rf-Field-Induced Feshbach Resonances

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Tscherbul, Timur V., Tommaso Calarco, Roman V. Krems, Alexander Dalgarno, and Jörg Schmiedmayer. 2010. rf-field-induced Feshbach resonances. Physical Review A 81(5): 050701.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1103/PhysRevA.81.050701</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:5128484</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
A rigorous quantum theory of atomic collisions in the presence of radio frequency (rf) magnetic fields is developed and applied to elucidate the effects of combined dc and rf magnetic fields on ultracold collisions of Rb atoms. We show that rf fields can be used to induce Feshbach resonances, which can be tuned by varying the amplitude and frequency of the rf field. The rf-induced Feshbach resonances occur also in collisions of atoms in low-field-seeking states at moderate rf field strengths easily available in atom chip experiments, which opens up the world of tunable interactions to magnetically trappable atomic quantum gases.

1050-2947/2010/81(5)/050701(4) 050701-1 ©2010 The American Physical Society

T. V. Tscherbul,1,2,* T. Calarco,3 I. Lesanovsky,4 R. V. Krems,5 A. Dalgaro,1,2 and J. Schmiedmayer6

1Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
2ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
3Institute of Quantum Information Processing, Ulm University, D-89081 Ulm, Germany
4School of Physics and Astronomy, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
5Department of Chemistry, University of British Columbia, Vancouver BC, V6T 1Z1, Canada
6Atominstitut, TU-Wien, Stadionallee 2, 1020 Vienna, Austria

(Received 15 September 2009; published 11 May 2010)

A rigorous quantum theory of atomic collisions in the presence of radio frequency (rf) magnetic fields is developed and applied to elucidate the effects of combined dc and rf magnetic fields on ultracold collisions of Rb atoms. We show that rf fields can be used to induce Feshbach resonances, which can be tuned by varying the amplitude and frequency of the rf field. The rf-induced Feshbach resonances occur also in collisions of atoms in low-field-seeking states at moderate rf field strengths easily available in atom chip experiments, which opens up the world of tunable interactions to magnetically trappable atomic quantum gases.

This allows us to calculate the scattering length of ultracold Rb atoms as a function of the amplitude and frequency of the rf field. We demonstrate that collisions of ultracold atoms are sensitive to rf fields of moderate strength easily accessible in atom chip experiments. In particular, rf fields may be used to manipulate magnetic Feshbach resonances and to create new, rf-induced Feshbach resonances, whose positions and widths can be tuned by changing the rf field parameters.

The Hamiltonian for two alkali-metal atoms A and B colliding in the presence of superimposed rf and dc magnetic fields may be written (in units of \hbar),

$$\hat{H} = -\frac{1}{2\mu R} \frac{\partial^2}{\partial R^2} R + \frac{\hat{e}^2}{2\mu R^2} + \hat{V}_{sd}(R) + \hat{H}_A + \hat{H}_B + \hat{H}_{rf},$$

(1)

where R is the interatomic distance, μ is the reduced mass of the collision complex, \hat{e} is the orbital angular momentum for the collision, and $\hat{V}_{sd}(R)$ is the spin-dependent interaction between the atoms. We neglect the weak magnetic dipole-dipole interaction. The asymptotic Hamiltonian is $\hat{H}_{as} = \hat{H}_A + \hat{H}_B + \hat{H}_{rf}$. The terms \hat{H}_A and \hat{H}_B account for the interaction of individual atoms with a homogeneous rf field $\hat{B}(t) = \hat{e}B_0 \cos(\omega t)$,

$$\hat{H}_v = \frac{1}{2} \gamma_v \hat{F}_v^2 + g_F \mu_0 \mathbf{B} \cdot \hat{\mathbf{F}}_v + \frac{1}{2} \lambda_v (\hat{a}^\dagger \hat{a} \hat{F}_v + \hat{a}^\dagger \hat{a} \hat{F}_v + \text{H.c.}),$$

(2)

where γ_v is the hyperfine constant of atom v ($v = A, B$) with total angular momentum \hat{F}_v, g_F is the magnetic g factor, μ_0 is the Bohr magneton, and \mathbf{B} is the dc magnetic field vector, whose direction defines the quantization axis z. We assume that the rf field is polarized in the x direction ($\hat{e} = \hat{x}$). The Hamiltonian of the rf field $\hat{H}_{rf} = h\omega (\hat{a}^\dagger \hat{a} - N)$ is expressed in a second-quantized form using the photon creation and annihilation operators \hat{a}^\dagger and \hat{a}, the average number of photons in the field N, and the rf frequency ω. In Eq. (2), \hat{F}_v are the atomic raising and lowering operators,
and $\lambda_c = -\mu_0 g_F B_\sigma/2\sqrt{N}$ is the coupling constant, which quantifies the strength of the atom-field interaction. In the rotating-wave approximation, the Hermitian conjugate terms in Eq. (2) are neglected in calculating the matrix elements between the states within the $F = 2$ manifold (and vice versa for the $F = 1$ manifold).

We consider ultracold collisions of two identical 87Rb atoms in superimposed dc and rf magnetic fields. Following Agosta et al. [16], we introduce a symmetrized basis,

$$\frac{1}{[2(1 + \delta_\tau A_B)]^{1/2}}[\tau_A \tau_B + \eta(-)^{l} \tau_B \tau_A]|N+n|\ell m_{\ell}$$ (3)

where $|\tau_A|$ are the hyperfine states $|F,m_F\rangle$, $|N+n\rangle$ are the photon number states, η accounts for exchange symmetry ($\eta = +1$ for two identical 87Rb atoms), and $|\ell m_{\ell}\rangle$ are the partial wave states. Diagonalization of \hat{H}_{RF} in the basis (3) yields the energy levels of two noninteracting atoms dressed by the rf field. The field-dressed states occur in manifolds separated by multiples of the photon energy $\hbar \omega$ [21]. Throughout this work, we consider rf frequencies in the range $\omega/2\pi = 18$–40 MHz and moderate dc fields $B < 10$ G, which corresponds to the weak coupling regime, where the energy separation between different photon manifolds is larger than the coupling between the manifolds [22]. We use the eigenfunctions of the asymptotic Hamiltonian to expand the wave function of the collision complex. Inserting this expansion into the Schrödinger equation leads to a system of close-coupled (CC) differential equations yielding S-matrix elements and transition probabilities between the field-dressed states. To solve the CC equations, we evaluate the matrix elements of the Hamiltonian (1) in the field-dressed basis analytically [23] using the most accurate potentials for the singlet and triplet states of Rb$_2$ [24]. Seven photon number states are included in the basis set (3) resulting in 252 coupled equations, which are integrated on a grid of \hat{R} from 3 to 300 a_0 with a step size of 5×10^{-3} a_0. This procedure produces fully converged results at a collision energy of 1 μK. To evaluate the bound states of the Rb$_2$ molecule, we use the asymptotic bound-state model (ABM) [25] properly extended to include the interactions with rf fields.

Figure 1 shows the magnetic field dependence of near-threshold energy levels of Rb$_2$ versus magnetic field. The energies of two separated atoms are shown by dashed lines and labeled in the graph. The red (blue) lines show the molecular levels A–F (in order of increasing binding energy) with $m_F = m_{b1} + m_{b2} = -1 (+1)$. The light blue lines correspond to the molecular states with $m_F \neq \pm 1$. The zero of energy corresponds to two infinitely separated Rb atoms in the absence of hyperfine structure and external fields.

An interesting possibility suggested by recent experimental work [18] is to use rf fields to directly couple a two-atom scattering state with a bound molecular state. This coupling would lead to a Feshbach resonance whose properties depend on the parameters of the rf field. As shown in Fig. 1, six of 15 low-lying molecular states can be accessed from the continuum by scanning the rf frequency from 18 to 24 MHz. The other 11 states remain uncoupled from the initial state $|1,1\rangle \otimes |2, -1\rangle$ due to the selection rules $\Delta n = \pm 1$ and $\Delta m_F = \mp 1$ imposed by Eq. (2). Figures 3(a) and 3(b) show the rf frequency dependence of the cross sections for two Rb atoms in the $|1,1\rangle \otimes |2, -1\rangle$ state at a magnetic field of 2 G. The scattering length exhibits a number of sharp peaks at rf frequencies corresponding to the bound levels A–F in Fig. 1. The widths of the resonances increase with increasing rf amplitude. As shown in Figs. 3(c) and 3(d), rf-induced Feshbach resonances can also occur in collisions of atoms initially in the low-field-seeking state $|1, -1\rangle \otimes |2, 1\rangle$.

In order to understand the mechanism of rf-induced Feshbach resonances, we use a three-state model developed by Bohn and Julienne [28] and illustrated in Fig. 4. The rf field couples the incident channel $|i,N\rangle$ to the field-dressed bound state $|b,N + 1\rangle$ with energy $\epsilon_b + \hbar \omega$ where ϵ_b is the binding energy of the molecular state in the absence of an rf field. The bound state $|b,N + 1\rangle$ is coupled to an open channel $|a,N + 1\rangle$
RF-FIELD-INDUCED FESHBACH RESONANCES

by the spin-dependent interaction potential (1). Introducing the matrix elements $\gamma_{ib} = 2\pi \langle i, N | \hat{H}_A + \hat{H}_B | b, N + 1 \rangle^2$ and $\gamma_{ba} = 2\pi \langle b, N + 1 | V_{sd}(R) | a, N + 1 \rangle^2$, we obtain for the real and imaginary parts of the scattering length [28],

$$\alpha = \alpha_{bg} + \frac{1}{k_i} \frac{1}{\hbar^2} \left(\omega - \omega_b - \delta \omega(B_{rt}) \right)^2 + \gamma_{ba}^2 / 4,$$

$$\beta = \frac{1}{k_i} \frac{1}{\hbar^2} \left(\omega - \omega_b - \delta \omega(B_{rt}) \right)^2 + \gamma_{ba}^2 / 4,$$

where k_i is the wave vector for the incident channel, α_{bg} is the background scattering length, ω_b is the resonant rf frequency ($\hbar \omega_b = \epsilon_b$), and $\delta \omega(B_{rt})$ is the rf-induced level shift. The expressions (4) are similar to those encountered in the theory of optical Feshbach resonances [1,28] with one important difference: the loss from the bound state $|b\rangle$ is induced by the spin-dependent interaction potential (1) rather than spontaneous emission [6,28]. Since $\gamma_{ib} \sim B_{rt}^2$, the widths of rf-induced resonances increase quadratically with B_{rt}. The resonant frequencies given by Eqs. (4) are shifted from those corresponding to bare molecular states by the amount $\delta \omega(B_{rt}) \sim B_{rt}^2$ [28]. Because the rf-induced coupling is weak and α_{bg} is large, the real part of the scattering length does not vary appreciably in the vicinity of the resonances, increasing from 103.7 to 106.5 ω_0 near the resonance D as the rf frequency is scanned from 31.405 to 31.413 MHz. The inelastic loss rate at the resonance is $\sim 10^{-12}$ cm3/s. From Eqs. (4), it is clear

FIG. 2. (Color online) Magnetic field dependence of the real (a) and imaginary (b) parts of the scattering length for s-wave collisions of ^{87}Rb atoms initially in the $|1, 1\rangle \otimes |2, -1\rangle$ state at different rf field strengths: zero (left), $B_{rt} = 4$ G (middle), and $B_{rt} = 10$ G (right). (c) A zoom into the encircled area in Fig. 1 showing atomic thresholds (dashed lines) and molecular bound states (full lines) at zero rf field and $B_{rt} = 10$ G, $\omega/2\pi = 30$ MHz.

FIG. 3. (Color online) The real (a) and imaginary (b) parts of the scattering length for s-wave collisions of ^{87}Rb atoms initially in the $|1, 1\rangle \otimes |2, -1\rangle$ state as functions of the rf frequency at $B = 2$ G. (c, d) Same as in (a) and (b) but for the $|1, -1\rangle \otimes |2, 1\rangle$ initial state and $B = 3.23$ G. The rf amplitude is 4 G (blue (light grey) lines) and 10 G (black lines). The rf-induced resonances are labeled after the bound states A–F in Fig. 1.

FIG. 4. (Color online) A schematic illustration of the rf-induced Feshbach resonance. The rf field induces coupling between the initial two-atom dressed state $|i, N\rangle$ and a bound molecular state $|b, N + 1\rangle$, which is coupled with a low-lying open channel $|a, N + 1\rangle$ via the spin-dependent interaction potential. $\Delta = \hbar \omega - \epsilon_b$ is the detuning from resonance.
that α can be controlled more efficiently in atomic systems with smaller α_{bg}. Alternatively, α_{bg} can be reduced using magnetic [1] or electric [7] Feshbach resonances.

As follows from Eqs. (4), α and β peak at different rf detunings: $\Delta_\alpha = \pm \gamma_\text{ba}/2$ and $\Delta_\beta = 0$, with peak heights $\sim \gamma_\text{ba}/\gamma_\text{ba}$. Therefore, to induce an appreciable variation of α while keeping inelastic losses to a minimum, it is necessary to operate at large rf detunings $\Delta \gg \gamma_\text{ba}$, where $\alpha - \alpha_{bg} \sim \gamma_\text{ba}/\Delta$ and $\beta \sim \gamma_\text{bb}/\gamma_\text{ba}/\Delta^2$. In this regime, the real part of the scattering length is independent of γ_ba. For practical applications, however, it may be advantageous to minimize inelastic losses quantified by the parameter γ_ba, so that the condition $\Delta \gg \gamma_\text{ba}$ is satisfied at smaller Δ, where $\alpha - \alpha_{bg}$ is most sensitive to Δ. Indeed, as shown in Fig. 3, β is never too large except at very small detunings, which indicates that the regime $\Delta \gg \gamma_\text{ba}$ is within reach.

In summary, we have developed a rigorous quantum theory of atomic collisions in the presence of rf fields, and applied it to explore the effect of rf fields on s-wave collisions of Rb atoms. Our results show that rf fields generated in experiments with atom chips can be used as an efficient tool to control collisions of ultracold atoms, which has a number of advantages over the methods that use dc magnetic fields. In particular, shifting magnetic Feshbach resonances with rf fields may be used to selectively tune scattering lengths in ultracold atomic mixtures, thereby enabling the preparation of exotic many-body states and novel quantum phases [29]. As illustrated in Fig. 2(a), applying an rf field with $B_\text{rf} = 4$ G at $B = 9.206$ G results in a threefold enhancement of the real part of the scattering length. The calculated inelastic decay rates do not exceed $\sim 10^{-10}$ cm^3/s, so elastic collisions of Rb atoms can be efficiently manipulated on timescales of hundreds of microseconds for typical atom densities of 10^{13} cm^{-3}. Further advantages of rf control include the possibility of tuning the rf frequency with extremely high precision, which may allow for ultrasensitive measurements of molecular binding energies and scattering properties. Since rf fields can be switched in a very fast and controllable way [10], the rf-shifted Feshbach resonances offer the possibility of tuning the interaction between the atoms on a much shorter timescale than is possible using dc magnetic fields alone. The fast manipulation of ultracold atomic gases may be exploited to enhance the fidelity of quantum logic gates based on collisional interactions. In particular, a controlled phase gate, equivalent to a quantum controlled-NOT (C-NOT), can be realized with nearly perfect fidelity by “activating” the atom-atom interaction, via rf fields, for the time needed for the system to acquire a π phase nonlinearity among the two-atom logical basis (i.e., hyperfine) states (see, e.g., [30]). The ability to control spin-dependent interactions is also important in the context of simulating highly correlated many-body systems with ultracold atoms in optical lattices [3]. On atom chips, near-field rf control would add the capability of addressing individual pairs of atoms, an essential feature for universal quantum computation that is known to be difficult to realize with optical lattices.

We thank J. Thywissen, P. Julienne, and T. Hanna for discussions and E. Tiesinga for providing the Rb$_2$ potentials. This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Austrian Science Foundation (Grant No. FWF-Z 118-N16), the European Community (projects SCALA, CHIMONO), and the Chemical Science, Geoscience, and Bioscience Division of the Office of Basic Energy Science, Office of Science, US Department of Energy and National Science Foundation grants to the Harvard-MIT Center for Ultracold Atoms and Institute for Theoretical Atomic and Molecular Physics at Harvard University and Smithsonian Astrophysical Observatory.