to create an annotation scheme for various
disease states that is flexible, comprehensive and scal-
able. We subsequently present a framework for evaluat-
ing the annotation structure by measuring coverage and
agreement between annotators.

Methods
Three sections below specifically: (1) enumerate the
iterative process used for developing an annotation
structure, (2) describe the annotation tool and the
annotators’ characteristics, and (3) describe the frame-
work for evaluation.

An iterative process was designed for identifying the
variables selected for annotation, as follows:

1. Variable generation – Human experts develop a list of
variables for annotation. This procedure is based on
guidelines and publications that are related to the
disease category. Variables were then trimmed based
on consensus among three physicians.

2. Supervised domain annotation – A trained annotator
was instructed to start annotating the given variables
under physician supervision. Whenever a variable
deemed important was identified, it was listed for
further deliberation. The process was then repeated –

back to number (1) above, until no further variables
were identified or the amount of samples for preliminary
annotation was reached (i.e. 10% of the total samples for
annotation within each domain).

3. Unsupervised annotation – A trained human
annotator then performed unsupervised annotation
independently, after receiving a standardized, written
instruction protocol. Instructions were specifically devel-
oped for each disease category. Two human annotators
were assigned to code each data sample. Randomized
assignment between annotators was performed by
disease category to minimize the occurrence of two
coders being assigned to annotate the same disease
category (and therefore the same samples) repeatedly.

4. Disagreement and partial agreement identification –

After the human annotators finished coding their
assigned experiments, the data was compiled and the
assigned values were compared to measure agreement.
The method to assess agreement is further described
below.

5. Re-annotation – Finally, the samples containing
values that were not in agreement initially were re-

annotated and the correct annotation was determined by
a majority vote. In the event of a three-way tie, one of the
investigators performed a manual review and final
adjudication.

To ensure consistency of terminology, the NCI thesaurus
was utilized for the disease domains annotated, con-
sistent with prior annotation initiatives [4,8]. This
ensures that the concepts utilized all readily mapped to
the Unified Medical Language System (UMLS) [9].
Therefore, scalability for using variables and values was
preserved, which is valuable for future research initia-
tives. Figure 1 below shows a graphical illustration of the
variable and values that were utilized to annotate breast
cancer.

The variable “tissue” was assigned several different
values, one of which was “breast.” This assignment
provided flexibility, allowing for addition of other tissue
types, whenever the disease domain changes. There was
also sufficient granularity to allow for actual interroga-
tion(s) into the database for future hypothesis genera-
tion or validation. A full description of the web-based
annotation tool and the quantity of samples annotated
over time is described in a separate paper [10].

Evaluation of annotations
There were a total of six annotators, including four
senior biology students, one graduate student in the
biological sciences field, and one physician. As noted
previously, each sample had at least two annotators

Figure 1
Illustration of concepts derived from NCI thesaurus
used for variables and values.
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assigning values to variables. The annotation task was to
provide phenotypic information for each data sample
that was available in GEO for breast and colon cancer,
IBD, DM, SLE, and RA. Thus, it was critical to obtain
standardized values for most of the annotation variables
to ensure that the annotations would be consistent. This
entailed a review of data descriptions listed in various
sources – the data sets (GDS), series information (GSE)
and sample information (GSM). In addition, informa-
tion was available in supplementary files and in
published scientific articles, which are not in GEO.
Manual review of all these data sources was necessary to
obtain sufficient variable coverage. Coverage was defined
as the percentage of non-’unknown’ values that were
assigned to a variable. Specifically, it can be represented
as:

Coverage = X/Y, where X represents the number of
variables with values that are not “unknown.” Y
represents the total number of variables that were
annotated.

Table 2 illustrates how agreement was measured.
Because our annotation tool limited the use of free text
and confined most variables and values to predeter-
mined concepts from the NCI Thesaurus, there was little
distinction between strict similarity and semantic simi-
larity. On the other hand, a review of prior annotation
initiatives used semantic similarity, so we also utilized
this index [5,11]. Finally, partial similarity measured the
presence of text that has some degree of similarity to
another [12]. In particular, whenever there is a variable
that has a value “yes” or “no,” with further specific detail
corresponding to the variable, agreement on the binary
value with a discrepancy in the specific detail would
warrant a partial match. For example, partial agreement
was assessed if an annotator provided a cell line name
and another annotator left it blank, as long as both
annotators agreed that the sample was from a cell line.

To validate the reliability of the annotation scheme, we
computed the percentage of agreement between annota-
tors, defined as the number of variables for which both
annotators gave the same value, divided by the total
number of variables that were annotated. We calculated

percentage agreement for each level of similarity across
all disease categories.

Results
Data description
A substantial fraction of GEO, including 45 platforms,
2,445 studies, and 58,432 samples were extracted into
the analytical database. Among them, several disease
categories are represented, but only 11,511 samples
(19.7%) are included in various GDS subsets. Over a
period of five weeks, 12,500 samples (21.4%) from a
limited set of disease categories were annotated, as
shown in Table 3. Many of these did not have
annotations in GDS.

In addition, for each disease category, a comprehensive
and controlled set of phenotypic variables were pro-
vided, as shown in Table 4. For each disease category,
between 19 and 41 variables were identified (see
Table 3). To our knowledge, this constitutes the largest
re-annotation initiative performed on gene expression
data to date.

The next goal was to provide adequate coverage for as
many variables that were identified. Table 5 shows the
top 10 most commonly annotated variables and their
coverage. As shown in Table 5, the sample tissue, cell line
and disease states were most frequently annotated and
were rarely “unknown". These were probably the most
pertinent variables and likely the subject of most re-
annotation initiatives. Therefore, it was critical that
values for these variables were available and actually
annotated.

Inter-annotator agreement results are shown in Table 6.
There is 89.3% strict agreement. There was a 1.7%
difference between strict and semantic agreement in this
study. Further improvement in agreement (1.2%) was
observed when partial similarity was measured.

Overall, there was excellent inter-annotator agreement
across multiple disease domains. Table 7 shows exam-
ples of the most common types of disagreements that we
observed between annotators. Most commonly, one
annotator labels a sample variable (e.g. treatment) as

Table 2: Criteria for measuring agreement

Agreement Type Description

Strict similarity Exactly the same variable value between
annotators.

Semantic similarity There is lexical discordance, but the words
match to the same concept. This subsumes
hierarchical similarity.

Partial similarity Partial agreement, some degree of discordance.

Table 3: Disease categories annotated from GEO

Disease Category # variables

Breast Cancer 41
Colon Cancer 30
Inflammatory Bowel Disease (IBD) 30
Insulin Dependent Diabetes Mellitus (DM) 21
Rheumatoid Arthritis (RA) 19
Systemic Lupus Erythematosus (SLE) 32
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“unknown,” while another annotator labels the same
variable with the value “no” (e.g. no treatment).

Discussion
Repositories for gene expression data such as GEO are
expanding very rapidly [13]. However, the critical details
necessary for understanding the experiments and sample
information are encoded as free text and are not readily
available for analysis. We described a large scale re-
annotation performed on a substantial portion of the
GEO consisting of 12,500 samples. Our large scale re-
annotation was accomplished within a reasonable
amount of time – completed within only five weeks. In
addition, we were able to accomplish annotations of
samples in great detail. The annotations used controlled
terminology from the NCI thesaurus, with the advantage
of allowing generalizability of the annotations for other
research applications.

This study’s re-annotation evaluation was performed on
sample quantities that are two orders of magnitude
higher than most prior reports [4,5,12]. A major
contribution of this research effort includes the massive
amount of well-annotated data, with substantial cover-
age for a large number of phenotypic information and
with excellent accuracy, particularly at the semantic level.

We also described the methodology used for identifying
relevant variables in each disease category. This iterative
process is efficient and provided a mechanism for
identifying relevant variables for domain categories.
This technique provides a framework for inducing
structure of a specific domain in an iterative and
consultative manner. Excellent inter-annotator agree-
ment confirmed that the annotation variables were
robust and easily identifiable.

Finally, we provided a framework for measuring inter-
annotator agreement. Apart from strict agreement
measured using exact string matching between variable
values, we defined and considered two other similarity
categories that were known to be especially useful for
annotations that relied heavily on free text. We showed
an improvement in agreement using these more lenient
similarity measures. The degree of improvement was
mitigated by the very controlled terminology from the
NCI Thesaurus that annotators utilized, and was
augmented by the annotation tool. Several studies use
semantic similarity as a measurement of agreement in
annotation of microarray data [4,5]. Several other studies
use partial agreement, especially when annotated text
contains fragments that are not exactly similar [12,14].
Manual curation is usually the gold standard and
determines whether terms that were used are semanti-
cally appropriate or not [15]. Our results show better
strict, semantic, and partial agreement compared to most
other re-annotation studies [12,16].

Conclusion
Phenotypic annotations and data sample information
are critically important for translational research. In
particular, it is important to have good coverage for vital

Table 4: Sample variables that are annotated for three disease
categories – breast and colon cancer and rheumatoid arthritis

Disease Category Generic Variables Disease-Specific
Variables

Breast cancer Age
Gender

ER/PR
Past breast cancer
Cancer Grade

Colon cancer Duke staging
Degree of differentiation

Rheumatoid arthritis Cell type
CD classification
Rheumatoid factor

Table 5: Coverage of the top ten variables

Top Ten Variables NCI Thesaurus ID Coverage (%)

Tissue C12801 99.7
Cell line C16403 99.5
Disease state C2991 98.9
Sample type C70713 98.0
Genetically modified C16621+C42629 92.8
Treatment C49236 76.2
Treatment type C49236+C27993 71.5
Time series C18235 67.2
Gender C17357 59.9
Age C25150 53.2

Table 7: Disagreement between Annotators

Variable Disagreement

Annotator 1 Annotator 2

Treatment type unknown no
Treatment unknown yes
Sample type unknown tumor
Stage 2 2a
TNM classification T4b N2a M0 T4b N2a M3b
Family history no yes

Table 6: Inter-annotator agreement

Agreement Type % Agreement

Strict 89.3
Semantic 91.0
Semantic + Partia l92.2
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information, specific to clinical domain, as well as
providing accurate annotations. We show that it is
possible to perform manual re-annotation of a large
repository in a reliable and efficient manner.
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