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Abstract We study the equilibrium behavior of informed traders interacting with
market scoring rule (MSR) market makers. One attractive feature of MSR is that it
is myopically incentive compatible: it is optimal for traders to report their true be-
liefs about the likelihood of an event outcome provided that they ignore the impact
of their reports on the profit they might garner from future trades. In this paper, we
analyze non-myopic strategies and examine what information structures lead to
truthful betting by traders. Specifically, we analyze the behavior of risk-neutral
traders with incomplete information playing in a dynamic game. We consider
finite-stage and infinite-stage game models. For each model, we study the log-
arithmic market scoring rule (LMSR) with two different information structures:
conditionally independent signals and (unconditionally) independent signals. In
the finite-stage model, when signals of traders are independent conditional on the
state of the world, truthful betting is a Perfect Bayesian Equilibrium (PBE). More-
over, it is the unique Weak Perfect Bayesian Equilibrium (WPBE) of the game.
In contrast, when signals of traders are unconditionally independent, truthful bet-
ting is not a WPBE. In the infinite-stage model with unconditionally independent
signals, there does not exist an equilibrium in which all information is revealed
in a finite amount of time. We propose a simple discounted market scoring rule
that reduces the opportunity for bluffing strategies. We show that in any WPBE for

? Preliminary versions of some of the results in this paper were presented in two
conference papers, Chen et al. [10] and Dimitrov and Sami [13].

This is an author-created version. The original publication is available at
www.springerlink.com. DOI 10.1007/s00453-009-9323-2.
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the infinite-stage market with discounting, the market price converges to the fully-
revealing price, and the rate of convergence can be bounded in terms of the dis-
counting parameter. When signals are conditionally independent, truthful betting
is the unique WPBE for the infinite-stage market with and without discounting.

Key words Prediction markets, game theory, bluffing, strategic betting

1 Introduction

It has long been observed that, because market prices are influenced by all the
trades taking place, they reflect the combined information of all the traders. The
strongest form of the efficient markets hypothesis [14] posits that information is
incorporated into prices fully and immediately, as soon as it becomes available to
anyone. A prediction market is a financial market specifically designed to take ad-
vantage of this property. For example, to forecast whether a product will launch on
time, a company might ask employees to trade a security that pays $1 if and only
if the product launches by the planned date. Everyone from managers to develop-
ers to administrative assistants with different forms and amounts of information
can bet on the outcome. The resulting price constitutes their collective probability
estimate that the launch will occur on time. Empirically, such prediction markets
outperform experts, group consensus, and polls across a variety of settings [16,17,
28,3,4,18,31,12,8].

Yet the double-sided auction at the heart of nearly every prediction market is
not incentive compatible. Information holders do not necessarily have incentive to
fully reveal all their information right away, as soon as they obtain it. The extreme
case of this is captured by the so-called no trade theorems [26]: When rational,
risk-neutral agents with common priors interact in an unsubsidized (zero-sum)
market, the agents will not trade at all, even if they have vastly different informa-
tion and posterier beliefs. The informal reason is that any offer by one trader is
a signal to a potential trading partner that results in belief revision discouraging
trade.

The classic market microstructure model of a financial market posits two types
of traders: rational traders and noise traders [24]. The existence of noise traders
turns the game among rational traders into a positive-sum game, thereby resolving
the no-trade paradox. However, even in this setting, the mechanism is not incen-
tive compatible. For example, monopolist information holders will not fully reveal
their information right away: instead, they will leak their information into the mar-
ket gradually over time to obtain a greater profit [7].

Instead of assuming or subsidizing noise traders, a prediction market designer
might choose to directly subsidize the market by employing an automated mar-
ket maker that expects to lose money. Hanson’s market scoring rule market maker
(MSR) is one example [20,21]. MSR requires a patron to subsidize the market but
guarantees that the patron cannot lose more than a fixed amount set in advance,
regardless of how many shares are exchanged or what outcome eventually occurs.
The greater the subsidy, the greater the effective liquidity of the market. Since
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traders face a positive-sum game, even rational risk-neutral agents have incentive
to participate. In fact, even a single trader can be induced to reveal information,
something impossible in a standard double auction with no market maker. Hanson
proves that myopic risk-neutral traders have incentive to reveal all their informa-
tion. However, forward-looking traders may not.

Though subsidized market makers improve incentives for information reve-
lation, the mechanisms are still not incentive compatible. Much of the allure of
prediction markets is the promise to gather information from a distributed group
quickly and accurately. However, if traders have demonstrable incentives to ei-
ther hide or falsify information, the accuracy of the resulting forecast may be in
question. One frequent concern about incentives in prediction markets is based on
non-myopic strategies: strategies in which the attacker sacrifices some profit early
in order to mislead other traders, and then later exploit erroneous trades by other
traders, thereby gaining an overall profit.

1.1 Our Results

In this paper, we study strategies under a logarithmic market scoring rule (LMSR)
in a Bayesian extensive-form game setting with incomplete information. We show
that different information structures can lead to radically different strategic prop-
erties by analyzing two natural classes of signal distributions: conditionally inde-
pendent signals and unconditionally independent signals.

For conditionally independent signals, we show that truthful betting is a Per-
fect Bayesian Equilibrium in finite-stage and infinite-stage models. Further, we
show that the truthful betting equilibrium is the unique Weak Perfect Bayesian
Equilibrium in this setting. Thus, bluffing strategies are not a concern.

In contrast, when signals are unconditionally independent, we show that truth-
ful betting is not a Weak Perfect Bayesian Equilibrium in the finite-stage model.
In the infinite-stage model, we show that there is no Weak Perfect Bayesian Equi-
librium that results in full information revelation in a finite number of trades. We
propose and analyze a discounted version of the LMSR that mitigates the strategic
hazard. In the discounted LMSR, we prove that under any WPBE strategy, the rela-
tive entropy between the market price and the optimal full-information price tends
to zero at an exponential rate. The rate of convergence can be bounded in terms of
the discounting parameter and a measure of complementarity in the information
setting.

1.2 Related Work

Theoretical work on price manipulation in financial markets [1,7,23] explains the
logic of manipulation and indicates that double auctions are not incentive compat-
ible. This literature has studied manipulation based on releasing false information
(perhaps through trades in other markets), as well as manipulation that only re-
quires strategic manipulation in a single market. The latter form of manipulation
is closely related to our study here. Allen and Gale [1] describe a model in which
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a manipulative trader can make a deceptive trade in an early trading stage and then
profit in later stages, even though the other traders are aware of the possibility of
deception and act rationally. They use a stylized model of a multi-stage market; in
contrast, we seek to exactly model a market scoring rule model. Apart from other
advantages of detailed modeling, this allows us to construct simpler examples of
manipulative scenarios: Allen and Gale’s model [1] needs to assume traders with
different risk attitudes to get around no-trade results, which is rendered unneces-
sary by the inherent subsidy with a market scoring rule mechanism. Our model
requires only risk-neutral traders and exactly captures the market scoring rule pre-
diction markets. We refer readers to the paper by Chakraborty and Yilmaz [7] for
references to other research on manipulation in financial markets.

There are some experimental and empirical studies on price manipulation in
prediction markets using double auction mechanisms. The results are mixed, some
giving evidence for the success of price manipulation [19] and some showing the
robustness of prediction markets to price manipulation [6,22,29,30].

Feigenbaum et al. [15] also study prediction markets in which the information
aggregation is sometimes slow, and sometimes fails altogether. In their setting, the
aggregation problems arise from a completely different source: the traders are non-
strategic but extracting individual traders’ information from the market price is dif-
ficult. Here, we study scenarios in which extracting information from prices would
be easy if traders were not strategic; the complexity arises solely from the use of
potentially non-myopic strategies. Nikolova and Sami [27] present an instance in
which myopic strategies are not optimal in an extensive-form game based on the
market, and suggest (but do not analyze) using a form of discounting to reduce
manipulative possibilities in a prediction market.

Axelrod et al. [2] also propose a form of discounting in an experimental
parimutuel market and show that it promotes early trades. Unlike the parimutuel
market, the market scoring rule has an inherent subsidy, so it was not obvious that
discounting would have strategic benefits in our setting as well.

Börgers et al. [5] study when signals are substitutes and complements in a
general setting. Our equilibrium and convergence result suggests that prediction
markets are one domain where this distinction is of practical importance.

This paper is a synthesis and extension of two independent sets of results,
which were presented in preliminary form by Chen et al. [10] and Dimitrov and
Sami [13].

1.3 Structure of the Paper

This article is organized as follows: In section 2, we present a little background
information about market scoring rules. Section 3 details our formal model and
information structures. In Section 4 we investigate how predefined sequence of
play affects players’ expected profits in LMSR. In Section 5 we consider, when
a player can choose to play first or second, what is its equilibrium strategy in
a 2-player LMSR. Results of Sections 4 and 5 serve as building blocks for our
analysis in subsequent sections. Section 6 studies the equilibrium of a 2-player,
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3-stage game. We generalize this result to arbitrary finite-player finite-stage games
in Section 7. We analyze infinite-stage games in Section 8. Section 9 proposes
a discounted LMSR and analyzes how the mechanism discourages non-truthful
behavior. Finally, we conclude in Section 10.

2 Background

Consider a discrete random variable X that has n mutually exclusive and ex-
haustive outcomes. Subsidizing a market to predict the likelihood of each out-
come, market scoring rules are known to guarantee that the market maker’s loss is
bounded.

2.1 Market Scoring Rules

Hanson [20,21] shows how a proper scoring rule can be converted into a market
maker mechanism, called market scoring rules (MSR). The market maker uses a
proper scoring rule, S = {s1(r), . . . , sn(r)}, where r = 〈r1, . . . , rn〉 is a reported
probability estimate for the random variable X . Conceptually, every trader in the
market may change the current probability estimate to a new estimate of its choice
at any time as long as it agrees to pay the scoring rule payment associated with the
current probability estimate and receive the scoring rule payment associated with
the new estimate. If outcome i is realized, a trader that changes the probability
estimate from r to r̃ pays si(r) and receives si(r̃).

Since a proper scoring rule is incentive compatible for risk-neutral agents, if a
trader can only change the probability estimate once, this modified proper scoring
rule still incentivizes the trader to reveal its true probability estimate. However,
when traders can participate multiple times, they might have incentive to manipu-
late information and mislead other traders.

Because traders change the probability estimate in sequence, MSR can be
thought of as a sequential shared version of the scoring rule. The market maker
pays the last trader and receives payment from the first trader. An MSR market
can be equivalently implemented as a market maker offering n securities, each
corresponding to one outcome and paying $1 if the outcome is realized [20,9].
Hence, changing the market probability of outcome i to some value ri is the same
as buying the security for outcome i until the market price of the security reaches
ri. Our analysis in this paper is facilitated by directly dealing with probabilities.

A popular MSR is the logarithmic market scoring rule (LMSR) where the
logarithmic scoring rule

si(r) = b log(ri) (b > 0), (1)

is used. A trader’s expected profit in LMSR directly corresponds to the concept
of relative entropy in information theory. If a trader with probability r̃ moves the
market probability from r to r̃, its expected profit (score) in LMSR is

S(r, r̃) =
n∑
i=1

r̃i (si(r̃)− si(r)) = b

n∑
i=1

r̃i log
r̃i
ri

= bD(r̃||r). (2)
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D(p||q) is the relative entropy or Kullback Leibler distance between two proba-
bility mass functions p(x) and q(x) and is defined in [11] as

D(p||q) =
∑
x

p(x) log
p(x)
q(x)

.

D(p||q) is nonnegative and equals zero only when p = q. The maximum amount
a LMSR market maker can lose is b log n. Since b is a scaling parameter, without
loss of generality we assume that b = 1 in the rest of the paper.

2.2 Terminology

Truthful betting (TB) for a player in MSR is the strategy of immediately changing
the market probability to the player’s believed probability. In other words, it is the
strategy of always buying immediately when the price is too low and selling when
the price is too high. “Too low” and “too high” are determined by the player’s in-
formation. The price is too low when the current expected payoff is higher than the
price, and too high when current expected payoff is lower than the price. Truthful
betting fully reveals a player’s payoff-relevant information. Bluffing is the strategy
of betting contrary to one’s information in order to deceive future traders, with
the intent of capitalizing on their resultant misinformed trading. This paper inves-
tigates scenarios where traders with incomplete information have an incentive to
deviate from truthful betting.1

3 LMSR in a Bayesian Framework

In this part, we introduce our game theoretic model of LMSR market in order to
capture the strategic behavior in LMSR when players have private information.

3.1 General Settings

We consider a single event that is the subject of our predictions. Ω = {Y,N} is
the state space of this event. The true state, ω ∈ Ω, is picked by nature according
to a prior p0 = 〈p0

Y , p
0
N 〉 = 〈Pr(ω = Y ),Pr(ω = N)〉. A market, aiming at

predicting the true state ω, uses a LMSR market maker with initial probability
estimate r0 = 〈r0Y , r0N 〉.

There are m risk neutral players in the market. Each player i gets a private
signal, ci, about the state of the world at the beginning of the market. Ci is the
signal space of player i with |Ci| = ni. The actual realization of the signal is
observed only by the player receiving the signal. The joint distribution of the true
state and players’ signals,P : Ω×C1×· · ·×Cm 7→ [0, 1], is common knowledge.

1 With complete information, traders should reveal all information right away in MSR,
because the market degenerates to a race to capitalize on the shared information first.
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Players trade sequentially, in one or more stages of trading, in the LMSR mar-
ket. Players are risk-neutrual Bayesian agents. If a player i is designated to trade
at some stage k in the sequence, it can condition its beliefs of the likelihood of an
outcome on its private signals, as well as the observed prices after the first k − 1
trades.

Up to this point, we have not made any assumptions about the joint distribution
P . It turns out that the strategic analysis of the market depends critically on inde-
pendence properties of players’ signals. We study two models of independence –
independence conditional on the true state, and unconditional independendence –
that are both natural in different settings. These are described below.

3.1.1 Games with Conditionally Independent (CI) Signals We start with a con-
crete example before formally introducing the model for conditionally independent
signals. Suppose the problem for a prediction market is to predict whether a batch
of product is manufactured with high quality materials or low quality materials. If
the product is manufactured with high quality materials, the probability for a prod-
uct to break in its first month of use is 0.01. If the product is manufactured with
low quality materials, the probability for a product to break in its first month of
use is 0.1. Some consumers who each bought a product have private observations
of whether their products break in the first month of use. The quality of the mate-
rials will be revealed by a test in the future. This is an example where consumers
have conditionally independent signals – conditional on the quality of the materi-
als, consumers’ observations are independent. Conditionally independent signals
are usually appropriate for modeling situations where the true state of the world
has been determined but is unknown, and signal realizations are influenced by the
true state of the world.

Formally, in games with conditionally independent signals, players’ signals are
assumed to be independent conditional on the state of the world, i.e., conditioned
on the eventual outcome of the event. In other words, for any two players i and j,
Pr(ci, cj |ω) = Pr(ci|ω) Pr(cj |ω) is always satisfied by P . This class can be inter-
preted as player i’s signal ci is independently drawn by nature according to some
conditional probability distribution p(ci|Y ) if the true state is Y , and analogously
p(ci|N) if the true state is N .

In order to rule out degenerated cases, we further assume that conditionally
independent signals are informative and distinct. An informative signal means that
after observing the signal, a player’s posterior is different from its prior. Intuitively,
when observing a signal does not change a player’s belief, we can simply remove
the signal from the player’s signal space because it does not provide any infor-
mation. Formally, signals are informative if and only if Pr(ci = a|ω = Y ) 6=
Pr(ci = a|ω = N), ∀1 ≤ i ≤ m and ∀a ∈ Ci. Player i has distinct signals
when its posterior probability is different after observing different signals.When
two signals give a player the same posterior, we can combine these two signals
into one because they provide same information. Formally, signals are distinct if
and only if Pr(ω = Y |ci = a) 6= Pr(ω = Y |ci = a′), ∀a, a′ ∈ Ci, a 6= a′, and
∀i.
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Lemma 1 shows that conditional independence implies unconditional depen-
dence.

Lemma 1 If players have informative signals that are conditionally independent,
their signals are unconditionally dependent.

Proof Suppose the contrary, signals of players i and j, ci and cj , are uncondition-
ally independent. Then, Pr(ci = a, cj = b)−Pr(ci = a) Pr(cj = b) = 0 must be
satisfied for all a ∈ Ci and b ∈ Cj. By conditional independence of signals,

Pr(ci = a, cj = b)− Pr(ci = a) Pr(cj = b)

=
∑
z

Pr(ci = a, cj = b|ω = z) Pr(ω = z)

−
∑
z

Pr(ci = a|ω = z) Pr(ω = z)
∑
z

Pr(cj = b|ω = z) Pr(ω = z)

=
∑
z

Pr(ci = a|ω = z) Pr(cj = b|ω = z) Pr(ω = z)

−
∑
z

Pr(ci = a|ω = z) Pr(ω = z)
∑
z

Pr(cj = b|ω = z) Pr(ω = z)

= Pr(Y ) Pr(N) (Pr(ci = a|Y )− Pr(ci = a|N)) (Pr(cj = b|Y )− Pr(cj = b|N)) .

The above expression equals 0 only when Pr(ci = a|Y ) − Pr(ci = a|N) = 0 or
Pr(cj = b|Y )−Pr(cj = b|N) = 0 or both, which contradicts the informativeness
of signals. Hence, ci and cj are unconditionally dependent. ut

3.1.2 Games with (Unconditionally) Independent (I) Signals In some other situ-
ations, signal realizations are not caused by the state of the world, but instead, they
might stochastically influence the eventual outcome of the event. For instance,
in a political election prediction market, voters’ private information is their votes,
which can arguably be thought as independent of each other. The election outcome
– which candidate gets the majority of votes – is determined by all votes. This is
an example of a game with unconditionally independent signals. Formally, for any
two players i and j in games with independent signals, Pr(ci, cj) = Pr(ci) Pr(cj)
is always satisfied by P .

For games with independent signals, we primarily prove results about the lack
of truthful equilibria. Such results require us to show that there is a strict advan-
tage to deviate to an alternative strategy. In order to rule out degenerate cases in
which the inequalities are not strict, we will often invoke the following general
informativeness condition.

Definition 1 An instance of the prediction market with m players and joint dis-
tribution P satisfies the general informativeness condition if there is no vector of
signals for any m − 1 players that makes the mth player’s signals reveal no dis-
tinguishing information about the optimal probability. Formally, for m = 2, the
following property must be true: ∀i, i′ ∈ C1 and ∀j, j′ ∈ C2 such that i 6= i′, j 6=
j′: Pr(Y |c1 = i, c2 = j) 6= Pr(Y |c1 = i, c2 = j′) and Pr(Y |c1 = i, c2 =
j) 6= Pr(Y |c1 = i′, c2 = j). For m > 2, we must have ∀j, ∀i′ 6= i,Pr(Y |i, j) 6=
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Pr(Y |i′, j), where i, i′ are two possible signals for any one player, and j is a vector
of signals for the other m− 1 players.

By Lemma 1, we know that unconditional independence implies conditional
dependence. We note that the two information structures, conditional indepen-
dence and unconditional independence, that we discuss in this paper are mutually
exclusive, but not exhaustive. We do not consider the case when signals are both
conditionally dependent and unconditionally dependent.

3.2 Equilibrium Concepts

The prediction market model we have described is an extensive-form game be-
tween m players with common prior probabilities but asymmetric information
signals. Specifying a plausible play of the game involves specifying not just the
moves that players make for different information signals, but also the beliefs that
they have at each node of the game tree.

Informally, an assessment Ai = (σi, µi) for a player i consists of a strategy
σi and a belief system µi. The strategy dictates what move the player will make at
each node in the game tree at which she has to move. We allow for strategies to
be (behaviorally) mixed; indeed, a bluffing equilibrium must involve mixed strate-
gies. To avoid technical measurability issues, we make the mild assumption that a
player’s strategy can randomize over only a finite set of actions at each node. The
belief system component of an assessment specifies what a player believes at each
node of the game tree. In our setting, the only relevant information a trader lacks
is the value of the other trader’s information signal. Thus, the belief at a node con-
sists of probabilities of other players’ signal realizations, contingent on reaching
the node.

An assessment profile (A1, ..., Am), consisting of an assessment for each
player, is a Weak Perfect Bayesian Equilibrium (WPBE) if and only if, for each
player, the strategies are sequentially rational given their beliefs and their beliefs
at any node that is reached with nonzero probability are consistent with updating
their prior beliefs using Bayes rule, given the strategies. This is a relatively weak
notion of equilibrium for this class of games. Frequently, the refined concepts of
Perfect Bayesian Equilibrium (PBE) or sequential equilibrium, which further re-
quire beliefs at nodes that are off the equilibrium path to be consistent, are used.
In this paper, when giving a specific equilibrium, we use the refined PBE concept.
When proving the nonexistence of truthful betting equilibrium and characterizing
the set of all equilibria, we use the WPBE concept, because the results thus hold
a fortiori for refinements of the WPBE concept. For a formal definition of the
equilibrium concepts, we refer the reader to the book by Mas-Colell et al. [25].

Given the strategy components of a WPBE profile, the belief systems of the
players are completely defined at every node on the equilibrium path (i.e., every
node that is reached with positive probability). In the remainder of this paper, we
will not consider players’ beliefs off the equilibrium path for WPBEs. We will
abuse notation slightly by simply referring to an “equilibrium strategy profile”,
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leaving the beliefs implicit, for WPBEs. For PBEs, we will explicitly explain play-
ers’ beliefs in proofs.

4 Profits under Predefined Sequence of Play

In this section, we investigate how sequence of play affects players’ expected prof-
its in LMSR. We answer the question: when two players play myopically accord-
ing to a predefined sequence of play, are the players better off on expectation by
playing first or second?

In particular, we consider two players playing in sequence and define some
notations of strategy and expected profits to facilitate our analysis on how the
profit of the second player depends on the strategy employed by the first player.
Although we are studying 2-stage games here, we use them as a building block for
our results in subsequent sections, so the definitions are more general and the first
player’s strategy may not be truthful. In fact, our analysis apply to the first two
stages of any game.

Definition 2 Given a game and a sequence of play, a first-stage strategy σ1 for
the first player is a specification, for each possible signal received by that player,
of a mixed strategy over moves.

Two specific first-stage strategies we will study are the truthful strategy (de-
noted σT ) and the null strategy (denoted σN ). The truthful strategy specifies that,
for each signal ci it receives, the first player changes market probability to its pos-
terior belief after seeing the signal. The null strategy specifies that, regardless of
its signal ci, the first player leaves the market probability unchanged, the same as
she found it at.

In a 2-stage game in which Alice plays first, followed by Bob, we use notation
πB(σ1) to denote Bob’s expected myopic optimal profit following a first-stage
strategy σ1 by Alice, assuming that Bob knows the strategy σ1 and can condition
on it. Likewise, in a game in which Alice moves after Bob, we use πA(σ1) to
denote Alice’s expected profit.

Note that πB(σN ) is equal to the expected myopic profit Bob would have had
if he had moved first, because under the null strategy σN Alice does not move
the market. Also, πB(σT ) is the profit that Bob earns when Alice follows her
myopically optimal strategy.

We begin with the following simple result showing that the truthful strategy is
optimal for a player moving only once. This follows from the myopic optimality
of LMSR, but we include a proof for completeness.

Lemma 2 In a LMSR market, if stage t is player i’s last chance to play and
µi is player i’s belief over actions of previous players, player i’s best response
at stage t is to play truthfully by changing the market probabilities to rt =
〈Pr(Y |ci, r1, ..., rt−1, µi),Pr(N |ci, r1, ..., rt−1, µi)〉, where r1, ..., rt−1 are the
market probability vectors before player i’s action.
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Proof When a player has its last chance to play in LMSR, it is the same as the
player interacting with a logarithmic scoring rule. Because the logarithmic scor-
ing rule is strictly proper, player i’s expected utility is maximized by truthfully
reporting its posterior probability estimate given the information it has. �

Next, we provide a lemma that is very useful for obtaining subsequent theo-
rems. Since the state of the world has only two exclusive and exhaustive outcomes,
Y and N . We use the term position to refer the market probability for outcome Y .
The market probability for outcome N is then uniquely defined because the prob-
abilities for the two outcomes sum to 1.

Lemma 3 Let σ1 be a first-stage strategy for Alice that minimizes the expression
πB(σ) over all possible σ. Then, σ1 satisfies the following consistency condition:
For any position x that Alice moves to under σ1, the probability of the outcome Y
occuring conditioned on σ1 and the fact that Alice moved to x is exactly equal to
x.

Proof Suppose that σ1 does not satisfy this condition. We construct a perturbed
first-stage strategy σ̂1, and show that πB(σ̂1) < πB(σ1), thus contradicting the
minimality of σ1. Such a σ̂1 is easily constructed from any given σ1, as follows.
We start by setting σ̂1 = σ1. Consider any one position x that Alice moves to with
positive probability under strategy σ1, and for which the consistency condition is
failed. Let qx = Pr(Y |xA = x, Alice following σ1). Then, whenever σ1 dictates
that Alice move to x, we set σ̂1 to dictate that Alice move to x̂ = qx instead. We
repeat this perturbation for each x such that x 6= qx, thus resulting in a consistent
strategy σ̂1.

The actual position that Alice moves to can be thought of as a random variable
on a sample space that includes the randomly-distributed signals Alice receives as
well as the randomization Alice uses to play a mixed strategy. We use xA and x̂A
to denote random variables that takes on values x and x̂ respectively. Similarly,
the event ω is a random variable that takes on two values {Y,N}. Recall that the
moves are actually probability distributions. In order to use summation notation,
we define xY = x, xN = 1 − x; and, likewise, x̂Y = x̂, x̂N = 1 − x̂. By
definition of x̂, x̂z = Pr(ω = z|xA = x̂, Alice following σ̂1). Note that any x has
a corresponding value of x̂; thus, we may write expressions like

∑
x x̂ in which

x̂ is implicitly indexed by x. We use Pr(x, b, z) to represent Pr(xA = x, cB =
b, ω = z), and other notation is defined similarly.

The intuitive argument we use is as follows: Consider the situation in which
Alice is known to be following strategy σ1. The total profit of two consecutive
moves, in a market using the LMSR, is exactly the payoff of moving from the
starting point to the end point of the second move. Hence, for any given position
x that Alice leaves the market price at, we decompose Bob’s response into two
virtual steps. In the first virtual step, Bob moves the market to the corresponding
x̂. In the second step, Bob moves the market from x̂ to his posterior probability
Pr(z|x, b). Bob’s actual profit is the sum of his profit from these two steps. Note
that the second step alone yields Bob at least πB(σ̂1) in expectation, because in
both cases the move begins at x̂, and because Bob can infer x̂ from x. We further
argue that the first step yields a strictly positive expected profit, because for any
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position x, the posterior probability of outcome Y is x̂Y . The first step thus moves
the market from a less accurate value to the most accurate possible value given
information x; this always yields a positive expected profit in the LMSR.

Formalizing this argument, we compare the payoffs πB(σ1) and πB(σ̂1) as
follows.

πB(σ1)− πB(σ̂1) =
∑
x,b,z

Pr(x, b, z) [log Pr(z|x, b)− log xz]

−
∑
x,b,z

Pr(x, b, z) [log Pr(z|x̂, b)− log x̂z]

=
∑
x,b,z

Pr(x, b, z) [log Pr(z|x, b)− log Pr(z|x̂, b)]

+
∑
x,b,z

Pr(x, b, z) [log x̂z − log xz]

=
∑
x,b

Pr(x, b)
∑
z

Pr(z|x, b) [log Pr(z|x, b)− log Pr(z|x̂, b)]

+
∑
x

Pr(x)
∑
z

Pr(z|x) [log x̂z − log xz]

=
∑
x,b

Pr(x, b)D(p(ω|xA,cB)||p(ω|x̂A,cB))

+
∑
x

Pr(x)
∑
z

x̂z [log x̂z − log xz]

=
∑
x,b

Pr(x, b)D(p(ω|xA,cB)||p(ω|x̂A,cB))

+
∑
x

Pr(x)D(p(x̂A)||p(xA))

where p(ω|xA,cB) and p(ω|x̂A,cB) are the conditional distributions of ω, and
p(x̂A) and p(xA) are the probability distributions of x̂A and xA respectively.
D(p(ω|xA,cB)||p(ω|x̂A,cB)) and D(p(x̂A)||p(xA)) are relative entropy, which is
known to be nonnegative and strictly positive when the two distributions are
not the same. We assumed that σ1 does not meet the consistency condition, and
thus, there is at least one x such that Pr(x) > 0 and x̂ 6= x. Thus, we have
D(p(x̂A)||p(xA)) > 0. Hence, πB(σ1) > πB(σ̂1). This contradicts the minimality
assumption of σ1. ut

4.1 Profits in CI Games

When Alice and Bob have conditionally independent signals and Alice plays first,
we will prove that, for any strategy σ1 that Alice chooses, if Bob is aware that Alice
is following strategy σ1, his expected payoff from following the myopic strategy
(after conditioning his beliefs on Alice’s actual move) is at least as much as he
could expect if Alice had chosen to play truthfully.
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First, we show that in CI games, observing Alice’s posterior probabilities is
equally informative to Bob as observing Alice’s signal directly.

Lemma 4 When players have conditionally independent signals, if player i knows
player j’s posterior probabilities 〈Pr(Y |cj),Pr(N |cj)〉, player i can infer the pos-
terior probabilities conditional on both signals. More specifically,

Pr(ω|ci, cj) =
Pr(ci|ω) Pr(ω|cj)

Pr(ci|Y ) Pr(Y |cj) + Pr(ci|N) Pr(N |cj)
,

where ω ∈ {Y,N}.
Proof Using Bayes rule, we have

Pr(ω|ci, cj) =
Pr(ω, ci|cj)
Pr(ci|cj)

=
Pr(ci|cj , ω) Pr(ω|cj)

Pr(ci|cj , Y ) Pr(Y |cj) + Pr(ci|cj , N) Pr(N |cj)

=
Pr(ci|ω) Pr(ω|cj)

Pr(ci|Y ) Pr(Y |cj) + Pr(ci|N) Pr(N |cj)
.

The third equality comes from the CI condition. ut
We can now prove our result on Bob’s myopic profit in the CI setting.

Theorem 1 For any CI game G with Alice playing first and Bob playing second,
and any σ1, πB(σ1) ≥ πB(σT ). When signals are informative and distinct, the
equality holds if and only if σ1 = σT .

Proof We use an information-theoretic argument to prove this result. We can view
Alice’s signal cA, Alice’s actual move xA (for outcome Y ) , Bob’s signal cB , the
event ω as random variables. We then show that Bob’s expected payoff can be
characterized as the entropy of cB conditioned on observing xA, plus another term
that does not depend on Alice. The more information that xA reveals about cB ,
the lower the conditional entropy H(cB |xA), and thus, the lower Bob’s expected
profit. However, note that xA is a (perhaps randomized) function of Alice’s signal
cA alone. A fundamental result from information theory states that xA can reveal
no more information about cB than cA can, and thus, Bob’s profit is minimized
when xA reveals as much information as cA. By Lemma 4, the truthful strategy
for Alice reveals all information that is in cA, and thus, attains the minimum.

We now formalize this argument, retaining the notation above. By Lemma 3,
we can assume that σ1 is consistent, without loss of generality. Let us analyze
Bob’s expected payoff when Alice follows this strategy σ1. The unit of our analysis
is a particular realization of a combination cA = a, xA = x, cB = b, ω = z. Bob
will move to a position y(x, σ1, b) = Pr(Y |xA = x, Alice following σ1, cB = b).
For conciseness, we drop σ1 from the notation, and write y(x, b).

As before use xz and yz to denote the probability of ω = z inferred from
positions x and y respectively. By definition of the LMSR, we have:

πB(σ1) =
∑
x,b,z

Pr(x, b, z) [log yz(x, b)− log xz]
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Next, we note that yz(x, b) = Pr(ω = z|x, b). Further, it is immediate that∑
b Pr(b|x, z) = 1. Expanding, we have

πB(σ1) =
∑
x,b

Pr(x, b)
∑
z

Pr(z|x, b) log yz(x, b)

−
∑
x

Pr(x)
∑
z

Pr(z|x)
∑
b

Pr(b|x, z) log xz

=
∑
x,b

Pr(x, b)

[∑
z

Pr(z|x, b) log Pr(z|x, b)

]

−
∑
x

Pr(x)

[∑
z

Pr(z|x) log Pr(z|x)

]
= −H(ω|xA, cB) +H(ω|xA)

where we have identified the terms with the standard definition of conditional en-
tropy of random variables [11, pg. 17].

Using the relation H(X,Y ) = H(X) +H(Y |X), we can write

πB(σ1) = −H(ω, xA, cB) +H(xA, cB) +H(ω, xA)−H(xA)
= [H(xA, cB)−H(xA)]− [H(ω, xA, cB)−H(ω, xA)]
= H(cB |xA)−H(cB |ω, xA)
= H(cB |xA)−H(cB |ω)

The last transformation H(cB |ω, xA) = H(cB |ω) follows because cB is condi-
tionally independent of xA conditioned on ω, and thus, knowledge of xA does not
alter its conditional distribution or its conditional entropy.

The second term is clearly independent of σ1. For the first term, we note that
H(cB |cA) ≤ H(cB |xA) because xA is a function of cA [11, pg. 35]. More specif-
ically,

H(cB |xA) = −
∑
x

Pr(x)

[∑
b

Pr(b|x) log Pr(b|x)

]

= −
∑
x

Pr(x)

[∑
b

(∑
a

Pr(a|x) Pr(b|a)

)
log

(∑
a

Pr(a|x) Pr(b|a)

)]
≥ −

∑
x

Pr(x)
∑
b

∑
a

[Pr(a|x) Pr(b|a) log Pr(b|a)]

= −
∑
x

Pr(x)
∑
a

[
Pr(a|x)

∑
b

[Pr(b|a) log Pr(b|a)]

]

= −
∑
a

Pr(a)

[∑
b

Pr(b|a) log Pr(b|a)

]
= H(cB |cA).



Gaming Prediction Markets: Equilibrium Strategies with a Market Maker 15

The inequality follows from the strict convexity of the function x log x. The
equality holds only when the distribution of cB |a is the same as the distribu-
tion of cB |a′ for all a, a′ ∈ CA, or for any x there exists some a such that
Pr(cA = a|xA = x) = 1. If cB |a and cB |a′ have the same distribution for all
a and a′, cA and cB are unconditionally independent which contradicts with the
CI condition by Lemma 1. Thus, the equality holds only when σ1 is a strategy such
that for any x there exists some a that satisfies Pr(cA = a|xA = x) = 1.

The truthful strategy σT satisfies the above condition. Given any signal a that
Alice might see, let xa be the position that Alice would move to if she followed the
truthful strategy, and let xTA denote the corresponding random variable. Then xa =
Pr(Y |cA = a). Because signals are distinct, the value of xa uniquely corresponds
to signal a. Hence, the condition is satisfied with Pr(cA = a|xTA = xa) = 1.

All that remains to be shown is that there is no other strategy σ1 6= σT that
satisfies the condition. For some strategy σ1, let XA denote the value space of xA.
Suppose the contrary, for any x ∈ XA there exists ax such that Pr(cA = ax|xA =
x) = 1. We first show that when x 6= x′ and x, x′ ∈ XA, it must be that ax 6= ax′ .
According to Lemma 3, Pr(Y |xA = x,Alice follows σ1) = x, which gives∑

a′

Pr(Y |cA = a′) Pr(cA = a′|xA = x) = x =⇒ Pr(Y |cA = ax) = x.

This means that Pr(Y |cA = ax) 6= Pr(Y |cA = ax′) when x 6= x′. Hence,
ax 6= ax′ because signals are distinct. Next, we show that when cA = a, it must
be the case that xA = Pr(Y |cA = a) with probability 1 according to strategy
σ1. If with some positive probability xA = x′ 6= Pr(Y |cA = a), then, because
Pr(cA = ax′ |xA = x′) = 1, cA = ax′ 6= a, and contradiction arises. Thus, for all
a ∈ CA, when cA = a, Alice moves to Pr(Y |cA = a) with probability 1 under
σ1. Hence, strategy σ1 is the truthful strategy σT . ut

The following corollary immediately follows from Theorem 1 and answers that
question we proposed at the beginning of the section for CI games.

Corollary 1 In CI games, when two players play myopically according to a pre-
defined sequence of play, it is better off for a player to play first than second.

Proof We compare Bob’s expected profit in Alice-Bob and Bob-Alice cases when
both players play myopically. Bob’s expected profit in Alice-Bob case equals
πB(σT ), while his expected profit in Bob-Alice cases equals πB(σN ). According
to Theorem 1, πB(σN ) > πB(σT ). Hence, Bob is better off when the Bob-Alice
sequence is used. ut

4.2 Profits in I Games

When Alice and Bob have unconditionally independent signals and Alice plays
first, we will prove that, for any strategy σ1 that Alice chooses, if Bob is aware
that Alice is following strategy σ1, his expected payoff from following the myopic
strategy (after conditioning his beliefs on Alices actual move) is at least as much
as he could expect if Alice had chosen to play the null strategy σN .
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Theorem 2 For any I game G with Alice playing first and Bob playing second and
any first-stage strategy σ1, if the market starts with the prior probabilities for the
two outcomes, i.e. r0 = 〈Pr(ω = Y ),Pr(ω = N)〉, we have πB(σ1) ≥ πB(σN ).
The equality holds if and only if σ1 = σN .

Proof Assume that there is a strategy σ1 for Alice that minimizes πB(σ1) over all
possible first-stage strategies. According to Lemma 3, we can assume that σ1 is
consistent, without loss of generality. We will show that σ1 must involve Alice not
moving the market probability at all.

Let xA be the random variable of Alice’s move for outcome Y under strategy
σ1. We first argue that xA is deterministic, i.e. it can only have a single value.
Suppose the contrary, then σ1 would have support over a set of points: at least
two points E, F , and perhaps a set of other points R. In this case, we show that
we can construct a strategy σ′1 such that πB(σ′1) < πB(σ1) by “mixing” point
E and another point H . Define uEi and uFi as the probability (under σ1) that
Alice has signal cA = ai and sets xA = E and xA = F respectively. Let pE be
the probability that Alice plays E and similarly pF be the probability that Alice
plays F . Without loss of generality let pF < pE . Define αi = Pr(cA = ai|xA =
E) = uEi

pE
and βi = Pr(cA = ai|xA = F ) = uFi

pF
. With these definitions we

can define the myopic move of Bob given that market is at E and cB = bj as
rαj =

∑
i

αi Pr(Y |cA = ai, cB = bj). Similarly rβj is defined as the myopic

move of Bob given the market is at F . We use rα
j and rβ

j to denote the probability

vectors for two outcomes 〈rαj , 1− rαj 〉 and 〈rβj , 1− r
β
j 〉 respectively.

Now, let H = (E + F )/2 be the midpoint of E and F , and consider a new
strategy σ′1 over points E, H , and the same set of remaining points R. Under σ′1,
the probability that Alice has signal cA = ai and sets xA = E is pE−pF

pE
uEi , and

the probability that Alice has signal cA = ai and sets xA = H equals pFpE uEi+uFi .
Hence, Alice mixes over E and H with probability pE − pF and 2pF respectively.

As before we can define γi = Pr(cA = ai|H) =
pF
pE

uEi+uFi
2pF

= 1
2

uEi
pE

+ 1
2

uFi
pF

=
αi+βi

2 . We can now define the myopic move of Bob given the market is at H
and cB = bj as rγj =

∑
i

γi Pr(Y |cA = ai, cB = bj). Similarly, we use rγ
j to

represent the vector for two outcomes.
We now characterize πB(σ1) as follows, writing pE as (pE − pF ) + pF to

facilitate comparison with πB(σ′1).

πB(σ1) = (pE − pF )[
∑
j

Pr(cB = bj)D(rα
j ||
∑
j

Pr(cB = bj)rα
j )]

+pF [
∑
j

Pr(cB = bj)D(rα
j ||
∑
j

Pr(cB = bj)rα
j )]

+pF [
∑
j

Pr(cB = bj)D(rβ
j ||
∑
j

Pr(cB = bj)r
β
j )]

+ remaining profit over R
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We also characterize πB(σ′1) as:

πB(σ′1) = (pE − pF )[
∑
j

Pr(cB = bj)D(rα
j ||
∑
j

Pr(cB = bj)rα
j )

+2pF [
∑
j

Pr(cB = bj)D(rγ
j ||
∑
j

Pr(cB = bj)r
γ
j )

+ remaining profit over R

From the definitions of the myopic moves given the market states, note that rγ
j =

rα
j +rβ

j

2 . This means that πB(σ′1) can be bounded as :

πB(σ′1) = (pE − pF )[
∑
j

Pr(cB = bj)D(rα
j ||
∑
j

Pr(cB = bj)rα
j )

+2pF [
∑
j

Pr(cB = bj)D(rγ
j ||
∑
j

Pr(cB = bj)r
γ
j )

+ remaining profit over R
= (pE − pF )[

∑
j

Pr(cB = bj)D(rα
j ||
∑
j

Pr(cB = bj)rα
j )

+2pF [
∑
j

Pr(cB = bj)D(
rα
j + rβ

j

2
||
∑
j

Pr(cB = bj)
rα
j + rβ

j

2
)

+ remaining profit over R
< (pE − pF )[

∑
j

Pr(cB = bj)D(rα
j ||
∑
j

Pr(cB = bj)rα
j )]

+pF [
∑
j

Pr(cB = bj)D(rα
j ||
∑
j

Pr(cB = bj)rα
j )]

+pF [
∑
j

Pr(cB = bj)D(rβ
j ||
∑
j

Pr(cB = bj)r
β
j )]

+ remaining profit over R
= πB(σ1)

The last inequality follows from the strict convexity of relative entropy under the
general informativeness condition.

Therefore, for any strategy σ1 with two or more points in its support, there
always exists a strategy σ′1 such that πB(σ′1) < πB(σ1). This means that for any
strategy of Alice that minimized πB(σ1), the strategy must have only one point
in its support. Thus, the strategy does not reveal any information to Bob. Suppose
that the point in the support, x, is such that x 6= Pr(ω = Y ). This again contradicts
the fact that σ1 minimizes πB(σ1), as Bob will always make a positive payoff in
expectation if he moves from x to Pr(ω = Y ). Thus, he would have a larger payoff
overall if Alice left the market at x instead of Pr(ω = Y ). Therefore the strategy
that minimizes the expected payoff of Bob is for Alice to report Pr(ω = Y ).
However, because the market starts with Pr(ω = Y ), it is equivalent to her not
trading at all in the first stage. Therefore we have shown that πB(σ1) ≥ πB(σN ).
Only when σ1 = σN the equality holds. ut

The following corollary immediately follows from Theorem 2 and answers the
question we proposed at the beginning of the section for I games.
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Corollary 2 In I games that start with the prior probabilities for the two out-
comes, i.e. r0 = 〈Pr(ω = Y ),Pr(ω = N)〉, when two players play myopically
according to a predefined sequence of play, it is better off for a player to play
second than first.

Proof We compare Bob’s expected profit in Alice-Bob and Bob-Alice cases when
both players play myopically. Bob’s expected profit in Alice-Bob case equals
πB(σT ), while his expected profit in Bob-Alice cases equals πB(σN ). According
to Theorem 2, πB(σT ) ≥ πB(σN ). Hence, Bob is better off when the Alice-Bob
sequence is used. ut

5 Sequence Selection Game

In this section, we examine the following strategic question: Suppose that each
player will get to report only once. If a player has a choice between playing first
and playing second after observing its signal, which one should it choose?

To answer the question, we define a simple 2-player sequence selection game.
Suppose that Alice and Bob are the only players in the market. Alice gets a signal
cA. Similarly, Bob gets a signal cB . After getting their signals, Alice and Bob play
the sequence selection game as follows. In the first stage, Alice chooses who—
herself or Bob—plays first. The selected player then changes the market probabil-
ities as they see fit in the second stage. In the third stage, the other player gets the
chance to change the market probabilities. Then, the market closes and the true
state is revealed.

In the rest of this section, we provide equilibria of the sequence selection game
under CI setting and I setting respectively.

5.1 Sequence Selection Equilibrium of CI Games

Consider the sequence selection game, and assume that Alice and Bob have condi-
tionally independent signals. The following theorem gives a PBE of the sequence
selection game when the CI condition is satisfied.

Theorem 3 When Alice and Bob have conditionally independent signals in LMSR,
at a PBE of the sequence selection game

– Alice selects herself to be the first player in the first stage;
– Alice changes the market probability to 〈Pr(Y |cA),Pr(N |cA)〉 in the second

stage;
– Bob changes the market probability to 〈Pr(Y |cA, cB),Pr(N |cA, cB)〉 in the

third stage.

Proof Since we use the PBE concept, we first describe Bob’s belief µB for the off-
equilibrium paths. We denote x = 〈x1, ..., xnA〉 as the vector of Alice’s possible
posteriors for the outcome Y . That is, xi = Pr(Y |cA = ai), where ai is the i-th
element of CA. Without loss of generality, assume that xi < xj iff i < j. Off
the equilibrium path, when Alice selects Bob to be the first player and the initial
market probability is r0, Bob’s belief µB gives
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– If x1 ≤ r0Y ≤ xnA , Pr(Y |r0, µB) = r0Y .
– If 0 ≤ r0Y < x1, Pr(Y |r0, µB) = x1.
– If xnA < r0Y ≤ 1, Pr(Y |r0, µB) = xnA .

Bob’s belief µB is consistent with Alice’s off-equlibrium mixed strategy:

– If cA = ai and xi = r0Y , select Bob as the first player.
– If cA = ai or cA = ai+1 and xi < r0Y < xi+1, mix between selecting herself

as the first player and selecting Bob as the first player. When cA = ai, with
probability α select Bob as the first player and (1 − α) select herself as the
first player. When cA = ai+1, with probability β select Bob as the first player
and (1− β) select herself as the first player. The mixing probabilities α and β
satisfy that Pr(Y |select Bob as the first player) = r0Y .

– If cA = a1 and 0 ≤ r0Y < x1, select Bob as the first player.
– If cA = anA and xnA < r0Y ≤ 1, select Bob as the first player.
– For all other cases, select herself as the first player.

Each player has only one chance to change the market probabilities. Hence, by
Lemma 2, both of them will truthfully reveal all information that they have given
their beliefs when it’s their turn to play. If Alice is the first to play, she will change
the market probabilities to 〈Pr(Y |cA),Pr(N |cA)〉 in the second stage. Bob, be-
lieving that prices in the second stage are Alice’s posteriors, can calculate his pos-
teriors based on both Alice’s and his own signals. Bob will further changes the
market probabilities to 〈Pr(Y |cA, cB),Pr(N |cA, cB)〉 in the third stage. On the
contrary, if Bob is selected as the first player, he will change the market probabili-
ties to 〈Pr(Y |r0, cB , µB),Pr(N |r0, cB , µB)〉 in the second stage. Let âr0 denote
a fictitious signal realization of Alice that satisfies 〈Pr(Y |âr0),Pr(N |âr0)〉 = r0.
âr0 does not necessarily belong to Alice’s signal space CA. According to Lemma
4, 〈Pr(Y |r0, cB , µB),Pr(N |r0, cB , µB)〉 equals one of the following

1. 〈Pr(Y |âr0 , cB),Pr(N |âr0 , cB)〉 when x1 ≤ r0Y ≤ xnA .
2. 〈Pr(Y |anA , cB),Pr(N |anA , cB)〉 when xnA < r0Y ≤ 1.
3. 〈Pr(Y |a1, cB),Pr(N |a1, cB)〉 when 0 ≤ r0Y < x1.

To make her sequence selection in the first stage, Alice essentially compares
her expected utilities conditional on her own signal in the Alice-Bob and Bob-
Alice subgames.

Without loss of generality, suppose Alice has signal ak. Let U IA denote Alice’s
expected profit conditioned on her signal when the Alice-Bob subgame is picked.
U IIA denotes Alice’s expected profit conditioned on her signal when the Bob-Alice
subgame is picked. Then, for case 1,

U IA =
1

Pr(cA = ak)

∑
l,z

Pr(ak, bl, z) log
Pr(ω = z|cA = ak)

Pr(ω = z|âr0)
, and (3)

U IIA =
1

Pr(cA = ak)

∑
l,z

Pr(ak, bl, z) log
Pr(ω = z|cA = ak, cB = bl)

Pr(ω = z|âr0 , cB = bl)
, (4)

where bl represents the l-th signal element in CB, and Pr(ak, bl, z) represents the
joint probability of cA = ak, cB = bl, and ω = z. For conciseness, we use Pr(ak)
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to represent Pr(cA = ak) and similarly for other terms. The difference in expected
profits for Alice in the two subgames is:

U IA − U IIA =
1

Pr(ak)

∑
l,z

Pr(ak, bl, z) log
Pr(z|ak) Pr(z|âr0 , bl)
Pr(z|âr0) Pr(z|ak, bl)

(5)

=
1

Pr(ak)

∑
l,z

Pr(ak, bl, z) log
Pr(ak, bl) Pr(âr0)
Pr(âr0 , bl) Pr(ak)

=
∑
l

Pr(bl|ak) log
Pr(bl|ak)
Pr(bl|âr0)

= D
(
p(cB |ak)||p(cB |âr0 )

)
, (6)

where p(cB |ak) is the probability distribution of Bob’s signal conditional on sig-
nal ak and p(cB |âr0 ) is the probability distribution of Bob’s signal conditional
on the fictitious signal âr0 . The second equality comes from Bayes rule and
the conditional independence of signals. D(p||q) ≥ 0. The equality holds only
when distributions p and q are the same. We thus have U IA − U IIA ≥ 0. When
〈Pr(Y |ak),Pr(N |ak)〉 6= r0, p(cB |ak) is different from p(cB |âr0 ) and hence
U IA − U IIA is strictly greater than 0.

Since the market only has two exclusive outcomes, cases 2 and 3 are symmet-
ric. We only need to prove one of them. Without loss of generality, consider case
2 where xnA < r0Y ≤ 1, Alice’s expected profit conditioned on her signal for the
Bob-Alice subgame becomes

Ũ IIA =
1

Pr(cA = ak)

∑
l,z

Pr(ak, bl, z) log
Pr(ω = z|cA = ak, cB = bl)
Pr(ω = z|cA = anA , cB = bl)

, (7)

while U IA remains the same as in (3). We obtain

U IA − Ũ IIA

=
1

Pr(ak)

∑
l,z

Pr(ak, bl, z) log
Pr(z|ak)
Pr(z|anA)

+
∑
z

Pr(z|ak) log
Pr(z|anA)

r0z
− Ũ IIA

= D
(
p(cB |ak)||p(cB |anA )

)
+
∑
z

Pr(z|ak) log
Pr(z|anA)

r0z
.

The second term in the above expression is positive because r0Y > Pr(Y |anA) ≥
Pr(Y |ak). Hence, U IA − Ũ IIA > 0. Alice does not want to deviate from selecting
herself as the first player. ut

Corollary 1 in Section 4 indicates that if myopic players follow predefined
sequence of play then on expectation a player is better off by playing first than
second in CI games. Theorem 3 further strengthens this result and states that if a
strategic player have a choice, at a PBE the player will always choose to play first
in CI games no matter what signal it gets.
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5.2 Sequence Selection Equilibrium of I games

In this part, we consider the alternative model in which players have independent
signals. The following theorem gives a PBE of the sequence selection game when
the I condition is satisfied.

Theorem 4 If the market starts with the prior probabilities for the two outcomes,
i.e. r0 = 〈Pr(ω = Y ),Pr(ω = N)〉, and Alice and Bob have independent signals,
at a PBE of the sequence selection game

– Alice in the first stage selects Bob to be the first player;
– Bob changes the market probability to 〈Pr(Y |cB),Pr(N |cB)〉 in the second

stage;
– Alice changes the market probability to 〈Pr(Y |cA, cB),Pr(N |cA, cB)〉 in the

third stage.

Proof If Alice always selects Bob as the first player, this action does not reveal
any information to Bob. Knowing Alice’s strategy, according to Lemma 2, Bob’s
best responds in the second stage is to truthfully report the posterior probability
conditioned on his own signal and Alice will report truthfully conditioned on both
signals in the third stage. Thus, we need to prove that Alice does not want to deviate
from selecting herself as the first player. Without loss of generality, assume Alice
has signal ak.

If Alice selects herself as the first player, her best response in the second stage
is to report truthfully. Hence, the expected profit conditioned on her signal in this
case, denoted as U IA, is

U IA =
∑
z

Pr(ω = z|ca = ak) log
Pr(ω = z|ca = ak)

Pr(ω = z)
= D(p(ω|ak)||p(ω)) (8)

If Alice selects Bob as the first player, her expected profit conditioned on her sig-
nal, denoted as U IIA is

U IIA =
∑
l,z

Pr(cb = bl|ak) Pr(ω = z|ak, bl) log
Pr(ω = z|ak, bl)

Pr(ω = z|bl)

=
∑
l

Pr(cb = bl|ak)D(p(ω|ak,bl)||p(ω|bl)) (9)

Because signals are independent, we have Pr(bl|ak) = Pr(bl). Hence,
Pr(z|ak) =

∑
l Pr(bl|ak) Pr(z|ak, bl) =

∑
l Pr(bl) Pr(z|ak, bl). By Bayes rule,

Pr(z) =
∑
l Pr(bl) Pr(z|bl). The difference in expected profits for Alice is:

U IA − U IIA = D(p(ω|ak)||p(ω))−
∑
l

Pr(bl)D(p(ω|ak,bl)||p(ω|bl))

= D(
∑
l

Pr(bl)p(ω|ak,bl)||
∑
l

Pr(bl)p(ω|bl))−
∑
l

Pr(bl)D(p(ω|ak,bl)||p(ω|bl))

≤ 0.
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The inequality follows from the convexity of relative entropy [11]. Thus, Alice
does not want to deviate from selecting Bob as the first player.

The strategies and beliefs off the equilibrium path are straightforward. If Alice
selects herself to be the first players. In the second stage, her best response is to
report her true posterior. Bob believes that Alice reports truthfully. ut

Corollary 2 in Section 4 indicates that if myopic players follow predefined se-
quence of play then on expectation a player is better off by playing second than
first in I games. Theorem 4 further strengthens this result and states that if a strate-
gic player have a choice, at a PBE the player will always choose to play second in
I games no matter what signal it gets.

6 The Alice-Bob-Alice Game

We now consider a 3-stage Alice-Bob-Alice game, where Alice plays in the first
and third stages and Bob plays in the second stage. Alice may change the market
probabilities however she wants in the first stage. Observing Alice’s action, Bob
may change the probabilities in the second stage. Alice can take another action in
the third stage. Then, the market closes and the true state is revealed.

Let rt = 〈rtY , rtN 〉 be the market probabilities in stage t. Lemma 5 character-
izes the equilibrium strategy of Alice in the third stage.

Lemma 5 In a 3-stage Alice-Bob-Alice game in LMSR, at a WPBE Alice changes
the market probabilities to r3 = 〈r3Y , r3N 〉 = 〈Pr(Y |ak, bl),Pr(N |ak, bl〉 in the
third stage, when Alice has signal ak and Bob has signal bl.

Proof This is proved by applying Lemma 2 to both Bob and Alice. At a WPBE,
beliefs are consistent with strategies. Alice and Bob act as if they know each other’s
strategy. Since Bob only gets one chance to play, according to Lemma 2 Bob plays
truthfully and fully reveals his information. Because the third stage is Alice’s last
chance to change the probabilities, Alice behaves truthfully and fully reveals her
information, including her own signal and Bob’s signal inferred from Bob’s action
in the second stage. �

6.1 Truthful Equilibrium of CI Games

We study the PBE of the game when Alice and Bob have conditionally independent
signals. Built on our equilibrium result for the sequence selection game, Theorem
5 describes a PBE of the Alice-Bob-Alice game.

Theorem 5 When Alice and Bob have conditionally independent signals in LMSR,
at a PBE of the 3-stage Alice-Bob-Alice game

– Alice changes the market probability to r1 = 〈Pr(Y |cA),Pr(N |cA)〉 in the
first stage;

– Bob in the second stage changes the market probability to r2 =
〈Pr(Y |cA, cB),Pr(N |cA, cB)〉;
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– Alice does nothing in the third stage.

Proof Bob’s belief µB is similar to that of the sequence selection game as de-
scribed in the proof for Theorem 3. We denote x = 〈x1, ..., xnA〉 as the vector
of Alice’s possible posteriors for the outcome Y . That is, xi = Pr(Y |cA = ai),
where ai is the i-th element of CA. Without loss of generality, assume that xi < xj
iff i < j. When Alice changes market probability to r1 in the first stage, Bob’s
belief µB gives

– If x1 ≤ r1Y ≤ xnA , Pr(Y |r1, µB) = r1Y .
– If 0 ≤ r1Y < x1, Pr(Y |r1, µB) = x1.
– If xnA < r1Y ≤ 1, Pr(Y |r1, µB) = xnA .

When observing a r1Y = y 6= xi for all 1 ≤ i ≤ nA, Bob’s belief µB is consistent
with Alice’s off-equlibrium mixed strategy:

– If cA = ai or cA = ai+1 and xi < y < xi+1, mix between truthful betting
and reporting r1Y = y. When cA = ai, with probability α change market
probability to r1Y = y and (1−α) play truthful betting. When cA = ai+1, with
probability β change market probability to r1Y = y and (1 − β) play truthful
betting. The mixing probabilities α and β satisfy that Pr(Y |r1Y = y) = y.

– If cA = a1 and 0 ≤ y < x1, change market probability to r1Y = y.
– If cA = anA and xnA < y ≤ 1, change market probability to r1Y = y.
– For all other cases, report truthfully.

By Lemma 2, Bob does not want to deviate from truthful betting in the second
stage given that Alice truthfully reports her posteriors in the first stage.

We show that Alice does not want to deviate by changing market probabilities
to r1 6= 〈Pr(Y |cA),Pr(N |cA)〉. Without loss of generality, assume that Alice has
signal cA = ak. Consider the two cases:

1. When Alice does not deviate: Alice changes market probabilities to her true
posteriors 〈Pr(Y |ak),Pr(N |ak)〉 in the first stage; Bob changes the probabil-
ities to 〈Pr(Y |ak, cB),Pr(N |ak, cB)〉 in the second stage; Alice does nothing
in the third stage.

2. When Alice deviates: Alice changes market probabilities to r1 that is dif-
ferent from 〈Pr(Y |ak),Pr(N |ak)〉; Bob changes market probabilities to
〈Pr(Y |r1, cB , µB),Pr(N |r1, cB , µB)〉 in the second stage, and Alice plays
a best response according to Lemma 5 by changing market probabilities to
〈Pr(Y |ak, cB),Pr(N |ak, cB)〉 in the third stage.

We compare Alice’s expected profits conditional on her signal in these two
cases with the aid of the sequence selection game. The total payoff of two consec-
utive moves, in a market using the LMSR, is exactly the payoff of moving from the
starting point to the end point of the second move. Hence, the expected profit that
Alice gets from case 1 is the same as what she gets from the following sequence
of actions: (a) Alice changes market probabilities to r1 that are different from her
posteriors in the first stage; (b) A sequence selection game starts with initial mar-
ket probabilities r1; Alice selects herself to be the first player; (c) Alice changes
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market probabilities to 〈Pr(Y |ak),Pr(N |ak)〉; (d) Bob changes market probabili-
ties to 〈Pr(Y |ak, cB),Pr(N |ak, cB)〉. Similarly, the expected profit that Alice gets
from case 2 is the same as what she gets from the following sequence of actions:
(a’) Alice changes market probabilities to r1 that are different from her poste-
riors in the first stage; (b’) A sequence selection game starts with initial market
probabilities r1; Alice selects Bob to be the first player; (c’)Bob changes market
probabilities to 〈Pr(Y |r1, cB , µB),Pr(N |r1, cB , µB)〉; (d’) Alice changes mar-
ket probabilities to 〈Pr(Y |ak, cB),Pr(N |ak, cB)〉. Alice’s expected profit from
(a) is the same as that from (a’). But according to Theorem 3, Alice’s expected
profit from (b), (c), and (d) is greater than or equal to that from (b’), (c’), and (d’).
Hence, Alice does not want to deviate from truthful betting. ut

A natural question to ask, after we know that Alice being truthful is a PBE, is
whether there are other equilibria with Alice bluffing in the first stage. Theorem 6
says that there are not when players have informative and distinct signals.

Theorem 6 When Alice and Bob have conditionally independent signals that are
informative and distinct, the truthful betting PBE is the unique WPBE of the 3-
stage Alice-Bob-Alice game.

Proof According to Lemma 5, at a WPBE the market probability in the third stage
always reveals information of both Alice and Bob. Thus, the total expected profit
of Alice and Bob from the game is

πAB =
∑
k,l,z

Pr(cA = ak, cB = bl, ω = z) log
Pr(ω = z|cA = ak, cB = bl)

r0z
,

which is fixed given r0 and the joint probability distribution P . Let σ be Al-
ice’s strategy at a WPBE. Then, Alice’s expected profit by following σ is πAσ =
πAB − πB(σ), where πB(σ) is Bob’s expected myopic optimal profit follow-
ing a first round strategy σ as defined in Section 4. According to Theorem 1,
πB(σ) ≥ πB(σT ) and the equality holds only when σ = σT . Thus, for any WPBE
strategy σ of Alice, at the equilibrium πAσ ≤ πAB − πB(σT ), with equality holds
only when σ = σT . However, any strategy σ such that πAσ < πAB − πB(σT ) can
not be a WPBE strategy, because Alice can simply deviate to the truthful strategy
and get higher expected profit. Hence, truthful betting is the only WPBE of the
game. ut

6.2 Nonexistence of Truthful Equilibrium in I Games

We study the equilibrium of the game when Alice and Bob have independent sig-
nals and the general informativeness condition holds. In particular, we show that
the truthful strategy in this setting is not a WPBE. Alice has an incentive to deviate
from the truthful strategy on her first trade in the market.

The truthful strategy for Alice is the same as that in Section 6.1: change market
probability to r1 = 〈Pr(Y |cA = ak),Pr(N |cA = ak)〉 in the first stage. We define
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the bluffing strategy for Alice as: change market probability to r̃1 = 〈Pr(Y |cA =
ãk),Pr(N |cA = ãk)〉, where ãk 6= ak is another signal in CA.

Since the total payoff of two consecutive moves in LMSR is exactly the payoff
of moving from the starting point to the end point of the second move, we may
now consider a bluffing strategy by Alice during the first trade as a move from
r0 to r1 immediately followed by a move from r1 to r̃1 . Due to the overlap in
the expected score in the truthful strategy and the bluffing strategy for Alice, we
eliminate the r0 to r1 move in our comparison analysis and treat the myopic move
as if it had zero expected profit and analyze the bluffing strategy as a move from
r1 to r̃1 .

Lemma 6 Assume that Bob expects Alice to play truthfully, and reacts accord-
ingly. If Alice observes her signal, cA = ak, and bluffs, her expected change in
profit over following the truthful strategy, is

∆ =
∑
l

Pr(cB = bl|cA = ak)D(p(ω|ak,bl)||p(ω|ãk,bl))−D(p(ω|ak)||p(ω|ãk)),

where p(ω|·) denotes the probability distribution of ω conditional on signal real-
izations.
Proof For conciseness, we use Pr(ak) to represent Pr(cA = ak) and similarly for
other terms. Alice’s first trade is a move from r1 to r̃1, by the definition of LMSR
her expected score from the first move is:

Pr(Y |ak) log
Pr(Y |ãk)

Pr(Y |ak)
+ Pr(N |ak) log

Pr(N |ãk)

Pr(N |ak)
= −D(p(ω|ak)||p(ω|ãk)).

As Bob has a probability of Pr(bl|ak) of seeing bl as his signal, Alice
will move the market from r2 = 〈Pr(Y |ãk, bl),Pr(N |ãk, bl)〉 to r3 =
〈Pr(Y |ak, bl),Pr(N |ak, bl)〉 with probability Pr(bl|ak). Therefore, the expected
score of Alice’s second trade in the market is:X

l

Pr(bl|ak)

»
Pr(Y |ak, bl) log

Pr(Y |ak, bl)

Pr(Y |ãk, bl)
+ Pr(N |ak, bl)

Pr(N |ak, bl)

Pr(N |ãk, bl)

–
=
X

l

Pr(bl|ak)D(p(ω|ak,bl)||p(ω|ãk,bl))

Thus, Alice’s total expected payoff conditional on her signal is the sum of the
above two expressions, which gives ∆ in our theorem. ut
Theorem 7 If players have independent signals that satisfy the general informa-
tiveness condition, truthful betting is not a WPBE for the Alice-Bob-Alice game.

Proof Lemma 6 gives the expected profit change of Alice if she were to deviate
from truthful betting. Below we show that the expected profit change of deviating
from the truthful strategy is greater than zero, thus Alice has an incentive to deviate
from the truthful strategy. We have∑

l

Pr(bl|ak)D(p(ω|ak,bl)||p(ω|ãk,bl))

≥ D(
∑
l

Pr(bl|ak)p(ω|ak,bl)||
∑
l

Pr(bl|ak)p(ω|ãk,bl))

= D(p(ω|ak)||p(ω|ãk))
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The inequality follows from the convexity of relative entropy [11]. We note that by
the general informativeness condition the inequality is strict. The equality follows
from the independence of the two signals, Pr(bl|ak) = Pr(bl), and the law of total
probability. Therefore, ∆ > 0. Truthful betting is not a WPBE strategy. ut

6.2.1 Explicit Bluffing Equilibria in a Restricted Game We now introduce a sim-
ple model of independent signals and show that bluffing can be an equilibrium.
In our model, Alice and Bob each see an independent coin flip and then partici-
pate in a LMSR prediction market with outcomes corresponding to whether or not
both coins came up heads. Thus, ω ∈ {HH, (HT|TH|TT)}. We again consider an
Alice-Bob-Alice game structure.

Theorem 8 Consider the Alice-Bob-Alice LMSR coin-flipping game, where the
probability of heads is p. Now restrict Alice’s first stage strategies to either play
truthful betting (TB) or as if her coin is heads (Ĥ). A WPBE in this game has Alice
play TB with probability t = 1 + p

(1−(1−p)−1/p)(1−p) , and otherwise play Ĥ.

Proof To show that playing TB with probability t is an equilibrium, we first com-
pute Bob’s best response to such a strategy and then show that Bob’s strategy
makes Alice indifferent between her pure strategies. Bob’s best response is, if he
has heads, to set the probability of HH to the probability that Alice has heads given
that she bets as if she does (we denote Alice betting as if she had heads as Ĥ):

Pr(HH | ĤH) =
Pr(ĤH | HH) Pr(HH)

Pr(ĤH | HH) Pr(HH) + Pr(ĤH | TH) Pr(TH)

=
1 · p2

1 · p2 + (1− t)(1− p)p
= 1− (1− p)

1
p .

(10)

If Bob has tails he sets the probability of HH to zero. Assuming such a strategy
for Bob, we can compute Alice’s expected profit for playing TB. This is done
by computing, for each outcome in {HH,HT,TH,TT}, her profit for moving the
probability from p0 to p or 0, plus her profit for moving the probability to 0 or 1
from where Bob moves it. We have

p2
(
log p

p0
+ log 1

x

)
+ p(1− p) log 1−p

1−p0 + (1− p)p log 1−0
1−p0

+ (1− p)2 log 1−0
1−p0

(11)

where x is Bob’s posterior probability when he has heads and Alice appears to
have heads. Similarly, Alice’s expected profit for always pretending to have heads
in the first stage is:

p2
(
log p

p0
+ log 1

x

)
+ p(1− p) log 1−p

1−p0

+ (1− p)p
(
log 1−p

1−p0 + log 1−0
1−x

)
+ (1− p)2 log 1−p

1−p0 .
(12)
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Since (11) and (12) are equal when x is set according to (10), Alice is indifferent
between truthfulness and bluffing when Bob expects her to play TB with probabil-
ity t. It is therefore in equilibrium for Alice to play TB with probability t, that is,
Alice should, with 1 − t probability, pretend to have seen heads regardless of her
actual information. ut

7 Finite-Player Finite-Stage Game

We extend our results for the Alice-Bob-Alice game to games with a finite number
of players and finite stages in LMSR. Each player can change the market proba-
bilities multiple times and all changes happen in sequence.

7.1 Truthful Equilibrium of CI games

We first consider the CI setting where players have conditionally independent sig-
nals. The following theorem characterizes the PBE of the game.

Theorem 9 In the finite-player, finite-stage game with LMSR, if players have con-
ditionally independent signals, at a PBE of the game all players report their poste-
rior probabilities in their first round of play. If signals are informative and distinct,
the truthful betting PBE is the unique WPBE of the game.

Proof Given that every player believes that all players before it act truthfully,
we prove the theorem recursively using backward induction. If it’s player i’s last
chance to play, it will truthfully report its posterior probabilities by Lemma 2. If it’s
player i’s second to last chance to play, there are other players standing in between
its second to last chance to play and its last chance to play. We can combine the
signals of those players standing in between as one signal and treat those players
as one composite player. Because signals are conditionally independent, the signal
of the composite player is conditionally independent of the signal of player i. The
game becomes an Alice-Bob-Alice game for player i and at a PBE player i reports
truthfully at its second to last chance to play according to Theorem 5. Inferring
recursively, it is a PBE at which any player reports truthfully at its first chance to
play.

If signals are informative and distinct, Theorem 6 states that the truthful betting
PBE is the unique WPBE of the Alice-Bob-Alice game. This implies that truthful
betting PBE is also a unique WPBE for the finite-player finite-stage game. Suppose
the contrary, there is a bluffing WPBE. Select the last player who bluffs in the
sequence. Without loss of generality, suppose the player is Alice and she bluffs
at some stage t. Then, Alice must play truthfully at some stage t′ > t + 1, and
does not play in stages between t and t′. Combining signals of players between
t and t′ as one composite signal. The game from stage t to stage t′ becomes an
Alice-Bob-Alice game. Alice bluffing at stage t contradicts with the uniqueness of
the WPBE of the Alice-Bob-Alice game. ut
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7.2 No Truthful Equilibrium in I Games

For the I setting where players have independent signals, the result for finite-player
finite-stage game directly follow from our result on the Alice-Bob-Alice game.

Theorem 10 In the finite-player, finite-stage game with LMSR, if players have
independent signals that satisfy the general informativeness condition, and there
is at least one player who trades more than once, truthful betting is not a WPBE
strategy.

Proof Consider the last two trades of a player who plays more than once, for
example Alice. If t and t′ > t + 1 are the last two stages for Alice to trade and
all other players play truthfully, we can combine signals of all players who trade
between t and t′ as a composite signal possessed by a composite agent. Because
signals are independent, Alice’s signal is independent of the composite signal. The
game from stage t to stage t′ can be viewed as an Alice-Bob-Alice game. By
Theorem 7, we know that Alice is better off by bluffing at stage t. Hence, truthful
betting is not a WPBE. ut

8 Finite-Player Infinite-Stage Games

In this section, we analyze a model in which the number of potential moves can be
infinite. This is motivated by the observation that there is often no pre-defined last
stage for a player. A player may decide to have one more trade at any time before
the market closes.

We extend our results for finite-stage games to infinite-stage games and exam-
ine the equilibrium for CI and I settings respectively.

8.1 Truthful Betting Equilibrium in CI Games

Games with conditionally independent signals remain to have a unique equilib-
rium, truthful betting PBE, as is shown in the following theorem.

Theorem 11 In a potentially infinite-stage game with conditionally independent
signals, at a finite PBE all players truthfully report their posterior probabilities at
their first chance of play. If signals are informative and distinct, the truthful betting
equilibrium is the unique finite WPBE of the game.

Proof If there arem players, truthful betting reveals all information afterm stages.
Knowing that other players are playing truthfully, a player who plays in stage
i < m does not want to deviate to bluffing in stage i and come to trade again in
stage m + 1, because the game between stages i and m + 1 can be viewed as an
Alice-Bob-Alice game. According to Theorem 5 player i would prefer to report
truthfully.

If there exists a finite equilibrium that reveals all information at stage t, suppose
the last time for a player to bluff is in stage i, then it must report truthfully in some
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stage j and i + 1 < j ≤ t. The game between stages i and j can be viewed
as an Alice-Bob-Alice game. If signals are informative and distinct, according to
Theorem 6, truthful betting equilibrium is the only WPBE of the Alice-Bob-Alice
game. Contradiction arises. Truthful betting is the only finite equilibrium. ut

8.2 Nonexistence of Finite Equilibrium in I Games

Theorem 12 In an infinite-stage game with independent signals that satisfy the
general informativeness condition, there is no WPBE that reveals all information
after finite number of trades.

Proof For contradiction, consider any WPBE strategy profile σ that always results
in the optimal market prediction after some number t of stages in a potentially
infinite-stage game. Consider the last two players, Alice and Bob without loss of
generality. They play in stages t−1 and t respectively. Because the WPBE reveals
all information, both Alice and Bob reports truthfully at stages t − 1 and t. Then,
according to Theorem 7, Alice would want to deviate to bluff in stage t − 1 and
play again in stage t+ 1. Thus, σ can not be a WPBE strategy profile. There is not
finite equilibrium. ut

Intuitively if a player has some private information that may be revealed by
its signal, it has an incentive to not fully divulge this information when it may
play multiple times in the market. The general informativeness condition guaran-
tees that no matter what the signal distribution is, a player will always have some
private information revealed by its signal.

9 Discounted LMSR and Entropy Reduction

For infinite-stage games, when players have independent signals, the market can
not fully aggregate information of all players with finite trades. We propose a dis-
counted logarithmic market scoring rule and show that the I games can converge
to full information aggregation exponentially.

We first introduce the discounted LMSR mechanism in Section 9.1. Then, we
characterize the infinite-stage games as continuation games in Section 9.2 and in-
troduce the concepts of complementarity and substitution of signals in Section
9.3. We present a natural metric to quantify degree of information aggregation in
Section 9.4. Facilitated with results in Sections 9.2, 9.3, and 9.4, we present our
convergence analysis for discounted LMSR in Section 9.5.

9.1 Discounted LMSR

One way to address the incentives that traders with independent signals have to
bluff in a market using the logarithmic market scoring rule is to reduce future
payoffs using a discount parameter, perhaps resulting in an incentive to play the
truthful strategy. Based on this intuition, we propose the discounted LMSR market.
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Let δ ∈ (0, 1) be a discount parameter. The δ-discounted market scoring
rule is a market microstructure in which traders update the predicted probability
of the event under consideration just as they would in the regular market scoring
rule. However, the value (positive or negative) of trade is discounted over time.2

For simplicity, we assume a strict alternating sequence of trades between Alice
and Bob. Suppose a trader moves the prediction for outcome Y from p to q in
the i-th stage of the market, and the outcome Y is later observed to happen. The
trader would then be given a payoff of δi−1(log q − log p). On the other hand, if
the outcome Y did not happen, and the trader moves the prediction from p to q in
the i-th stage the trader would earn a payoff of δi−1(log(1− q)− log(1− p)). The
regular market scoring rule corresponds to δ = 1.

Clearly, the myopic strategic properties of the market scoring rule are retained
in the discounted form. We note that for CI games, truthful betting is still the
unique WPBE in the discounted LMSR. Intuitively, for an Alice-Bob-Alice CI
game in the discounted LMSR, Alice does not want to deviate from the truthful
betting strategy as in the non-discounted LMSR because for any deviating strat-
egy her expected profit in the first stage is the same in both the non-discounted
LMSR and the discounted LMSR but her expected profit in the third stage in the
discounted LMSR is strictly less than that in the non-discounted LMSR, mak-
ing deviation even more undesirable. As truthful betting is the unique WPBE in
an Alice-Bob-Alice CI game in the discounted LMSR, the same arguments in Sec-
tions 7.1 and 8.1 can show that truthful betting is the unique WPBE for finite-stage
and infinite-stage CI games with finite players in the discounted LMSR. Thus,
from now on, we only focus on I games in the discounted LMSR.

We will show that the discounted LMSR can have better non-myopic strategic
properties for I games. For simplicity, we assume that there are only two play-
ers, Alice and Bob. They alternately play in the market, with Alice being the first
player. Even though that the discounted LMSR may admit equilibria in which play-
ers bluff with some probability, we will show that, in any WPBE strategy profile
σ, the market price will converge towards the optimal probability for the particular
realized set of information signals. In other words, although complete aggregation
of information may not happen in two rounds, it does surely happen in the long
run at any WPBE.

9.2 Continuation Games

It is useful to think about an infinite-stage market game G as a first-stage move
followed by a subsequent game H that perhaps depends on the first-stage move.
This decomposition is possible in equilibrium analysis, because the actual first-
stage strategy σ1 is common knowledge in an equilibrium profile. Then, the beliefs
of the players after observing the first move x are consistent with private signals

2 It is possible that traders intrinsically discount future profits; for example, they may be
uncertain about how long their information will remain private. We do not, however, assume
any intrinsic discounting by traders; rather, we are proposing a mechanism that explicitly
discounts gains and losses in later rounds.
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and a common prior p′ that depends on the initial prior p0, the first-stage strategy
σ1 and the observed move x.

Definition 3 We say that H is a continuation game of G if there is a first-stage
strategy σ1 and a move x such that x is played with nonzero probability under σ,
the prior p′ in H is consistent with p0, σ1, and x, and the sequence of play in H
is the same as the subsequence of play in G after the first move in G. We denote
this G→ H .

We define the relation ∗→ as the reflexive transitive closure of →, i.e.,
we write G

∗→ H and say G reduces to H if there is a sequence G =
H0, H1, H2, . . . ,Hk = H such that Hi → Hi+1 for all i. We define G ∗→ G
to always be true.

Observe that if G ∗→ H , then, the full-information optimal probabilities
Pr(Y |cA = a, cB = b) for any given pair of signal realizations (a, b) are the
same in G and H . Only the prior over different signals changes after a first-round
strategy, not the full-information posterior probabilities.

Lemma 7 shows that continuation games preserve the independence property
of the original game.

Lemma 7 Suppose G ∗→ H . Then,

– If G satisfies the conditional independence (CI) property, so does H .
– If G satisfies the independence (I) property, so does H .

Proof We need to show that if Hi → Hi+1, Hi+1 satisfies the same independence
property as Hi.

Let σ be a WPBE strategy for game Hi. Without loss of generality, suppose
that x is one of the points that the first player in Hi plays with positive probability
according to σ. Let Pi be the joint probability distribution for Hi. We use Pi{·}
to represent probability of some outcome under Pi. Let Pi{c1 = k|x, σ} be the
probability that player 1 has signal k conditional on that it plays x. Then, knowing
player 1 follows σ, player 2 updates its beliefs after seeing x, the continuation
game Hi+1 has joint probability distribution Pi+1 such that

Pi+1{c1 = k, c2 = l, ω = z} = Pi{c1 = k, c2 = l, ω = z|x, σ}
= Pi{c1 = k|x, σ}Pi{c2 = l, ω = z|c1 = k}

=
Pi{c1 = k|x, σ}

Pi{c1 = k|σ}
Pi{c1 = k, c2 = l, ω = z}

where k, l, and z represent signal realization of player 1, signal realization of
player 2, and realized outcome respectively.



32 Y. Chen et al.

We first show that if Pi of game Hi satisfies CI condition, Pi+1 of game Hi+1

also satisfies CI condition.

Pi+1{c1 = k, c2 = l|ω = z} =
Pi+1{c1 = k, c2 = l, ω = z}

Pi+1{ω = z}

=
Pi{c1=k|x,σ}
Pi{c1=k|σ} Pi{c1 = k, c2 = l, ω = z}

Pi+1{ω = z}

=
Pi{c1=k|x,σ}
Pi{c1=k|σ} Pi{c1 = k, c2 = l|ω = z}

Pi+1{ω = z}/Pi{ω = z}

=
Pi{c1=k|x,σ}
Pi{c1=k|σ} Pi{c1 = k|ω = z}Pi{c2 = l|ω = z}

Pi+1{ω = z}/Pi{ω = z}
.

Pi+1{c1 = k|ω = z} =
Pi{c1=k|x,σ}
Pi{c1=k|σ} Pi{c1 = k, ω = z}

Pi+1{ω = z}

=
Pi{c1=k|x,σ}
Pi{c1=k|σ} Pi{c1 = k|ω = z}

Pi+1{ω = z}/Pi{ω = z}
.

Pi+1{c2 = l|ω = z} =

∑
k

Pi{c1=k|x,σ}
Pi{c1=k|σ} Pi{c1 = k, c2 = l, ω = z}

Pi+1{ω = z}

=

∑
k

Pi{c1=k|x,σ}
Pi{c1=k|σ} Pi{c1 = k, c2 = l|ω = z}

Pi+1{ω = z}/Pi{ω = z}

=

∑
k

Pi{c1=k|x,σ}
Pi{c1=k|σ} Pi{c1 = k, c2 = l|ω = z}∑

k
Pi{c1=k|x,σ}
Pi{c1=k|σ} Pi{c1 = k, ω = z}/Pi{ω = z}

= Pi{c2 = l|ω = z}.

Thus, we also have

Pi+1{c1 = k, c2 = l|ω = z} = Pi+1{c1 = k|ω = z}Pi+1{c2 = l|ω = z}.

CI condition holds for Hi+1.
We then show that if Pi of game Hi satisfies I condition, Pi+1 of game Hi+1

also satisfies I condition.

Pi+1{c1 = k, c2 = l} =
∑
ω

Pi+1{c1 = k, c2 = l, ω = z}

=
∑
ω

Pi{c1 = k|x, σ}
Pi{c1 = k|σ}

Pi{c1 = k, c2 = l, ω = z}

=
Pi{c1 = k|x, σ}

Pi{c1 = k|σ}
Pi{c1 = k, c2 = l}

=
Pi{c1 = k|x, σ}

Pi{c1 = k|σ}
Pi{c1 = k|σ}Pi{c2 = l}

= Pi{c1 = k|x, σ}Pi{c2 = l}
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The second to the last equality is because of the independence condition ofHi. We
also have

Pi+1{c1 = k} =
∑
l

Pi+1{c1 = k, c2 = l}

=
∑
l

Pi{c1 = k|x, σ}
Pi{c1 = k|σ}

Pi{c1 = k, c2 = l}

=
∑
l

Pi{c1 = k|x, σ}
Pi{c1 = k|σ}

Pi{c1 = k|σ}Pi{c2 = l}

= Pi{c1 = k|x, σ}

and

Pi+1{c2 = l} =
∑
k

Pi+1{c1 = k, c2 = l}

=
∑
k

Pi{c1 = k|x, σ}
Pi{c1 = k|σ}

Pi{c1 = k, c2 = l}

=
∑
k

Pi{c1 = k|x, σ}
Pi{c1 = k|σ}

Pi{c1 = k|σ}Pi{c2 = l}

= Pi{c2 = l}.

Hence, Pi+1{c1 = k, c2 = l} = Pi+1{c1 = k}Pi+1{c2 = l}. Hi+1 satisfies
independence.

By induction, if G ∗→ H , then H preserves the same independence property as
G. ut

9.3 Complementarity or Substitution of Signals

In this section, we introduce the concept of complementarity for signals. Intu-
itively, if signals of Alice and Bob are complements, the expected profit from
knowing both signals is greater than the sum of the expected profits from knowing
only the individual signals. If signals are substitutes, the relation is reversed.

For a game G participated by Alice and Bob, the total profit potential in G is
πAB = πA(σN ) + πB(σT ). In other words, πAB is the sum of Alice’s and Bob’s
expected profit if they both follow the truthful strategy, and Alice moves first. We
note that under either the CI condition or the I condition, the order of play is not
important, i.e., πAB = πB(σN ) + πA(σT ) = H(ω|cA, cB).

Now we define the complementarity coefficient of a game that captures the
complementarity of players’ signals.

Definition 4 The complementarity coefficient C(G) of a market game G is de-
fined as

C(G) =
πA(σN ) + πB(σN )

πAB
,
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where the right-hand side profits are implicitly a function of the game G under
consideration.

The complementarity bound Ĉσ(G) is the minimum value of C(H) over all
games H that G could reduce to by following the strategy profile σ:

Ĉσ(G) = min
H:G

∗→H by σ
C(H)

We note that if C(G) < 1, signals are complements. If C(G) > 1, signals are
substitutes.

Lemma 8 Under the CI model, any game G with informative and distinct signals
satisfies Ĉσ(G) > 1 for any strategy profile σ.

Proof From Theorem 1, it follows that πB(σN ) > πB(σT ) for any CI game G
with informative and distinct signals. Thus,

πA(σN ) + πB(σN ) > πA(σN ) + πB(σT ) = πAB ⇒ C(G) > 1.

By lemma 7, we know that anyH such thatG ∗→ H itself satisfies the CI condition
no matter what strategy the reduction follows. Thus, we must have Ĉσ(G) > 1 for
any σ. ut

Lemma 9 Under the I model, any game G that starts with the prior probability
satisfies C(G) < 1, and thus, Ĉσ(G) < 1.

Proof From Theorem 2, it follows that πB(σT ) > πB(σN ) for any I game G
starting with the prior probability. Thus,

πA(σN ) + πB(σN ) < πA(σN ) + πB(σT ) = πAB ⇒ C(G) < 1.

By definition of Ĉ, we have Ĉσ(G) ≤ C(G), and thus we must have Ĉσ(G) < 1.
ut

9.4 Profit Potential and Entropy

We now present a natural metric, the information deficit Di, that quantifies the
degree of aggregation in a prediction market after i trades under strategy profile σ:
Di is the expectation, over all possible signal realizations and the randomization
of moves as dictated by σ, of the relative entropy between the optimal probability
(given the realization of the signals) and the actual probability after i stages.

Formally, for a strategy profile σ and a number of stages t, an information
node φ consists of a realization of the signals of the two players and a sequence
of t trades in the market. Let pi(φ) = Pr(Y |first i trades in φ, σ), and denote
pi(φ) = 〈pi(φ), 1 − pi(φ)〉. Let p∗(φ) = Pr(Y |realization of signals in φ), and
denote p∗(φ) = 〈p∗(φ), 1 − p∗(φ)〉. The aggregative effect of the strategy pro-
file σ after i trades is summarized by the collection of information nodes φ that
can be reached, the market probability pi(φ) in stage i, and the associated ex-ante
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probability Pr(φ) of reaching each such information node. Now for i ≤ t, we
define

Di(σ) = Eσ[D(p∗(φ)||pi(φ))]
=
∑
φ:φ∈σ

Pr(φ)D(p∗(φ)||pi(φ)) .

When t = 0, the information nodes φ correspond to different realizations of the
signals. Note that D0 is the same as πAB defined in the previous section.

If Di = 0, it implies that the market will always have reached its optimal
probability for the realized signals by the i-th stages. If Di > 0, it indicates that,
with positive probability, the market has not yet reached the optimal probability.
Di is always nonnegative, because the relative entropy is always nonnegative.

We now show that, in addition to measuring the distance from full information
aggregation,Di also enables interesting strategic analysis. The key result is thatDi
can be related to the expected payoff of the i-th stage move in the non-discounted
(standard) LMSR:

Lemma 10 LetM i denote the expected profit (over all signal nodes φi) of the i-th
trade under profile σ. Then, M i = Di−1 −Di

Proof

M i =
∑
φ:φ∈σ

Pr(φ)
[
p∗(φ) log

pi(φ)
pi−1(φ)

+ (1− p∗(φ)) log
1− pi(φ)

1− pi−1(φ)

]
=
∑
φ:φ∈σ

Pr(φ)
[
D(p∗||pi−1)−D(p∗||pi)

]
= Di−1 −Di

The first equality holds by the definition of M i and the second by the definition of
relative entropy. ut

This suggests another interpretation for Di: Di represents the expected value
of the potential profit left for trades after the i-th trade.

Given the definition ofM i, we can now define M̃ i as the expected profit of the
i-th trade in the discounted LMSR. We assume discounting after every even trade,
i.e., after every trade by Bob.

M̃ i =
{
δk(D2k −D2k+1) ∀i = 2k + 1
δk(D2k+1 −D2(k+1)) ∀i = 2k + 2

(13)

Using the definition of M̃ i we write the total profit for Alice in the δ-
discounted LMSR as:

Alice’s payoff =
∑

i:i=2k,k∈Z+

M̃ i−1 = D0 −D1 + δ(D2 −D3) + . . .

We can similarly rewrite Bob’s expected payoff as:

Bob’s payoff =
∑

i:i=2k,k∈Z+

M̃ i = D1 −D2 + δ(D3 −D4) + . . .
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We reiterate that the definition of Di is not dependent on δ. It is a measure
of the informational distance between the prices after i trades in profile σ and the
optimal prices. Of course, the stability of a given strategy profile σ may change
with δ.

9.5 Asymptotic Convergence in Discounted LMSR for I Games

In this part, we bound the value of Dn for large n, in any WPBE, for I games
that start with the prior probability. We will express our convergence bound in
terms of complementarity coefficient, C(G). Note that if C(G) = 0, the myopic
strategy may not involve any movement by either player, and thus, we could have
lack of information aggregation even with the myopic strategy. We exclude such
degenerate cases, and assume that C(G) > 0.

Now, fix a discount parameter δ, and a particular instance of the two-person
market game induced by the δ-discounted LMSR. Let σ be any WPBE of this
market game. Without loss of generality we assume that Bob moves second in the
market.

In the first stage, Alice will take some (perhaps mixed) action x dictated by
σ. Under the equilibrium strategy profile σ, Bob will revise his beliefs consistent
with the profile σ and the realized action x. According to Theorem 2, we have
πB(σ) ≥ πB(σN ).

Recall that after stage 2, the total expected payoff of both players is at most
δD2. We also know that the total expected payoff of Alice in equilibrium is at
least πA(σN ), because if not, a simple deviation to the truthful strategy would
be beneficial. Because πB(σ) ≥ πB(σN ), the total expected payoff of Bob in
equilibrium is also at least πB(σN ). This means that the total payoff of the first
two rounds in the market is at least πA(σN ) + πB(σN )− δD2. Therefore we can
bound D2 as:

D2 ≤ D0 − [πA(σN ) + πB(σN )− δD2].

Note that D0 = πAB .
This argument generalizes to any even number of rounds, by looking at the

total expected profits within the first 2k moves, and the remaining profit potential
δkD2k:

D2k ≤ D0 − [πA(σN ) + πB(σN )− δkD2k] (14)
⇐⇒ (1− δk)D2k ≤ D0 − [πA(σN ) + πB(σN )]

= D0

(
1− πA(σN ) + πB(σN )

D0

)
⇐⇒ D2k ≤ D

0 (1− C(G))
1− δk

(15)

Note that, by definition, C(G) ≥ Ĉσ(G). Thus, we can rewrite inequality (15)
as:

D2k ≤ D
0(1− Ĉσ(G))

1− δk
(16)
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From inequality (16) we see that the bound on D2k depends only on δ, as
D0 and Ĉσ(G) are both constants for any instance of the market and equilibrium
profile σ. Now consider the remainder of the game after 2k rounds, denoted as
H2k, then G ∗→ H2k. According to Lemma 7, H2k preserves the independence
property of G. Hence, the equilibrium profile σ will also induce an equilibrium
profile on H2k. We can repeat the argument to bound D4k in terms of D2k, etc.

In this way, we rewrite inequality (16) in terms of δ and for a round n = 2km.
We set k such that δk/2 = Ĉσ(G), i.e. k = 2 log Ĉσ(G)

log δ . Using this value of k and a
value m = n

2k we note that:

Dn ≤ D0
(

1−Ĉσ(G)
1−δk

)m
= D0

(
1−Ĉσ(G)

(1−δk/2)(1+δk/2)

)m
= D0(1 + δk/2)−m

= D0(1 + Ĉσ(G))−
n
2k

= D0(1 + Ĉσ(G))−
n log δ

4 log Ĉσ(G)

= D0δ
n
− log(1+Ĉσ(G))

4 log Ĉσ(G)

(17)

Note that − log(1+Ĉσ(G))

4 log Ĉσ(G)
depends only on the complementarity bound of

the game. According to Lemma 9, for any game G with independent signal,
Ĉσ(G) < 1. Hence, − log(1+Ĉσ(G))

4 log Ĉσ(G)
> 0. Therefore, inequality (17) shows that

the relative entropy of the probabilities with respect to the optimal probabilities
reduces exponentially over time.

To summarize, we have proven the following result:

Theorem 13 Let G be a market game in the I model, with a δ-discounted log-
arithmic market scoring rule. For this game, let σ be any WPBE strategy profile.
Then, for all n > 1, the information deficitDn after n rounds of trading is bounded
by

Dn ≤ D0δ
n
− log(1+Ĉσ(G))

4 log Ĉσ(G)

ut

10 Conclusion

We have investigated the strategic behavior of traders in LMSR prediction mar-
kets using dynamic games with incomplete information. Specifically, we examine
different scenarios where traders at equilibrium bet truthfully or bluff.

Two different information structures, conditional independence and uncondi-
tional independence of signals, are considered. Both finite-stage and infinite-stage
games are investigated. We show that traders with conditionally independent sig-
nals may be worse off by bluffing in LMSR. Moreover, for both finite-stage and
infinite-stage games, truthful betting is not only a PBE strategy but also a unique
WPBE strategy for all traders in LMSR.



38 Y. Chen et al.

On the other hand, when the signals of traders are unconditionally independent,
truthful betting is not a WPBE for finite-stage games. Traders have incentives to
strategically mislead other traders with the intent of correcting the errors made
by others in a later stage. We provide a bluffing equilibrium for a restricted two-
player game. For infinite-stage games with unconditionally independent signals,
there does not exist any WPBE that fully reveals information of all players in
finite stages.

We use a simple modification to the market scoring rule, which includes a
form of discounting, to ameliorate this potential problem. This allows us to prove
a bound on the rate at which the error of the market, as measured by the relative
entropy between full information aggregation and the actual market probability,
reduces exponentially over time. The exponent depends on the complementarity
coefficient of the market instance.

The need for discounting shows a connection to classical bargaining settings in
which players bargain over how to divide a surplus they can jointly create. In a pre-
diction market, informed players can extract a profit from the market. Moreover,
players can pool their information together to make sharper predictions than either
could alone and thus extract an even larger profit. They might engage in bluffing
strategies to bargain over how this subsidy is divided. Explicit discounting can
make this bargaining more efficient.
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