Dynamic Nuclear Polarization in Double Quantum Dots

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1103/PhysRevLett.104.226807</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:5129890</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>

Dynamic Nuclear Polarization in Double Quantum Dots

1 Department of Physics, Harvard University, Cambridge, MA 02138, USA
2 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3 Joint Quantum Institute and the National Institute of Standards and Technology, College Park, Maryland 20742, USA
4 Center for Nanoscale Systems, Harvard University, Cambridge, MA 02138, USA

(Dated: June 8, 2010)

We theoretically investigate the controlled dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. Three regimes of long-term dynamics are identified, including the build up of a large difference in the Overhauser fields across the dots, the saturation of the nuclear polarization process associated with formation of so-called “dark states,” and the elimination of the difference field. We show that in the case of unequal dots, build up of difference fields generally accompanies the nuclear polarization process, whereas for nearly identical dots, build up of difference fields competes with polarization saturation in dark states. The elimination of the difference field does not, in general, correspond to a stable steady state of the polarization process.

Understanding the non-equilibrium quantum dynamics of localized electronic spins interacting with a large number of nuclear spins is an important goal in mesoscopic physics. These interactions play a central role in spin-based implementations of quantum information science, in that they determine the coherence properties of electronic spin quantum bits. One of the promising systems for realization of spin-based qubits involves electrically-gated pairs of quantum dots in GaAs, with one electron in each quantum dot. Hyperfine interactions with lattice nuclear spins are the leading mechanism for decoherence of the electron spins, and efforts are currently being directed towards understanding these interactions, with the ultimate goal of turning the nuclear spins into a resource by controlling these interactions. Recent experiments have demonstrated a wide variety of experimentallycontrolled nuclear spin polarization dynamics, but to date there is no unifying theoretical framework in which to understand the experimental results.

In this Letter, we investigate theoretically the process of dynamic nuclear polarization (DNP) in two-electron double quantum dots. This process involves the preparation of the electronic spins in a singlet state and subsequent level crossing between the electronic singlet and triplet states with different projection of electronic angular momentum. It is accompanied by nuclear spin flips, which polarize the spins of the nuclei inside the two dots, producing an effective magnetic (Overhauser) field for the electronic spins. Experiments demonstrate that DNP strongly modifies the difference between the Overhauser fields on the two dots, which is of central importance for control over singlet-triplet qubits. Detailed understanding of DNP in these systems is both of fundamental interest and great practical importance for GaAs based electron spin qubits.

In what follows we develop a theoretical framework to study the non-equilibrium polarization dynamics of the nuclear spin environment. Our approach takes advantage of the large effective temperature of the nuclear spins and the short time-scale for electron spin evolution to coarsen the electronic system's dynamics, yielding a master equation for the nuclear spin degrees of freedom, which we solve in a semiclassical limit. Our key results may be understood by first considering three possible regimes that result from the DNP process. These include i) build-up of an effective difference field, ii) saturation in so-called “dark states,” and iii) preparation of nuclear spins in each quantum dot in states that produce identical Overhauser fields.

For example, i) in the case of two dots with unequal sizes the growth of an Overhauser difference field D_z can be understood in the following heuristic picture, which is borne out by our analytic and numerical calculations. Consider a system with a homogeneous wavefunction in the presence of both strong DNP pumping and nuclear dephasing. The size difference results in different effective hyperfine interactions $g_{(r)}$ on the left(right) dot. We find that the nuclear spins have nearly equal spin flip rates on the two dots, so that the build up of the total Overhauser field S_z is proportional to $g_z + g_r$, while the build up of D_z is proportional to $g_z - g_r$. Thus, D_z tends to grow with S_z such that $D_z/S_z \rightarrow (g_z - g_r)/(g_z + g_r)$. On the other hand, ii) when the dots are identical, or nearly so, we find a second regime at strong pumping, where D_z does not grow and the polarization process shuts down the growth of S_z, by driving the difference field towards a dark state, with $D_z = D_y = 0$. Such states are of interest for use as long-lived quantum memory. Finally, iii) electronic and nuclear degrees of freedom can be completely decoupled if two electrons are initially prepared in the singlet state, while the nuclear spins are
prepared in a state with $D = 0$ (Fig. 1). In such a case, polarization stops and the dephasing time of the singlet-triplet qubit can be greatly extended. However, we have not found physical parameter regimes in which such states can be stably prepared.

Model – The hyperfine coupling between a localized electron in dot l, r (for the left, right dot) and a nuclear spin I_{kd} at r_{kd}, is given by $g_{kd} = a_{hl} v_0 |\psi(r_{kd})|^2$, where ψ is the electron wavefunction, v_0 is the volume per nucleus, and a_{hl} is a coupling constant. The homogeneous limit is defined by $g_{kd} = g_d$ for all k. S and D are defined through the collective nuclear spin operators denoting the Overhauser fields in the left (L) and right (R) dots $L = \sum_k g_{kd} I_{kd}$ and $R = \sum_k g_{kr} I_{kr}$, such that $S = (L + R)/2, D = (L - R)/2$.

For a double quantum dot with two electrons, we can write the Hamiltonian for the lowest energy (1,1) and (0,2) electron states, where (n, m) indicates n (m) electrons in the left (right) dot. In this subspace the effective Hamiltonian for the electron and nuclear spins takes the form $H = H_{el} + H_{nf} + H_n$, where

$$\begin{align*}
H_{el} &= \gamma_e B_{ext} \cdot (s_l + s_r) + J(\epsilon) s_l \cdot s_r, \\
H_{nf} &= S \cdot (s_l + s_r) \cos \theta D \cdot (s_l - s_r), \\
H_n &= -\sum_{k,d} \gamma_n (B_{ext} + h_{kd}) \cdot I_{kd}
\end{align*}$$

where $s_{l(r)}$ is the electron spin in the left(right) dot, $\gamma_e (\gamma_n)$ is the electron (nuclear) gyromagnetic ratio, where we consider spin 3/2 nuclei of a single species, $B_{ext} = B_{ext} \hat{z}$ is the external magnetic field, $\cos \theta (\epsilon)$ is the overlap of the adiabatic singlet state $|s\rangle$ with the (1,1) singlet state as a function of the detuning ϵ between the (1,1) and (0,2) singlet states, and $J(\epsilon)$ is the splitting between $|s\rangle$ and $|T_0\rangle$ [28].

The matrix elements of the components of L, R in the infinite temperature ensemble are $\Omega_d = (\sum_k g_{kd} I(1 + 1/3))^{1/2}$. We define $\Omega = \sqrt{\Omega_d^2 + \Omega_d^2}/2 \approx (10 \text{ ns})^{-1}$ for typical few-electron double dot experiments, and work in units where $\Omega = -\gamma_e = \hbar = 1$. In addition to the nuclear Zeeman energy we include a “noise” term h_{kd}, representing the fluctuating, local magnetic field felt by a nuclear spin at site r_{kd}, which could arise from e.g. nuclear dipole-dipole and electric quadrupole interactions. We estimate the scale of the fluctuations to be such that a typical nuclear spin dephases at a rate of 1-50 kHz [28].

We find the nuclear spin evolution semiclassically by treating the nuclei and electrons as mean fields when solving for the electron and nuclear dynamics, respectively. This semiclassical approximation has been well studied in the context of central spin models and is generally reliable for extracting average quantities of high-temperature, low polarization nuclear ensembles in dots with a large number of nuclei N (typically $\approx 10^6$ [28]) [10, 11].

Neglecting H_n, the nuclear spins evolve according to $I_{kd} = i[H_{hf}, I_{kd}]$, giving equations of motion

$$\langle I_{kd} \rangle = \frac{g_{kd}}{2} \left(|s_l + s_r\rangle + \cos \theta |s_l - s_r\rangle \right) \times \langle I_{kd} \rangle$$

where the top sign applies for $d = l$. We now replace $\langle I_{kd} \rangle$ with I_{kd} since we are treating the nuclear spins semiclassically. Consider a pulse cycle $\epsilon(t)$ of duration $T < 1/g_{kd} \approx \sqrt{N}/\Omega_d$. In a single cycle we can average over the fast evolution of the electrons to arrive at the coarse-grained equations [12]

$$\dot{I}_{kd}(t) \approx \frac{I_{kd}(t + T) - I_{kd}(t)}{T} = g_{kd} P_d(t) \times I_{kd}(t),$$

$$P_d(t) = \int_{\tau}^{\tau + T} dt' \left(|s_l + s_r\rangle + \cos \theta |s_l - s_r\rangle \right)$$

where P_d is a slowly-varying, effective Knight magnetic field felt by the nuclear spins.

We now consider the class of pulse sequences employed in Refs. [13], in which the electronic system is initialized in $|s\rangle$ at large ϵ and ϵ is swept slowly through the $|s\rangle$-$|T_+\rangle$ resonance followed by a fast return to (0, 2) and reset of the electronic state via coupling to the leads. (Fig. 1). This results in a build up of negative polarization. For simplicity, we work in the limit where the electron spin flip probability per cycle is small and calculate P_d to lowest order in $\Omega/I, \Omega/B_{ext}, \Omega T$, and Ω/β, where $\beta^2 = \frac{1}{2} |dJ/d\epsilon| |_{\epsilon = \epsilon_r}$ is the sweep rate at the resonance time ϵ_r, i.e., $J(\epsilon_r) = B_{ext}$.

To calculate $\langle s_d \rangle$ we work in the Heisenberg picture. Defining $\sigma_+ = |T_m\rangle \langle s|$, we can write $(s_+^2 - s_-^2)/2 = (\sigma_+^2 - \sigma_-^2)/2 = -s_+^2 B_{ext}$. Since $B_{ext}, J, \beta \gg \Omega$, we can set $\langle |T_n\rangle \langle T_m| \rangle = 0$ in $(d\sigma_+^n/dt)$ to obtain the first order corrections to the electronic state:

$$\langle \sigma^n_0 \rangle = -i\sqrt{2v(t)} D_2 + iJ(t) \langle \sigma_0^0 \rangle,$$

$$\langle \sigma^{-1}_+ \rangle = -i\epsilon(t) D_2 + i(J(t) + B_{ext}) \langle \sigma^{-1}_+ \rangle,$$

$$\langle \sigma^1_+ \rangle = i\epsilon(t) D_2 + i(J(t) - B_{ext}) \langle \sigma^1_+ \rangle.$$
where \(v(t) = \cos \theta(t)/\sqrt{2} \). Since \(J, B_{\text{ext}} \gg g\Omega \), Eqs. \(5 \) and \(6 \) can be adiabatically eliminated. To find \(\langle \sigma_z^+ \rangle \), we formally integrate Eq. \(7 \) and perform a saddle point expansion about the resonance time, assuming \(v(t) \) is constant in this region, to reduce it to a Landau-Zener problem [29]. From this solution we calculate the average initial spin flip probability per cycle, \(p_{f0} = 2\pi v^2(t_c)\Omega^2/\beta^2 \).

Putting these results into Eq. \(8 \) gives

\[
P_d = \pm \left(\Gamma_0 \hat{z} \times D_\perp - \Delta_0 D_\perp \hat{z} - \Delta R \right),
\]

where \(\Gamma_0 = p_{f0}/\Omega^2 T \) arises from the polarization process via \(T_r, \Delta_0 = \langle 2v^2/J \rangle_c \) and \(\Delta R = \langle v^2/(J + B_{\text{ext}}) \rangle_c \) arise from electron-nuclear exchange processes via the \(T_0 \) and \(T_r \) states, respectively. \(\langle \cdot \rangle_c \) indicates an average taken over one cycle, and \(D_\perp = D_x \hat{x} + D_y \hat{y} \).

Qualitatively, the effect of \(\Gamma_0 \) term is to polarize the nuclear spins, but it also saturates the polarization by driving the nuclear spins into a dark state, \(D_\perp = 0 \). The \(\Delta_0 \) term drives the nuclear spins out of dark states, unless \(D_z = 0 \) as well. Without noise, states with \(D = 0 \) are stationary during this DNP process; we refer to these as “zero states.”

Solving Eqs. \(3 \) with \(P_d \) given by Eq. \(8 \) for an arbitrary electron wave function is a challenging many-body problem. To help treat this problem, we have developed a new numerical method, which is formally equivalent to approximating the wave function by a unique set of \(M \ll N \) coupling constants \(g_{dL} \), that well approximates the time evolution of \(L \) and \(R \) for a time that scales as \(M \). A full description of this method, which was used in Fig. \(3 \) along with a discussion of several higher order effects from finite magnetic field and adiabaticity, will be given elsewhere [29].

Unequal dots – Our results that zero states are unstable to the growth of large difference fields, in the presence of asymmetry in the size of the dots and nuclear noise \((H_n) \), can be shown analytically in the case of a simplified model. We assume homogeneous coupling and work in the high field, large \(J \), limit where we can set \(\Delta_0 = \Delta_r = 0 \) in \(P_d \). To treat the noise we first go into a frame rotating with the nuclear Larmor frequency, and assume \(h^{xx'} \) can be rotated away. We further assume that the nuclear noise can be approximated by a Gaussian, uncorrelated white noise spectrum, \(\gamma^2 h_{d_{\text{dL}}}(t) h_{d_{\text{dR}}}(t^\prime) \rangle_n = 2\eta \delta(t - t^\prime) \delta_{kk'} \delta_{dd'}, \) where \(\langle \cdot \rangle_n \) are averages over the noise [31]. These local noise processes give rise to a mean decay of the collective nuclear spin variables \(L_+ (R_+) \) and associated fluctuations \(\mathcal{F}_{l_r}(r) \), defined by \(\langle \mathcal{F}_{dL}(t) \mathcal{F}_{dR}(t^\prime) \rangle_n = 2\eta^2 \delta_{dd'} \delta(t - t^\prime) \). As a result, Eqs. \(3 \) and \(8 \), including \(H_n \), give

\[
\dot{L}_+ = g\Gamma_0 L_z (L_+ - R_+)/2 - \eta L_+ + \sqrt{2\eta} \mathcal{F}_{l_{\text{dL}}}, \tag{9}
\]

and similarly for \(R \). From Eq. \(5 \) if we start in a zero state, \(\mathcal{F}_d \) will produce a fluctuation in \(D_\perp \), and the contribution to \(\dot{L}_z \) of the form \(-g\Gamma_0 L^2_\perp \) results in the long time limit, in \(L_z \ll -1 \) and similarly for \(R_z \). Thus, \(|L_z/L_\perp| \ll 1 \) and we can treat \(L_z, R_z \) as static to find \(\langle L^2_\perp \rangle_n, \langle R^2_\perp \rangle_n \) and \(\langle L_\perp \cdot R_\perp \rangle_n \), which allow us to find the slow evolution of \(L_z, R_z \). To lowest order in \(1/S_z \) and \(1 - R \), where \(R \equiv g_r/g_t \),

\[
\langle \dot{D}_z \rangle_n = -\eta \langle [D_z]_n - (1 - R) [S_z]_n \rangle / \langle S_z \rangle_n^2, \tag{11}
\]

and \(\langle S_z \rangle_n = -\sqrt{\eta t} \). This growth of \(S_z \) as \(t^{1/2} \) is a result of our assumption of \(\Delta \) correlated nuclear noise. If we assume a finite correlation time \(\tau_c \) such that \(\langle \mathcal{F}_{dL}(t) \mathcal{F}_{dR}(t^\prime) \rangle_n = \Omega^2 \exp(-|t - t^\prime|/\tau_c) \), then for \(g\Gamma_0 |S_z| \ll 1/\tau_c, |S_z| \sim t^{1/2} \), but eventually \(|S_z| \sim t^{1/3} \). Integrating Eq. \(11 \) gives \(D_z/S_z \to (1 - R)/2 \). For general \(R \) we find, in the long time limit,

\[
\frac{D_z}{S_z} \rightarrow \frac{1 - R^2}{2R + \sqrt{4R^2 + (1 - R)^2}}. \tag{12}
\]

Fig. \(2 \) shows good agreement between these results and numerics for an inhomogeneous Gaussian wavefunction.

Identical dots – For identical dots the previous arguments are no longer valid. Fig. \(2 \), however, shows the results of numerical simulations [29] that demonstrate the existence of a parameter regime for which there is self-consistent growth of \(D_z \) even for identical dots. Simulations were performed at each set of parameters by taking
20 different initially polarized nuclear spin configurations with $S_z = -10$, $D_z = -2$, $\eta/g_0\Delta_0$ between 10^{-2} and 10^{-4}, and a 2D Gaussian electron wavefunction approximated with 400 values of g_{kd}. We determined which parameter values had $\langle D_z \rangle$ growing after $t = 10^4/g_0\Delta_0$. For $\Gamma_0/\Delta_0 > 1/2$, no self-consistent growth of D_z appears, and the system approaches a dark state. For smaller Γ_0/Δ_0 and for moderate Δ/Δ_0, continued growth of D_z is observed. We find a similar boundary for unequal dots provided $|1 - R| \lesssim 0.05$.

This phase diagram for identical dots can be verified analytically in a simplified model, where the hyperfine coupling in each dot takes two values ($g_1 \gg g_2$) on two groups of spins of similar size. We assume initially $-g_2S_z \gg g_1\langle D_z \rangle > 1 \gg D_\perp$ with the polarization mostly in the strongly coupled spins. To lowest order in g_2/g_1, η/g_2D_z, g_1D_z/g_2S_z, and D_\perp/D_z, we find \[\langle D_z \rangle_n \propto (\Gamma_0^2 + \Delta_0^2 - \Delta_0\Delta_-)(g_1 \langle D_z \rangle_n/g_2 \langle S_z \rangle_n)^3. \] (13)

Growth of D_z requires nonzero D_\perp, but, as we show below, for large polarization and weak noise $D_\perp \sim D_z/S_z$, which implies that the growth D_z must occur self-consistently to prevent saturation. This is illustrated by Eq. (13) which shows that continued growth of D_z is entirely determined by the sign of $\Gamma_0^2 + \Delta_0^2 - \Delta_0\Delta_-$. For large Γ_0 or strong DNP pumping, the sign is positive, saturation effects dominate, large difference fields are unstable and the system eventually reaches a dark state. For smaller Γ_0, the sign is negative and coherent evolution arising from interactions with $|T_0_\perp\rangle$ allows D_z to continue growing and D_\perp remains finite. Fig. 2 shows reasonable agreement between this predicted boundary and our numerical results.

We now address the stability of the zero states in the absence of nuclear noise. For identical dots, in the homogeneous limit, Eqs. (3) and (4) give
\begin{align*}
\dot{D}_+ &= g i (\Delta_- - i\Gamma_0) S_z D_+ - g i \Delta_0 D_z S_+, \\
\dot{D}_z &= g \left[(\Delta_- - i\Gamma_0) D_+ S_- - c.c. \right] / 2i.
\end{align*}
(14)
(15)

Near a zero state S is constant since $\dot{S} \sim O(D^2)$. The polarization, $g\Gamma_0S_z$, acts as a damping term for D_\perp; consequently, for $S_z \ll -1$, $D_\perp \rightarrow |\Delta_0 S_z|/|\Delta_- - i\Gamma_0|D_z/S_z$. Together with Eq. (15) this implies $D_z = 0$. Thus the stability matrix, $\partial D_\mu/\partial D_\nu|_{D=0}$, has two negative eigenvalues and one zero eigenvalue. Due to this zero eigenvalue, we expect the stability of a zero state to be highly sensitive to external perturbations.

We now address the stability of the zero states in the inverse sweep rate, for example, zero states become repulsive on a long time scale \[\frac{1}{\Delta_0}. \] Throughout this work we have mostly neglected nuclear spin diffusion \[\frac{1}{\mu_\text{Larmor}} \] and spin-orbit coupling \[\frac{1}{\mu_\text{DNP}} \], both of which could potentially affect DNP and, in particular, the stability of zero states.

We thank S. Foletti, C. Barthel, M. Rudner, and I. Neder for valuable conversations. This work was supported by the Harvard-MIT CUA, the Fannie and John Hertz Foundation, Pappalardo, NSF, the Physics Frontier Center, and the ARO.

\begin{thebibliography}{100}
\bibitem{1} G. Yusa et al., Nature 434, 1001 (2005).
\bibitem{9} R. Hanson et al., Rev. Mod. Phys. 79, 1217 (2007).
\bibitem{15} W. A. Coish and D. Loss, Phys. Rev. B 70, 195340 (2004).
\bibitem{17} J. R. Petta, H. Lu, and A. C. Gossard, Science 327, 669 (2010).
\bibitem{18} M. Rudner et al. (2009), arXiv:0909.0660.
\bibitem{19} S. Foletti et al., Nat. Phys. 5, 903 (2009).
\bibitem{22} S. Foletti et al. (2008), arXiv:0801.3613.
\bibitem{24} H. Ribeiro and G. Burkard, Phys. Rev. Lett. 102, 216802 (2009).
\bibitem{25} W. Yao (2009), arXiv:0905.2460.
\bibitem{26} M. Stopa, J. J. Krich, and A. Yacoby, Phys. Rev. B 81, 041304(R) (2010).
\bibitem{29} M. Gullans et al., in preparation.
\end{thebibliography}