Directional Emission and Universal Far-Field Behavior from Semiconductor Lasers with Limacon-Shaped Microcavity

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
http://dx.doi.org/10.1063/1.3153276

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:5096753

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Microcavity lasers have attracted a lot of attention in recent years due to the simplicity of their fabrication and low threshold currents, which makes them suitable for high-density optoelectronic integration. Microdisk lasers have shown promise as a promising resonator shape for microcavity lasers with attractive properties such as a directional emission and a high cavity quality-factor and a high cavity mode spacing of a Fabry–Pérot type ridge laser. Figures 1(a)–1(c) show the intensity distribution of some TM modes [see the inset of Fig. 1(a)]. In this work, we first carried out wave simulations based on the boundary element method to study the effect of the parameter ε on the key characteristics of the limaçon microcavity QCLs such as Q-factor and directivity of the light emission. The boundary of a limaçon microcavity is defined by the equation r = a + b cos θ, where a and b are the radius of curvature when θ = 0 and θ = π/2, respectively. The measured far-field profiles of our devices are in excellent agreement with simulations. The measured far-field profiles of our devices are in excellent agreement with simulations.

To overcome the intrinsic problems of microdisk lasers, various types of deformed structures were proposed, and/or demonstrated in a variety of gain media including polymers and semiconductors. Among these, electrically pumped semiconductor microcavity lasers such as stadium-shaped lasers, bow-tie lasers, and spiral-shaped lasers are of special interests for potential applications. Such properties limit their potential applications.

To overcome the intrinsic problems of microdisk lasers, various types of deformed structures were proposed, and/or demonstrated in a variety of gain media including polymers and semiconductors. Among these, electrically pumped semiconductor microcavity lasers such as stadium-shaped lasers, bow-tie lasers, and spiral-shaped lasers are of special interests for potential applications. Such properties limit their potential applications.

Recently, a limaçon-shaped microcavity has been proposed as a promising resonator shape for microcavity lasers with attractive properties such as a directional emission and a high cavity Q-factor. In this work, we fabricated QCLs with limaçon-shaped microcavity and characterized their performance. We observed directional emission from our devices with a far-field divergence angle θ ∼ 33° in the plane of the cavity and a Q-factor of more than 1000 at the midinfrared wavelength. The measured far-field profiles of our devices are in excellent agreement with simulations.

The boundary of a limaçon microcavity is defined in polar coordinate as R(θ) = R0(1 + ε cos θ) where ε is the deformation factor and R0 is the radius of curvature when θ = 0. The measured far-field profiles are in good agreement with simulations. The measured far-field profiles are in good agreement with simulations.

The performance of the limaçon-shaped QCLs is robust with respect to variations of the deformation near its optimum value of ε = 0.40. © 2009 American Institute of Physics. [DOI: 10.1063/1.3153276]
of the ray trajectories is chaotic, while the far-field profile is determined by the path in phase space that the rays take to escape the cavity by entering the leaky region, where the condition of total internal reflection is not fulfilled anymore.

Both wave and ray optics simulations show in good agreement that the deformation $\varepsilon=0.40$ results in the smallest far-field divergence angle of about 30° [defined as the full width at half maximum (FWHM) of the far-field lobe around $\theta=0$ line], as shown in Fig. 2(a). The inset of Fig. 2(a) shows the external intensity distribution of the mode in Fig. 1(a) obtained by wave simulation. The main peaks are labeled as A', B', C', and D' corresponding to the escape regions A, B, C, and D, respectively, as marked in Fig. 1(d). Interestingly, we observed [Fig. 2(b)] that all three modes in Figs. 1(a)–1(c) show similar external far-field profiles no matter whether they are high Q-factor WGMs or low Q-factor non-WGMs. This is what is called “universal far-field behavior,” which was also observed previously in quadrupole deformed microrings.14 The reason for this universal far-field behavior is that the emission directionality is mainly determined by the structure of the unstable manifolds in the leaky region, as shown in Fig. 1(d), which are determined by the geometric shape of the deformed microcavity, regardless of the different spatial distributions of these modes inside the cavity.

The QCL material used was similar to the one described in Ref. 15 but with a different doping level ($\sim 30\%$) lower in the active region. Devices with different sizes $R_0=50$, 80, and 110 μm and deformations ε ranging from 0.20 to 0.80 were fabricated. Inductively coupled plasma reactive ion etching was used to etch the QCL material. The top view and the side view of a typical device are shown in the inset of Fig. 3. The sidewall roughness is about 300 nm, which is expected to result only in minor scattering of the midinfrared radiation.

The processed devices were tested in pulsed mode at room temperature with 125 ns current pulses at 80 kHz repetition rate. All devices demonstrated laser action. Figure 3 shows the light output power versus current ($L-I$) and voltage versus current ($V-I$) characteristics of a representative device with $\varepsilon=0.40$ and $R_0=80$ μm. Peak output power of 4 mW, a threshold current density around 2.0 kA/cm2, and a maximum slope efficiency of about 12 mW/A were obtained. This device has a smaller threshold current density compared with that (~ 2.6 kA/cm2) of ridge QCLs with a length of 2.5 mm and 14 μm width processed from the same wafer. The slope efficiency of the device is lower than that (~ 100 mW/A) of the ridge QCLs because not all of the pumping area of the limaçon microcavity is utilized for the optical power generation (see Fig. 1) due to the presence of WGMs in the cavity. For this device, a Q-factor of approximately 1200 was obtained based on the measurements of the threshold current density and the gain coefficient.16 Although the measured Q-factor is smaller than those of shorter wavelength semiconductor lasers 17 as a result of increase in waveguide losses, it is larger than the Q-factors reported for other circular-shaped QCLs emitting at similar wavelengths.16,18 This is assigned to material and device processing improvements and to the limaçon-reso-
tor, which supports high Q-factor WGMs. We note that, due to the high optical losses associated with free carrier absorption at midinfrared wavelength, the measured Q-factor in our devices is much smaller than the value obtained in simulations.

Figure 4(a) shows the emission spectra of the limaçon microcavity QCL measured at different pumping currents along the $\theta = 0$ direction with a high-resolution Fourier transform infrared spectrometer. The laser operates in single mode at $\lambda \approx 10$ μm at the threshold current of 380 mA. At a pumping current of 500 mA, two sets of optical modes appeared, indicated by red and blue arrows. It is reasonable to assume that they correspond to the two high Q-factor WGMs shown in Figs. 1(a) and 1(b), respectively. The average mode spacing of each set is approximately 6.0 cm^{-1}, which agrees very well with the calculated value (6.2 cm^{-1}) for WGMs, given by $1/(L^2 n)$, where L is the perimeter of the structure. At higher pumping current, several additional unequally spaced modes appeared, indicated by green arrows, corresponding to lower Q-factor modes (non-WGMs) of the type shown in Fig. 1(c). We also observed essentially the same spectra from all far-field lobes in different directions.

The far-field profiles of our devices were measured in steps of 0.5° using a setup described in Ref. 15. The experimental results for a device with an optimal (in terms of the far-field divergence angle) deformation $\varepsilon = 0.40$ are shown in Fig. 4(b) for pumping currents of 500 and 710 mA, together with the ray optics simulation. Excellent agreement is achieved between experiment and simulation. Note that although non-WGMs appear at higher pumping current of 710 mA [see Fig. 4(a)], the far-field profile is essentially the same as the one pumped at 500 mA showing directional emission due to the universal far-field behavior predicted for this type of resonator. The measured FWHM of the main lobe of the far-field profile is $\sim 33°$. The measured divergence is also similar to the one reported for rational caustic resonator 10 ($\sim 35°$) and that of Fabry–Pérot type ridge laser ($\sim 40°$).15

Very good agreement between the calculated and the measured far-field profiles was also observed with ε different from 0.4. We note, however, for ε larger than 0.5, the geometry of the microcavity is such that WGMs are not supported anymore in the cavity. The device performance is also insensitive to the deformation in the range of $0.37 < \varepsilon < 0.43$ well within the fabrication resolution of photolithography for $R_0 = 80 \mu$m devices.

This work was supported by the AFOSR (Grant No. FA9550-08-1-0047). Financial support from the DFG research group 760 is gratefully acknowledged by Jan Wiersig and Martina Hentschel who in addition acknowledges support within the DFG Emmy-Noether Programme. The structures were processed in the Center for Nanoscale Science (CNS) in Harvard University. Harvard-CNS is a member of the National Nanotechnology Infrastructure Network. Changling Yan acknowledges support from the China Scholarship Council (CSC) visiting scholarship.