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An algebraic perturbation theory is presented for efficient calculations of localized states and hence of exchange
energies, which are the differences between low-lying states of the valence electron of a molecule, formed by
the collision of an ion Y + with an atom X. For the case of a homonuclear molecule these are the gerade and
ungerade states and the exchange energy is an exponentially decreasing function of the internuclear distance. For
such homonuclear systems the theory is used in conjunction with the Herring-Holstein technique to give accurate
exchange energies for a range of intermolecular separations R. Since the perturbation parameter is essentially
1/R, this method is suitable for large R. In particular, exchange energies are calculated for X2

+ systems, where
X is H, Li, Na, K, Rb, or Cs.
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I. INTRODUCTION

The problem of exchange energies between two low-lying
states of a two-atom ionic system is considered. Initially,
we examine the case where the atoms are hydrogenlike
atoms separated by an internuclear distance R, which we
then generalize to larger atoms, each with a predominant
valence electron which is described in the same formalism. The
solution of the nonrelativistic Schrödinger equation obtained is
perturbative, based on the exact solutions at infinite separation;
for the larger atoms, these are described by the asymptotic
valence states determined by the ionization energies of the
atoms. The perturbation can conveniently be described in an
algebraic formalism but it follows the well-known technique
of finding a perturbation expansion for the separation constant
of the Schrödinger equation when spheroidal coordinates are
used. The perturbation parameter is a function of both R and
the energy E of the state considered, and E is determined by
equating the expansions of the separation constant from each
of the separated equations.

Initially, we concentrate on heteronuclear molecules but
there has been much interest in the homonuclear systems [1–9],
where the exchange energy is zero at infinite separation but,
more significantly, decays exponentially with R. For suffi-
ciently large R, it becomes impractical to merely subtract the
energies of the two states considered. In addition, the preceding
perturbation expansion is based on separate states at infinite
separation, whereas in the homonuclear case the states are
not localized on a particular atom for any value of R, however
large. To overcome these problems, the Herring-Holstein result
[7–9] is usually used, which expresses the exchange energy
essentially as an integral over the median plane between the
atoms together with a normalization term. This special case
can be treated using the theory for heteronuclear systems
by calculating ψA, the solution describing one of the atoms
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perturbed by the other atom. In a later section of this article,
exchange energies for several alkali-metal molecular ions are
calculated for a large range of R.

II. HYDROGENLIKE HETERONUCLEAR SYSTEMS

The basic, exact, nonrelativistic Schrödinger equation for
the interaction of two atoms is(

−1

2
∇2 − µa

ra

− µb

rb

)
� = E�. (1)

Here µa,µb are the charges on the atoms and the eigenvalue
E is given by

E = W − µaµb

R
, (2)

where W is the exact energy. Equation (1) separates into
spheroidal coordinates:

p = ra + rb

R
, q = ra − rb

R
, �. (3)

We consider here only those states for which the azimuthal
quantum number is zero and write � = X(p)Y (q) to obtain

d

dp

{
(p2 − 1)

dX

dp

}
+ [−C − λ2(p2 − 1)

+R(µa + µb)p]X = 0,
(4)

d

dq

{
(1 − q2)

dY

dq

}
+ [C − λ2(1 − q2)

−R(µa − µb)q]Y = 0 (5)

for 1 � p < ∞, −1 � q � 1, where C is the separation
constant and

λ = R

√
−E

2
. (6)

Equations (4) and (5) have the same essential form and may
be treated analogously using transformations similar to those
in [10,11]. In Eq. (4) we may use x = 2λ(p − 1) and define
S = R(µa + µb)/λ so that, asymptotically, S is independent
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of R (it depends on R through the dependence of E on R).
This leads to(

x + x2

4λ

)
d2X

dx2
+

(
1 + x

2λ

) dX

dx

+
(

− C

4λ
− x

4
− x2

16λ
+ S

4
+ Sx

8λ

)
X = 0. (7)

Writing X = exp(−x/2)φ = exp[λ(p − 1)]φ, we may rear-
range Eq. (7) into a form suitable for perturbation theory:

L(γ,1,x)φ = −ωxL(s,2,x)φ,
(8)

L(a,b,x) = xD2 + (b − x)D − a,

where

D = d

dx
, ω = 1

4λ
, γ = ωC − S

4
+ 1

2
, s = 1 − S

2
,

(9)

so that ω ∼ 1/R is a natural parameter for perturbation theory.
Asymptotically, we may neglect the right-hand side of

Eq. (8) and obtain exact solutions to the resulting confluent
hypergeometric equation. Only the regular Kummer M solu-
tion, M(γ,1,x), need be considered, since we require solutions
which are regular at x = 0. To ensure a physical solution also
as x → ∞, we require γ = −n, where n is zero or a positive
integer, leading to un-normalized solutions of the form

φ = M(γ,1,x). (10)

For the ground state, γ = n = 0, and Eqs. (8) and (9) then
yield

φ0 = 1,
C

4λ
=

(
S

4
− 1

2

)
. (11)

To improve these results, we now expand φ and C in power
series in ω, and use algebraic perturbation theory (PT). We
introduce a standard realization of the generators of the
SO(2,1) Lie algebra,

J− = xD2 + D, J0 = xD + 1
2 , J+ = x, (12)

which satisfy the usual commutation relationships

[J0,J+] = J+, [J0,J−] = −J−, [J+,J−] = −2J0, (13)

so that Eq. (8) becomes
[
J− − J0 − (

γ − 1
2

)]
φ

= −ω
{
J0 − 1

2 + J+
[
J− − J0 + 1

2 − s
]}

φ. (14)

We first apply a similarity transformation (often called
a “rotation” [12,13]) to Eq. (14) so that, for a general
operator A,

Aφ = 0 → Bψ = 0, (15)

where (B,ψ) are transforms of (A,φ) defined by

B = ÛAÛ−1, ψ = Ûφ. (16)

With the particular choice

Û = exp(J−), (17)

we have

J0 → J0 + J−, J+ → (J+ + 2J0 + J−), (18)

and the complete Eq. (8) is transformed by Eqs. (16) and (17)
to

hψ = (h0 + ωh1)ψ = γψ, (19)

where

h0 =
(

1

2
− J0

)
,

h1 = (J+ + 2J0 + J−)(b + h0) + (J− − h0), (20)

b = S

2
− 1,

and we now expand (ψ,γ ) in a power series in ω. Since ψ0 =
Ûφ0 for the correct behavior at infinite separation, we can
proceed by ordinary PT, constructing the matrices for the J

operators in the basis {xn,n = 0,1,2 . . .} so that n is a non-
negative integer and arrive at the following matrix form of
Eq. (19):

H0x = (γ − ωH1)x. (21)

We give a simple example of the matrix formulation in
Appendix A.

If we now expand γ and the vector x in powers of ω, we
obtain for the ground state a conventional perturbation scheme
beginning with γ0 = 0 and x0

T = (1,0,0,0, . . .) corresponding
to the asymptotic (zero-order) solution. The higher equations
may be made consistent order by order through appropriate
choices of the sucessive γn. These are polynomials in b and
consequently functions of λ and hence of E. This is an
elementary, but tedious, calculation, but which can be carried
out quickly and straightforwardly using a standard symbolic
mathematical package; here we have used MAPLE. Further
details and an example of the operators involved and some
of the polynomials obtained are given in Appendix A. We note
that since J± merely connect a basis element with an adjacent
element, H1 has a band structure whereby in the perturbation
calculation, one new basis element is introduced at each order
of perturbation.

Equation (5) can be treated analogously, choosing either
y = 2λ(1 + q) appropriate for a function centered (localized)
on atom A or 2λ(1 − q) for localization on atom B at infinite
separation. In either case, the algebraic treatment is based
on the realization of the SO(2,1) generators (dependent on y

and D = d/dy instead of x and D = d/dx) but is completely
analogous to the preceding analysis. Here the appropriate basis
consists of integral powers of y. We note that the terms in C

in Eqs. (4) and (5) are of opposite sign, as a result of which
the sign of ω is reversed in the analog of Eq. (8):

L(δ,1,y)ψ = ωyL(t,2,y), (22)

where now

D = d

dy
, δ = −ωC+ t

2
, t = 1− T

2
, T = R(µa− µb)

λ
.

(23)
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TABLE I. Energies for the 1sσ state in HeH2+ using nth-order
perturbation theory (PTn) (a.u.).

R PT2 PT3 PT4 Exact

3 −1.6661 −1.6675 −1.6681 −1.6688
4 −1.7497 −1.7503 −1.7505 −1.7506
5 −1.7998 −1.8001 −1.8002 −1.8002
6 −1.8332 −1.8334 −1.8334
8 −1.8750 −1.8750 −1.8750
10 −1.9000 −1.9000 −1.9000
50 −1.9800 −1.9800 −1.9800

The two perturbation expansions calculated through mth order
for the separation constant C depend finally only on λ, so that
for any given (finite) R, we need to solve the equation

m∑
j=0

γ jωj =
m∑

j=0

δj (−ω)j (24)

to obtain estimates of E. In each case the basis needs to
be truncated, but we can ensure that it is sufficiently large
not to affect the perturbation expansion since the zero-order
function is 1 and the band structure of the matrices is such
that only one extra basis function is needed for each order of
perturbation. Thus, for mth-order perturbation the size of the
matrices required is m + 1 and the calculations involved are
essentially matrix multiplications together with the solution of
the transcendental equation (24).

To examine this technique, we consider HeH2+ (µa = 2,
µb = 1), for which we have comparison data for values of
R from 3 . . . 5 [14,15], and the exchange energy at infinite
separation is −1.5. The two states considered are the 1sσ and
2pσ states, and it is well known that perturbation expansions
for the latter are troublesome since it has the same energy at
infinite separation as the 2sσ and 3dσ states. The results are
given in Tables I and II (in atomic units).

The results for the 1sσ state are excellent even for low
values of R, but for the 2pσ state they are less good for the
smaller values of R. The form of H1 in Eq. (17) is dominated
by the matrix J−h0 and the maximum size of the elements
increases as the order of the perturbation increases so that there
are ranges of ω for which we have convergence and ranges
where the perturbation expansion is asymptotic; for R ≈ 3, in
the case of 2pσ , the perturbation is large, so an asymptotic
expansion is likely. In the perturbation calculations in this
article, we have chosen the higher-order perturbed vectors, xn,
to have a zero component in x0. This is not strictly necessary

TABLE II. Energies for the 2pσ state in HeH2+ using PTn (a.u.).

R PT2 PT3 PT4 Exact

3 −0.4736 −0.5045 −0.5279 −0.5126
4 −0.4847 −0.5012 −0.5114 −0.5315
5 −0.4903 −0.5003 −0.5056 −0.5225
6 −0.4934 −0.5000 −0.5030
8 −0.4966 −0.5000 −0.5011
10 −0.4980 −0.5000 −0.5005
50 −0.5000 −0.5000 −0.5000

and there are free parameters in the PT. We hope to return to this
problem in future work using the free parameters to improve
the convergence properties of the perturbation calculation.
One possibility for HeH2+ is to ensure orthogonality between
the 1sσ and 2pσ states to all orders. However, the technique
here was designed for large R, and for these larger values the
lower-order perturbation results give consistent estimates.

III. GENERAL HETERONUCLEAR SYSTEMS

For these systems we have the Schrödinger equation[
−1

2
∇2 + VA(ra) + VB(rb) − 1

ra

− 1

rb

]
� = E�, (25)

where VA and VB are core potentials which die away fairly
rapidly so that the system may be treated in the same way
essentially in a region well away from either atom (where
both VA and VB can be ignored) with µa = µb = 1, but the
solution at infinite separation is different and needs closer
analysis. We consider a state localized on atom A in a region
where VA ≈ VB ≈ 0 and with a large internuclear separation
so that 1/rb may be replaced by 1/R. We have a zero-order
equation of the form(

−1

2
∇2 − 1

ra

)
�a = Ea�a, (26)

with Ea approximately equal to the ionization energy of the
valence electron on atom A. For fixed Ea = −β2/2 a solution
of this hydrogenlike system, which vanishes as ra → ∞, may
be written in the form

�0
a = exp(−βra)U (c,2,2βra) ∼ exp(−βra)(2βra)−c,

(27)
c = 1 − 1

β
,

where U denotes the Kummer U function. In the case where
Ea is exactly equal to the ionization energy, this will be the
required, spherically symmetric, solution at infinite separation.
However, for large finite R, which corresponds to our zero-
order situation, we have degenerate solutions of the equation
in the form

�l
a = exp(−βra)rl

aPl[cos(θ )]U (c + l,2l + 2,2βra)

∼ (2β)−l�0
aPl[cos(θ )] (28)

and the required zero-order wave function is a linear combina-
tion of all of these solutions. This is examined in Appendix B,
where it is shown that the spheroidal coordinates we are using
are asymptotically equivalent to parabolic coordinates and
using these coordinates we obtain for large R an appropriate
one-centre wave function centered on atom A:

�a = exp[−2Rα(p − 1)] exp[−2Rα(q + 1)]

×U [d,1,2Rα(q + 1)],
(29)

α =
√

−Ea

2
, d = 1 − 1

2α
.

A. Algebraic perturbation theory

The form of the asymptotic wave function is separable in p

and q and of identical form in p to that for the hydrogenlike
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systems. Thus, the analysis of Eq. (4) is unchanged. The
asymptotic solution for Eq. (5) has an additional factor
U [d,1,2λ(q + 1)], where

U (d,1,y) = y−d

[
1 − d2

y
+ d2(d + 1)2

2!y2
− · · ·

]

= exp(−J−)y−d (30)

for large y. Thus, Eq. (5) can be analyzed analogously to the
case of the hydrogenlike system and we have the algebraic
perturbation equation,

h0ψ = ω((J+ + 2J0 + J−)(b + h0) + (J− − h0))ψ + δψ,

(31)

where T = 0 so that b = −1. The required asymptotic solution
of this equation is y−d so that we may use the basis {y−d+n},
where now n is any integer, positive or negative, and since

h0y
−d = −dy−d , (32)

we have

δ0 = 1
2 − d. (33)

Note that the negative values of n did not occur in the
hydrogenlike heteronuclear systems since for these J−k = 0
for any constant k, but in the general case this is no longer
true. In all other respects the calculation is identical to the
calculation for the hydrogenlike atoms and the band form of
the perturbation matrices ensures that we only have two extra
basis functions for each order of perturbation (one new positive
value of n and one new negative value) and that consequently
the basis can be truncated appropriately. In Tables III and IV the
first-, second-, third-, and eighth-order perturbation results are
presented for both Li and Na perturbed by − 1

rb
for a wide range

of nuclear separations. Assuming R is sufficiently large so that
in the region considered the core potentials are negligible and
not affected by the other atom, then these solutions may be
used as a model for the composite molecule Li-Na, and the
exchange energies are obtained by subtracting the energies of
the localized state. Thus, analogously to HeH2+, we obtain
two states localized on the different atoms. In homonuclear
systems, and large R, subtracting two energies may not be a
practical procedure and we need to examine the alternative
approach using the Herring-Holstein theory.

TABLE III. Energies of perturbed Li using PTn (a.u.).

R PT1 PT2 PT3 PT8

5 −0.19507 −0.22242 −0.23549 −0.25338
10 −0.19656 −0.20526 −0.20724 −0.20780
20 −0.19761 −0.20021 −0.20051 −0.20052
30 −0.19789 −0.19914 −0.19923 −0.19923
40 −0.19800 −0.19873 −0.19878 −0.19878
50 −0.19806 −0.19854 −0.19856 −0.19856
75 −0.19812 −0.19834 −0.19835 −0.19835
100 −0.19814 −0.19827 −0.19827 −0.19827
∞ −0.198174 −0.198174 −0.198174 −0.198174

TABLE IV. Energies of perturbed Na using PTn (a.u.).

R PT1 PT2 PT3 PT8

5 −0.18756 −0.21540 −0.22826 −0.24618
10 −0.18821 −0.19709 −0.19907 −0.19963
20 −0.18905 −0.19171 −0.19202 −0.19204
30 −0.18930 −0.19057 −0.19067 −0.19068
40 −0.18940 −0.19015 −0.119019 −0.19019
50 −0.118944 −0.18994 −0.18996 −0.18996
75 −0.18950 −0.18973 −0.18973 −0.18974
100 −0.18952 −0.18965 −0.18966 −0.18966
∞ −0.189552 −0.189552 −0.189552 −0.189552

IV. THEORY OF HOMONUCLEAR HYDROGENLIKE
SYSTEMS

The theory cannot be directly applied to homonuclear
systems since for such systems, at infinite separation we do
not have localization on one particular atom. The lowest states
are the gerade and ungerade states, which are respectively
symmetric and antisymmetric with respect to the median plane
(z = R/2) between the two identical atoms. These two states,
ψ+ and ψ−, can always be written in the form

ψ+ = ψA + ψB√
2

, ψ− = ψA − ψB√
2

, (34)

where ψA,ψB are states localized on atoms A and B,
respectively. By symmetry considerations, on the median
plane ψA,ψB satisfy

ψA = ψB,
∂ψA

∂z
= −∂ψB

∂z
, (35)

and they can be obtained using the theory outlined previously,
where one atom is perturbed by the other. In practice, using
the symmetry, only one of the functions is required.

The exchange energy may be estimated from the Herring-
Holstein theory, which is an application of Green’s theorem
for two states, which satisfy

(− 1
2∇2 + V

)
ψ+ = E+ψ+,

(− 1
2∇2 + V

)
ψ− = E−ψ−,

(36)

from which we may deduce

(E+ − E−)
∫

V̂

ψ+ψ−dV̂

= −1

2

[∫
V̂

(ψ−∇2ψ+ − ψ+∇2ψ−)dV̂

]

=
∫

S

ψA∇ψA · kdS, (37)

where S is the median plane and V̂ the spatial volume z < R/2.
In terms of spheroidals, the median plane corresponds to q = 0
and

∇ · k = 2

R

∂

∂q
. (38)

042508-4



CALCULATION OF EXCHANGE ENERGIES USING . . . PHYSICAL REVIEW A 81, 042508 (2010)

Thus the surface integral is

Rπ

∫ ∞

p=1
ψA

∂ψA

∂q
dp. (39)

The volume integral may also be expressed in these coordinates
and is

(
R

2

)3

π

∫ q=0

q=−1

∫ ∞

p=1

(
ψ2

A − ψ2
B

)
(p2 − q2)dpdq, (40)

where ψB may be calculated from ψA, but it is more consistent
to ignore ψ2

B in this interval since it is O[exp(−2R)] and terms
of this order in ψ2

A cannot be obtained from our perturbation
expansion, which is essentially in inverse powers of R. In order
to examine these estimates, we have used the preceding theory
to calculate the localized ψA for H-H at various values of R for
which exact results are known. These are computed to eighth-
order perturbation and used in a Herring-Holstein calculation
for the exchange energies. These are given in Table V, where
the well known Herring-Holstein asymptotic estimate is also
given.

The perturbation results are universally better than the
conventional asymptotic results. The calculation process, even
for eighth-order perturbation, is fairly trivial since it only
involves multiplication by matrices of low order. (In this
latter calculation the basis was such that the matrices were
of order 9 × 9.) These matrix calculations are exact and the
only numerical aspect is the solution of the transcendental
equation (24) for the separation constant (the accuracy of this
solution will clearly affect the accuracy of the results) and the
truncation to the order of the perturbation used.

From these results we obtain an analytical expansion of
the exchange energy in terms of R. To do this we first fit
the parameter α of Eq. (29) to a set of the numerical results,
obtaining

α ≈ 0.5 + 0.5

R
− 0.2410

R2
. (41)

TABLE V. Exchange energies for H2
+: Eighth-order perturbation

theory (PT8) compared with the exact and asymptotic values (a.u.).

R Asymptotic PT8 Exact

4 0.107 8 0.093 91 0.100 5
6 0.021 88 0.021 40 0.021 36
7 0.009 39 0.009 33 0.009 32
8 0.003 95 0.003 96 0.003 99
9 0.001 634 0.001 648 0.001 652
10 0.000 668 0.000 676 0.000 677
11 0.000 270 0.000 274 0.000 275
12 0.000 108 0.000 110 0.000 114
13 4.32 × 10−5 4.39 × 10−5 4.40 × 10−5

14 1.71 × 10−5 1.74 × 10−5 1.74 × 10−5

15 6.76 × 10−6 6.85 × 10−6 6.88 × 10−6

20 6.07 × 10−8 6.15 × 10−8 6.17 × 10−8

30 4.13 × 10−12 4.17 × 10−12 4.19 × 10−12

We used the values R = 80, R = 90, and R = 100 to obtain
this expression. The analysis can then be done exactly using
MAPLE and we obtain the exchange energy

�E = R

(
3.984 39+ 0.015 59

R
− 10.700 25

R2
− 9.809 12

R3
· · ·

)

× exp(−2αR). (42)

By analyzing the exponential terms, this may be expressed in
the more conventional form:

�E = R exp(−R) exp(−1)

×
(

1 + 0.485 91

R
− 2.567 49

R2
− 3.737 20

R3
· · ·

)
.

(43)

This is similar, but not identical, to the usual asymptotic
expansion.

V. HOMONUCLEAR MOLECULES WITH CORE
POTENTIALS

We may also consider the general homonuclear case by
analyzing Eq. (25) when the atomic cores on atoms A and
B are identical. We may apply the theory outlined previously
given an approximation for d so that we can construct a basis.
Taking Ea to be the ionization energy in Eq. (29) provides
an appropriate basis and the localized perturbation calculation
can be carried out from either atom. One important difference
in the perturbation calculation is that at each order of the
perturbation two extra basis functions are used (so that for the
initial function y−d , first-order PT would lead to contributions
from the basis elements y−d+1,y−d−1). We may calculate (38)
as in the H-H case since it depends only on the solution on
the median plane, but we need to estimate the volume integral
[Eq. (40)] from additional information about the atomic core.
This is equivalent to finding a core-dependent normalization
constant so that ψA may be replaced by kψa .

A. Normalization

This problem has been considered in previous work [1,2,6]
using perturbation based on radial coordinates and the zero-
order wave function in the asymptotic region is taken to be
Eq. (27) with Ea given by the ionization energy. There are
many ways to estimate the normalization constant k [1,6]
and all estimates seem to be consistent but using such a
constant inevitably restricts the accuracy of the estimates of
the exchange energies and leads to an uncertainty which may
be estimated to be the order of 1%–3%. One way is to compute
the value and derivative of �0

a at some r = r0 and solve
for the total wave function numerically using pseudopotentials
for the atomic cores [16], obtaining �0

a for all r . The
approximate zero-order wave function obtained is spherically
symmetric, and this leads to simplification when the integra-
tion is carried out over a spherical region. In principle, this can
be done for all �l

a . Since most of the contribution to Eq. (40)
comes from the atomic core and a small asymptotic region, we
may estimate the volume integral by integrating over a large
spherical volume encompassing these regions. Over such a
volume the wave function may be approximated by �0

a + �̂a,

042508-5



B. L. BURROWS, A. DALGARNO, AND M. COHEN PHYSICAL REVIEW A 81, 042508 (2010)

TABLE VI. Exchange energies for Li2
+ using PT8 (A) compared

with variational calculations (B). In the rightmost column, the ratio
between the two sets of numbers is given (a.u.).

R A B Ratio

8 0.064 776 59 0.064 656 00 1.001 865 101
8.5 0.056 931 89 0.055 534 20 1.025 168 095
9 0.048 928 75 0.047 331 90 1.033 737 289
9.5 0.041 366 80 0.040 047 78 1.032 936 158
10 0.034 533 52 0.033 646 89 1.026 351 024
10.5 0.028 537 17 0.028 074 48 1.016 480 804
11 0.023 384 16 0.023 265 50 1.005 100 256
11.5 0.019 025 32 0.019 150 56 0.993 460 2435
12 0.015 383 94 0.015 659 38 0.982 410 2420
12.5 0.012 372 63 0.012 722 70 0.972 485 3785
13 0.009 903 39 0.010 273 50 0.963 974 3028
13.5 0.007 893 20 0.008 248 11 0.956 970 7484
14 0.006 266 90 0.006 586 68 0.951 450 5031
14.5 0.004 958 37 0.005 234 22 0.947 298 7379
15 0.003 910 60 0.004 141 05 0.944 349 2700
15.5 0.003 075 25 0.003 263 13 0.942 423 3788
16 0.002 411 85 0.002 562 14 0.941 342 0032
16.5 0.001 886 87 0.002 005 30 0.940 941 5050
17 0.001 472 75 0.001 564 97 0.941 072 3528
17.5 0.001 147 06 0.001 218 18 0.941 617 8233
18 0.000 891 60 0.000 946 03 0.942 464 8267
18.5 0.000 691 73 0.000 733 13 0.943 529 7969
19 0.000 535 72 0.000 567 05 0.944 749 1403
19.5 0.000 414 21 0.000 437 81 0.946 095 3382
20. 0.000 319 76 0.000 337 48 0.947 493 1848
20.5 0.000 246 48 0.000 259 75 0.948 912 4158
21 0.000 189 73 0.000 199 64 0.950 360 6492
21.5 0.000 145 86 0.000 153 24 0.951 840 2506
22 0.000 111 98 0.000 117 48 0.953 183 5206
22.5 0.000 085 88 0.000 089 96 0.954 646 5096
23 0.000 065 78 0.000 068 81 0.955 965 707
23.5 0.000 050 33 0.000 052 58 0.957 208 0639
24 0.000 038 47 0.000 040 13 0.958 634 4381
24.5 0.000 029 38 0.000 030 60 0.960 130 7190
25 0.000 022 41 0.000 023 31 0.961 389 9614
25.5 0.000 017 08 0.000 017 74 0.962 795 9414
27 0.000 007 53 0.000 007 78 0.967 866 3239
26. 0.000 013 01 0.000 013 49 0.964 418 0875
26.5 0.000 009 90 0.000 010 25 0.965 853 6585
27.5 0.000 005 72 0.000 005 90 0.969 491 5254
28 0.000 004 34 0.000 004 47 0.970 917 2260
28.5 0.000 003 29 0.000 003 38 0.973 372 7811
29 0.000 002 50 0.000 002 55 0.980 392 159
30 0.000 001 43 0.000 001 45 0.986 206 8966
31 8.190333400 × 10−7 8.468815650 × 10−7 0.967 116 7420
32 4.675271850 × 10−7 4.829070270 × 10−7 0.968 151 5465
33 2.663025430 × 10−7 2.747848940 × 10−7 0.969 130 9414
35 8.588708750 × 10−8 8.845697500 × 10−8 0.970 947 5991
37 2.750188780 × 10−8 2.827647290 × 10−8 0.972 606 7285
39 8.750160620 × 10−9 8.982464200 × 10−9 0.974 138 1012
40 4.924821370 × 10−9 5.051807900 × 10−9 0.974 863 1515

where �̂a is a combination of functions of the form given in
Eq. (28) and these are orthogonal to �0

a over this volume.
Consequently, to lowest order, we may simply renormalize �0

a

so that the volume integral is unity. To use this, we need to

TABLE VII. Exchange energies for Li2
+ using PT8 (A) compared

with pseudopotential calculations (B) (a.u.).

R A B

20 3.20 × 10−4 3.34 × 10−4

30 1.43 × 10−6 1.46 × 10−6

40 4.92 × 10−9 4.96 × 10−9

50 1.47 × 10−11 1.47 × 10−11

60 4.02 × 10−14 4.02 × 10−14

70 1.04 × 10−16 1.03 × 10−16

80 2.55 × 10−19 2.54 × 10−19

90 6.06 × 10−22 6.05 × 10−22

normalize our solution in Eq. (29) in the same way as R → ∞
and it suffices to ensure this using the z axis (p = 1) so that
we need to choose

k = q̂√
4π

1

(2β)d
, (44)

where q̂ is taken from the numerical calculation or from
previous estimates. In order to compare with some previous
calculations we have taken the values from [2] and these are
given in Appendix C, together with the other parameters used
for the ions Li2+, Na2

+, K2
+, Rb2

+, and Cs2
+. In Table VI

we compare our estimates for the exchange energies in Li2+
(A) with some variational calculations (B) [17] and note that
there is good agreement. The variational calculations are more
challenging for the larger values of R where current interest
lies and in Table VII we compare our estimates for larger R

with results obtained in [2]. Finally, in Table VIII we give
our estimates for the exchange energies of the other systems.
We note that in the earlier work of Bardsley et al. [1], the
exchange energies were estimated using a two-term asymptotic
expansion. Even though the parameters used were slightly
different the results obtained are consistent with our values.

The results quoted are evaluated from analytical formulas
obtained for the exchange energies, analogously to Eq. (42) for
H2

+, rather than the slightly more accurate numerical results.
As in the construction of Eq. (41) it is first necessary to fit α to
a set of the energies and then we obtain a formula of the form

�E = k(αR)−2dR exp(−2αR)

(
A + B

R
+ C

R2
· · ·

)
(45)

TABLE VIII. Exchange energies for Na2
+, K2

+, Rb2
+, and Cs2

+

using PT8 analytically using a fit to α (a.u.).

R Na-Na K-K Rb-Rb Cs-Cs

10 4.03 × 10−2 5.99 × 10−2 6.73 × 10−2 1.57 × 10−1

15 5.04 × 10−3 1.22 × 10−2 1.48 × 10−2 2.03 × 10−2

20 4.50 × 10−4 1.57 × 10−3 2.08 × 10−3 3.38 × 10−3

30 2.38 × 10−6 1.57 × 10−5 2.40 × 10−5 5.07 × 10−5

40 9.60 × 10−9 1.15 × 10−7 1.99 × 10−7 5.29 × 10−7

50 3.35 × 10−11 7.10 × 10−10 1.39 × 10−9 4.59 × 10−9

60 1.07 × 10−13 3.96 × 10−12 8.75 × 10−12 3.57 × 10−11

70 3.18 × 10−16 2.06 × 10−14 5.12 × 10−14 2.57 × 10−13

80 9.10 × 10−19 1.02 × 10−16 2.84 × 10−16 1.75 × 10−15

90 2.51 × 10−21 4.82 × 10−19 1.51 × 10−18 1.14 × 10−17
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by fitting at R = 90, R = 100, and R = 500. The values
of A, B, and C and the expressions for α are given in
Appendix C for all the systems considered. The perturbation
series for Cs is beginning to behave as an asymptotic series for
R ≈ 10 · · · 15 and lower-order perturbation is preferable, but
the fitted formula reproduces these lower-order estimates to 1%
or 2%. The results obtained show that the algebraic approach
provides an accurate method for estimating exchange energies
for a wide range of systems. In the case of homonuclear
molecules, we show that it can be applied to Li2+, Na2

+, K2
+,

Rb2
+, and Cs2

+ and is not restricted to H2
+. Further work is

in progress, particularly on the hetronuclear systems that have
been less widely studied.
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APPENDIX A

If we employ a finite basis {xn with n = 0,1,2,3}, then the
matrices J0, J+, J−, and H1 are given by

J0 =

⎛
⎜⎜⎜⎝

0.5 0 0 0

0 1.5 0 0

0 0 2.5 0

0 0 0 3.5

⎞
⎟⎟⎟⎠ , J+ =

⎛
⎜⎜⎜⎝

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

⎞
⎟⎟⎟⎠ ,

J− =

⎛
⎜⎜⎜⎝

0 1 0 0

0 0 4 0

0 0 0 9

0 0 0 0

⎞
⎟⎟⎟⎠ , (A1)

H1 =

⎛
⎜⎜⎜⎝

b b 0 0

b 3b − 2 4b − 4 0

0 b − 1 5b − 8 9b − 18

0 0 b − 2 7b − 18

⎞
⎟⎟⎟⎠ .

We use the generic form of the perturbation equation given in
Sec. II for either the p or the q equation:

H0x = (k − ω̂H1)x, xT
0 = (1,0,0,0), (A2)

with H0 the matrix representation of h0 and ω̂ = ±ω,k = γ,δ

depending on which of the p or q equations are used. The
nth-order vector xn (n �= 0) is chosen to have no component
in x0 and the first-, second-, and third-order values of γ are
given by the polynomials b, b2, and 2b3 − 2b, respectively. The
definition of b differs for the p and q equations (see Sec. II).

In the more general case of the core potentials, the
initial vector will be of the form xT

0 = (. . . 0,0,0,1,0,0,0 . . .),
depending on the number of basis elements used, and the
polynomials will depend on d in addition to b.

APPENDIX B: COORDINATE SYSTEMS

We may use parabolic coordinates at one center (atom) so
that

x = √
uv cos(�), y = √

uv sin(�), z = 1
2 (u − v).

(B1)

We are interested in an arbitrary plane so that for σ states, we
may take � = 0 and from atom A

r2
a = uv + 1

4
(u − v)2 =

(
u + v

2

)2

. (B2)

Thus,

ra = u + v

2
, za = ra cos(θa) = 1

2
(u − v) ⇒

(B3)
ua = ra[1 + cos(θa)], va = ra[1 − cos(θa)].

This has made a direct connection between parabolic and
radial, one-center coordinates and we now seek to connect
them, asymptotically, to spheroidals where atom A is one of
the foci. Since ua,va are orthogonal coordinates, then so are

p = 1 + va

R
, q = −1 + ua

R
. (B4)

Thus,
(

1 + va

R

)
+

(
−1 + ua

R

)
= 2ra

R
= p + q, (B5)

where p and q satisfy the same relationship as the spheroidal
coordinates. Also,

R

2
(pq + 1) = R

2

(
ua − va

R

)
+ O

(
1

R

)
∼ za (B6)

as R → ∞, which shows that p and q approach the relation-
ships satisfied by the spheroidal coordinates asymptotically.
The relationships are the same from atom B, except we take

p = 1 + vb

R
, q = 1 − ub

R
(B7)

and the z coordinate measured from B (in the direction of A)
is such that

R

2
(−pq + 1) = R

2

(
ub − vb

R

)
+ O

(
1

R

)
∼ zb. (B8)

Thus, asymptotically, we have

p ≈ 1 + va

R
≈ 1 + vb

R
, q ≈ −1 + ua

R
≈ 1 − ub

R
. (B9)

We now consider atom A at large separation so that the effect
of atom B can be ignored, but where ra is sufficiently large so
that any core potential VA may be neglected:

H0� =
(

−1

2
∇2 − 1

ra

)
� = Ea�. (B10)

In parabolic coordinates we have

∇2 = 4

u + v
{Lu + Lv}, Lx = xD2

x + Dx, Dx = d

dx
,

(B11)
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so that we have[
Lu + Lv + 1 + Ea(u + v)

2

]
F0(u)G0(v) = 0, � = F0G0.

(B12)

We may separate this equation in a variety of ways, and a
separation convenient for our analysis is(

Lu + Ea

2
u + 1

)
F0 = kF0, (B13)

(
Lv + Ea

2
v

)
G0 = −kG0. (B14)

In Eq. (B14) we may write G0 = exp(−αv)g0, with 2α2 =
−Ea and obtain the equation for g0:[

vD2
v + (1 − 2αv)Dv + k − α

]
g0 = 0. (B15)

Substituting s = 2αv gives

[
sD2

s + (1 − s)Ds − c
]
go = 0, c = 1

2
− k

2α
. (B16)

This is a Kummer equation and since we require g0 to be finite
as s → 0 we need to use the Kummer M function and

g0 = M(c,1,2αv). (B17)

However, we also require the solution to be finite as v → ∞
then the function must truncate to a polynomial; for the ground
state, this implies that

c = 0 ⇒ k = α. (B18)

With this value of k we may use F0 = exp(−αu)f0 in Eq. (B12)
to obtain [

uD2
u + (1 − 2αu)Du + 1 − 2α

]
f0 = 0. (B19)

Putting s = 2αu gives the Kummer equation

[
sD2

s + (1 − s)Ds − d
]
fo = 0, d = 1 − 1

2α
. (B20)

In the region considered where u is large (and well away from
the origin) and d is fixed, we require to use of the Kummer U

function to ensure the correct behavior for large u � R so that
we have

f0 = U (d,1,2αu). (B21)

[In the case of the ground state of hydrogenlike atoms, we
have d = 0, but in that case U (0,1,2αu) = M(0,1,2αu) = 1
and the analysis is then identical with the analysis of this case.]

Thus, we have found the complete one-center wave function
from A at large separation for a fixed Ea and we have
an approximate zero-order function for our perturbation
procedure,

ψa ≈ exp[−α(ua + va)]U (d,1,2αua) ∼ exp[−λ(p − 1)]

× exp[−λ(q + 1)]U(d,1,2λ(q + 1)), (B22)

where λ = R
√−Ea/2 and Ea approaches the ionization

energy for atom A as R → ∞.

APPENDIX C

1. For Li we use d = 0.588 406 5, q̂ = 0.814 596, A = 2,
B = −3.888 34, C = −25.964 65, and the expansion for α is

0.314 807 101 + 0.794 320 15

R
− 0.223 527 154

R2
.

2. For Na we use d = 0.624 130, q̂ = 0.675 12, A = 2,
B = −4.300 44, C = −23.723 33, and the expansion for α is

0.307 856 900 + 0.812 212 6

R
− 0.225 614 003

R2
.

3. For K we use d = 0.770 436, q̂ = 0.598 446, A =
2, B = −6.240 31, C = −36.012 88, and the expansion for
α is

0.282 415 606 + 0.885 737 2

R
− 0.336 696 40

R2
.

4. For Rb we use d = 0.804 772, q̂ = 0.569 227, A = 2,
B = −6.75 747, C = −36.69509, and the expansion for α is

0.277 042 0918 + 0.903 225 9

R
− 0.434 595 52

R2
.

5. For Cs we use d = 0.869 254, q̂ = 0.509 376, A = 2,
B = −7.795 47, C = −46.171 54, and the expansion for α is

0.267 481 791 + 0.937 757 759 17

R
− 0.968 095 334 45

R2
.

The parameters q̂ and d are obtained from the explicit core
potentials in [16].
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