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Abstract

Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk
are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association
(GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large
population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (,26%–
27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects
meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ,2.4 million imputed or
genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study
(AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels
(p,561028) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated
SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with
1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with
histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit
distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common
genetic variants influencing CT–assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly
associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting
genetic heterogeneity in the pathways influencing these traits.
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Introduction

NAFLD includes a spectrum of disease ranging from fatty

infiltration of the liver (steatosis) to histologic evidence of

inflammation (nonalcoholic steatohepatitis or NASH), to fibrosis

or cirrhosis, without a history of excessive alcohol ingestion [1,2].

NAFLD can lead to liver failure and is accompanied by substantial

morbidity and mortality, with few known effective treatments [3].

Obesity is a primary risk factor for NAFLD, but not all obese

individuals are affected [4]. Familial clustering of the disease has

been identified [5–7], suggesting that NAFLD may be influenced

by genetic variants. However, thus far only one genetic locus has

been found to reproducibly associate with magnetic resonance

measured steatosis [8,9].

Liver attenuation measured using computed tomography (CT)

is a quantitative measure that is inversely related to the amount of

fat in the liver [10–12]. It is highly correlated (r = 0.92) with the

macrovesicular hepatic steatosis and thus is a non invasive

measure of NAFLD [12]. The purpose of the present study was

to determine the heritability of CT measured hepatic steatosis and

to search for associated genetic variants in a meta-analysis of 7,176

individuals of European descent from the Framingham Heart

Study (FRAM), the Old Order Amish Study (Amish), the Family

Heart Study (FamHS), and the Age, Gene/Environment Suscep-

tibility-Reykjavik study (AGES), which together comprise the

GOLD (Genetics of Obesity-related Liver Disease) consortium

(See Table S1). To validate top associating variants for risk of

histologically verified NAFLD, we utilized cases from the NASH

Clinical Research Network (NASH CRN) that were genetically

matched to healthy controls from the Myocardial Genetics

Consortium (MIGen) consortium(See Table S1). We then further

tested genome wide significant or replicating SNPs for associations

with histologic NAFLD using the same cases from the NASH

Clinical Research Network (NASH CRN) versus a different set of

controls from the Illumina Control Database (iCONT) (See Table

S1). Further, we report the association of these SNPs with other

metabolic traits using data from the Global Lipids Genetics [13],

GIANT [14], DIAGRAM [15], and MAGIC [16] Consortia, as

well as investigate cis gene expression variation (eQTLs) in liver,

subcutaneous and visceral fat from bariatric surgery patients from

Massachusetts General Hospital [17](Figure 1).

Results

We estimated the heritability of CT hepatic steatosis in three

family-based cohorts. We found that the heritability of CT hepatic

steatosis was 0.27 (standard error, SE 0.08), 0.27 (SE = 0.04), and

0.26 (SE 0.04) in the Amish, FamHS, and FRAM cohorts

respectively (n = 880–3,070) (See Materials and Methods and

Table 1). These data suggest that CT hepatic steatosis, like other

measures of fat has a genetic basis and that a search for influential

genetic variants is warranted.

To identify specific genetic loci associated with CT hepatic

steatosis, genome-wide association analyses were carried out in

each of the four studies (See Materials and Methods and Tables

S2, S3) and the results combined using a fixed effects meta-analysis

(N = 7,176 in total). Variants at three loci emerged as being

associated with CT hepatic steatosis at genome-wide significance

levels (p,561028; Table 2, Figure 2A). These included rs738409

in PNPLA3 (p = 4.3610234), a locus previously reported as

associated with magnetic resonance spectroscopy measured

steatosis, [8] and two additional novel loci: rs4240624 near

PPP1R3B (rs4240624, p = 3.68610218) and rs2228603 near NCAN

(rs2228603, p = 1.22610218). The alleles associated with increas-

ing CT hepatic steatosis ranged in frequency from 0.07 to 0.92

and together account for 4.4% of the variance in hepatic steatosis

(Table 2; range 0.79–2.41%). After removing these genome-wide

significant loci, a quantile-quantile plot of the results demonstrated

an excess of low p-values compared to expectations under the null

(Figure 2B), suggesting that additional variants among those with

moderately low p-values may also be associated with this trait.

Except for variants near PNPLA3, we did not observe any variants

in the region of any of the previously reported liver function test

associated regions [18]. We could not assess whether the recently

reported NAFLD associated variants near APOC3 [19] associate

with CT hepatic steatosis as they were not genotyped on the

Five GWAS Loci Associate with NAFLD

PLoS Genetics | www.plosgenetics.org 2 March 2011 | Volume 7 | Issue 3 | e1001324



Affymetrix or Illumina platforms used by our studies and these

variants do not have proxies that we could use in HapMap to

impute them.

To determine whether SNPs with evidence of association with

CT hepatic steatosis are also associated with histologic NAFLD,

we genotyped 46 SNPs (independent SNPs with p,5610-3, with

independence defined as pairwise r2,0.1; See Table S4 for SNP

details in GOLD and each cohort) in 592 subjects with biopsy-

proven NAFLD from the NASH CRN (See Table S1). Using

ancestry-informative genetic markers [20], we had previously

matched these cases to 1,405 healthy controls [21] from the

MIGen study [22] that had undergone GWAS genotyping and

imputation (See Table S1). Forty-five of the 46 SNPs passed

genotyping and imputation quality control in the NASH CRN and

MIGen data sets respectively (See Table S3) and were tested for

association with histologic NAFLD in this sample. Two of the

three variants with genome-wide significant associations to CT

hepatic steatosis were also significantly associated with histologic

NAFLD (corresponding to a false discovery rate (FDR) p,0.001):

rs738409 in PNPLA3 (OR = 3.26, p = 3.6610243) as we and others

have recently reported [21,23] and rs2228603 in NCAN

(OR = 1.65, p = 5.2961025) which is a novel finding (Table 2;

See Table S5). The rs4240624 variant near PPP1R3B was not

associated with histologic NAFLD in this sample (OR = 0.93,

p = 0.29). Of the 43 remaining SNPs showing suggestive

association with CT hepatic steatosis, rs780094 in GCKR

(OR = 1.45, p = 2.5961028) and rs12137855 near LYPLAL1

(OR = 1.37, p = 4.1261025) were also significantly associated with

histologic NAFLD (Table 2; See Table S5).

To confirm that the effects on histologic NAFLD observed in

the NASH CRN/MIGen analyses were not due to the

characteristics of the controls, we performed a separate analysis

of the NASH CRN cases with an alternate set of controls from the

Illumina Control database (iCONT; http://www.illumina.com/

science/icontroldb.ilmn). We found that the effects and p values of

rs738409 in PNPLA3 (OR = 3.24, p = 2.16610264), rs2228603 in

NCAN (OR = 1.90, p = 6.82610210), rs4240624 near PPP1R3B

(OR = 0.86, p = 0.15), rs780094 in GCKR (OR = 1.18, p = 0.01),

and rs12137855 near LYPLAL1 (OR = 1.21, p = 0.03) were similar

to the effects seen in MIGen establishing that these results are not

dependent on the choice of control sample (See Table S6).

Furthermore, assessment of imputation accuracy with the SNPs in

these control sets indicates that imputed genotypes at the

associated SNPs are likely to be highly accurate (see Tables S7,

S8).

The variants with the lowest p-values of association with CT

hepatic steatosis at the PNPLA3(rs738408), NCAN (rs2228603), and

GCKR (rs780094) loci are in high LD with or are themselves non-

synonymous variants in PNPLA3 (rs738409; I148M, R2 = 1),

NCAN (rs2228603; P91S, same as hepatic steatosis SNP), and

GCKR (rs1260326; P446L; R2 = 0.93) (Figure 3). The variants with

Figure 1. Study design. Meta-analysis of genome-wide association data was performed in Stage 1 across the cohorts shown. SNPs representing the
best associating loci were genotyped in histology based NAFLD samples (Stage 2) from the NASH CRN matched to genome wide genotyped and
imputed MIGen controls. The effects of the five NAFLD associated SNPs on NASH CRN/iCONT, metabolic phenotypes and eQTLs in liver and adipose
tissue were then performed (Stage 3).
doi:10.1371/journal.pgen.1001324.g001

Author Summary

NAFLD is a spectrum of disease that ranges from steatosis to
steatohepatitis (nonalcoholic steatohepatitis or NASH:
inflammation around the fat) to fibrosis/cirrhosis. Hepatic
steatosis can be measured non-invasively using computed
tomography (CT) whereas NASH/fibrosis is assessed histo-
logically. The genetic underpinnings of NAFLD remain to be
determined. Here we estimate that 26%–27% of the
variation in CT measured hepatic steatosis is heritable or
genetic. We identify three variants near PNPLAL3, NCAN, and
PPP1R3B that associate with CT hepatic steatosis and show
that variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3,
but not PPP1R3B, associate with histologic lobular inflam-
mation/fibrosis. Variants in or near NCAN, GCKR, and
PPP1R3B associate with altered serum lipid levels, whereas
those in or near LYPLAL1 and PNPLA3 do not. Variants near
GCKR and PPP1R3B also affect glycemic traits. Thus, we show
that NAFLD is genetically influenced and expand the
number of common genetic variants that associate with
this trait. Our findings suggest that development of hepatic
steatosis, NASH/fibrosis, or abnormalities in metabolic traits
are probably influenced by different metabolic pathways
that may represent distinct therapeutic targets.

Five GWAS Loci Associate with NAFLD
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the lowest p-values of association with CT hepatic steatosis at

LYPLAL1 and PPP1R3B lie downstream and upstream of the

coding regions of these genes (Figure 3).

In epidemiologic studies NAFLD is associated with increased

central obesity, higher low density lipoprotein (LDL)- cholesterol

and lower high density lipoprotein (HDL)-cholesterol levels,

impaired fasting glucose, increased risk of diabetes and increased

insulin resistance. [24]In addition, variants in or near GCKR,

NCAN, and PPP1R3B have been previously associated with lipid

levels, GCKR with glycemic traits and LYPLAL1 with abdominal

obesity [16,25–29]. Therefore, we examined the associations of

each of the CT hepatic steatosis-associated variants with serum

LDL-cholesterol, HDL-cholesterol, triglycerides (TG), 2 hour

glucose levels, 2 hour glucose levels controlled for body mass

index (BMI), fasting glucose, homeostatic model for beta call

function (HOMA-B), homeostatic model for insulin resistance

(HOMA-IR), fasting insulin, BMI, waist to hip ratio (WHR)

controlled for BMI, and diabetes in the largest analyses of these

traits available from the Global Lipids Genetics [13], GIANT

[14], DIAGRAM [15], and MAGIC [16] Consortia (see Table 2,

Table S9) Interestingly, we observed several distinct patterns of

association. The allele associated with increasing CT hepatic

steatosis at NCAN was associated with lower triglycerides and

plasma LDL-cholesterol levels. By contrast, the hepatic steatosis-

increasing allele at GCKR was associated with higher levels of

plasma LDL-cholesterol and triglycerides, lower fasting glucose,

lower fasting insulin, lower HOMA-IR, but increased 2 hour

glucose, increased 2 hour glucose controlled for BMI, and WHR

controlled for BMI. The hepatic steatosis increasing allele at

PPP1R3B was associated with increased HDL- and LDL-

cholesterol levels and decreased fasting glucose.(Table 2,

Figure 4). The variants near PNPLA3 and LYPLAL1 were not

associated with any of the traits tested (See Table 2, Table S9 and

Figure 4).

For PNPLA3 (rs738408), NCAN (rs2228603), and GCKR

(rs780094) the variants with the lowest p-values of association

with CT hepatic steatosis are either themselves missense SNPs or

in high LD with missense SNPs. Thus, the most parsimonious

model of how they may act is by directly affecting protein structure

or function. However, the variants with the lowest p-values of

association with CT hepatic steatosis near LYPLAL1 and PPP1R3B

fall in non-coding regions and thus for these (as well as the other

three loci above) we tested whether they have effects on the

expression of nearby genes in liver and adipose tissue from a

sample of bariatric surgery patients [17] (See Table S10). We

found that that the hepatic steatosis increasing variant (rs4240624)

at the PPP1R3B locus increased liver mRNA expression of

PPP1R3B and AW673036_RC and decreased expression of

AK055863. The hepatic steatosis increasing variant (rs780094)

at the GCKR locus increased expression of C2orf16 mRNA in liver.

In these cases the eQTL with the lowest p-value of affecting these

transcripts in the region was the same or highly correlated with the

allele that had the lowest p-value of association with CT hepatic

steatosis consistent with the possibility that these SNPs may

function by affecting expression of nearby genes. For all other

cases, the eQTL with the lowest p-value of affecting transcript

expression at the locus was not eliminated by controlling for the

variant that had the lowest p- value of association with CT hepatic

steatosis and thus in these cases, the data do not support an

expression effect as mediating the association with steatosis.

Because alteration of PPP1R3B expression has been shown to

affect serum lipid levels [13] one possibility is that changes in

expression of this gene could mediate its effect on hepatic steatosis.

For GCKR, the variant with the lowest p-value of association with

CT hepatic steatosis is in high LD with a missense variant in

GCKR which has been shown to affect GCKR function [30].

Thus, at GCKR an alternate model of action of how the CT

hepatic steatosis associated variant affects hepatic steatosis is via

altering GCKR function rather than via altering expression of

C2orf16. Further functional work will be needed to prove that these

variants exert their effects on hepatic steatosis via these possible

mechanisms.

Discussion

We have identified variants in three novel loci (NCAN, GCKR,

and LYPLAL1) and one previously reported locus (PNPLA3) that

are associated with both increasing CT hepatic steatosis and

histologic NAFLD. PPP1R3B is associated with CT steatosis but

not histologic NAFLD that includes individuals mostly with

inflammation and fibrosis. These variants all have distinct patterns

of effects on NAFLD and metabolic traits.

We have shown that CT hepatic steatosis is heritable and that

GWA meta-analysis led to the identification of variants associated

not only with CT hepatic steatosis but, also, with more severe

NASH/fibrosis mostly present in the NASH CRN sample.

Because CT hepatic steatosis measurements can be obtained

noninvasively, much larger sample sizes can be accumulated,

thereby increasing power to identify variants that associate with

NAFLD compared with only studying individuals that have

histology diagnosed disease. Follow-up association testing in

samples with histologic phenotypes remains useful however. We

did observe one variant near PPP1R3B that was associated with

CT–assessed liver attenuation but not histology-proven NAFLD.

Possible reasons for why the variant near PPP1R3B is associated

with CT liver steatosis but not histology-proven NAFLD include 1.

It influences steatosis only, not progression to NASH/fibrosis: 2. its

association with CT fat may be a false positive: 3. the NASH

CRN/MIGen sample is underpowered to see an effect on

histologic NAFLD: or 4. the variant is associated with something

other than fat reflected in the CT scan (eg. glycogen content).

Further work is needed to differentiate among these possibilities.

Table 1. Characterization of family data for heritability estimation.

Study N N families Design Age range (years) Heritability SE

Amish 880 1 founder population participants link to a
single, 14-generation pedigree

29–94 0.27 0.08

Family Heart Study 2679 508 3-generational pedigrees 32–83 0.27 0.04

Framingham Heart Study 3070 721 2-generational pedigrees 31–83 0.26 0.04

N: total number of individuals with fatty liver phenotype; SE: Standard error; For all studies, SOLAR software was used to estimate heritability [47].
doi:10.1371/journal.pgen.1001324.t001

Five GWAS Loci Associate with NAFLD
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We show that some of the variants that are associated with

increased CT hepatic steatosis have distinct patterns of effects on

metabolic traits that, when taken together, give us insight into their

functional clustering. For example, unlike the other three loci,

variants in or near PNPLA3 and LYPLAL1 do not affect any of the

other metabolic traits and interestingly PNPLA3 and LYPLAL1-

related proteins have been predicted to play a role in consecutive

steps in triglyceride breakdown [31,32]. Thus these could increase

hepatic steatosis by preventing breakdown of triglycerides, as

recently shown for PNPLA3(I148M) [33]. The apparent discor-

dance between the strong effect on hepatic steatosis and modest, if

any, effect on serum lipid levels suggests that these genes, if they

are involved in lipid metabolism, exert their effects within the liver

in ways that are not well reflected in serum measurements. Thus,

similarities in the pattern of pleiotropic effects on other traits may

provide insights into the functional clustering of the genes that

these variants effect.

Unlike PNPLA3 and LYPLAL1, variants near NCAN(which

encodes for an adhesion molecule [34]), PPP1R3B (which encodes

for a protein that regulates glycogen breakdown [35]), and GCKR

(which, through inhibition of glucokinase, regulates glucose

storage/disposal and provides substrates for de novo lipogenesis

[30]), are associated with distinct changes in serum and liver lipids

as well as glycemic traits. Indeed, these data may provide new

insights into how obesity can lead to metabolic complications in

some but not all individuals- some but not all of these individuals

carry variants that predispose them both to liver fat deposition and

to metabolic dysregulation. Further, our data show that the alleles

of SNPs that associate with increased liver steatosis are also

associated with a diverse pattern of metabolic phenotypes

including different combinations of increased or decreased serum

LDL-cholesterol, increased serum HDL-cholesterol, increased

serum TG, decreased serum fasting glucose and insulin, decreased

insulin resistance, and increased WHR adjusted for BMI. In

addition, some hepatic steatosis-associated variants are not

strongly associated with any of these metabolic traits (PNPLA3

and LYPLAL1). These results indicate that hepatic steatosis is likely

to be influenced by different metabolic pathways, based on these

various patterns of association. Thus it may be possible to resolve

genetic heterogeneity in the etiology of hepatic steatosis, which

may present unique opportunities for personalized therapies.

Compared with earlier efforts, this study is well-powered, using

more than 7,176 individuals for discovery of variants that affect

NAFLD. Thus, noninvasive measures of hepatic steatosis such as

Figure 2. Genome-wide association results for GOLD (Stage 1). A. Manhattan plot showing the significance of association of all SNPs in the
Stage 1 GOLD meta-analysis with CT hepatic steatosis. SNPs are plotted on the x-axis according to their position on each chromosome against
association with CT hepatic steatosis on the y-axis (shown as -log10 p-value). SNPs that also associate with histology based NAFLD are in red, those
that only associate with CT hepatic steatosis in blue. B. Quantile-quantile plot of SNPs after Stage 1 GOLD meta-analysis (black) and after removing
any SNPs within 500 kb of PNPLA3, PPP1R3B, and NCAN (red).
doi:10.1371/journal.pgen.1001324.g002
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CT scanning can provide valuable information for use in

population- and family-based studies aimed at identifying genetic

risk factors for NAFLD. Although the identities of nearby genes

and effects on lipid levels provide important clues, functional

studies will be needed to further understand the mechanisms by

which these risk factors influence the development and progression

of NAFLD. Overall however, our work gives us new insights into

the biology and genetics of NAFLD and opens up avenues for

biological, diagnostic, and therapeutic research for this condition

in humans.

Materials and Methods

Ethics statement
All work done in this paper was approved by local institutional

review boards or equivalent committees.

GOLD studies and genetic analyses
Each of the participating studies had the overarching objective

of investigating cardiovascular disease and its risk factors. The

studies are population based and 3 of the 4 are family studies.

Genome-wide SNP data were available in each case, and the

platforms and quality control measures are described in Tables S2

and S3.

Age Gene-Environment Susceptibility—Reykjavik Study

(AGES-Reykjavik). The AGES-Reykjavik Study is a single

center prospective population-based cohort nested in the original

Rykjavik Study, a cohort of 30,795 randomly sampled persons

living in Reykjavik, Iceland. The cohort included 19,381 men and

women born between 1907 and 1935. Re-examination of a sample

of surviving members of the Reykjavik Study was initiated in 2002

as the AGES-Reykjavik Study. This study included imaging by

computerized tomography, from which liver attenuation was

measured from a 1mm thick slice at the level of the L1/L2

vertebrae by calculating the average Hounsfield Unit in a region of

interest with a diameter of 1 cm located 10% of the distance from

where a tangent from the mid-anterior of the spinal canal bisected

a line between the second and third rib. Four thousand seven

hundred and seventy two individuals were assessed for hepatic

steatosis using CT scanning. Liver attenuation controlled for an

external phantom was inverse normally transformed and residuals

created from a linear regression model in Proable [36]/R with

covariates of age, age2, gender and drinks along with the SNPs in

an additive genetic model (See Tables S2, S3).

Figure 4. Effects on traits. Direction of effect on CT fatty liver, histology NAFLD, lipid and glycemic traits of the best associating SNPs at the loci
shown. Direction is shown only for significant associations. CT: CT hepatic steatosis; LDL: low density lipoprotein cholesterol; HDL: high density
lipoprotein cholesterol; TG: triglycerides; HOMA-IR: homeostatic model of insulin resistance; PNPLA3: patatin-like phospholipase domain-containing
protein 3 (HGNC: 18590); NCAN: neurocan (HGNC: 2465); LYPLAL1: lysophospholipase-like 1 (HGNC: 20440); GCKR: glucokinase regulatory protein
(HGNC: 4196); PPP1R3B: protein phosphatase 1, regulatory subunit 3b (HGNC: 14942).
doi:10.1371/journal.pgen.1001324.g004

Figure 3. Regional plots of genome-wide significant or replicating loci of association in GOLD. SNPs are plotted by position on
chromosome against association with CT hepatic steatosis (–log10 p-value). The figures highlight the SNP taken into Stage 2 (diamond). The SNPs
surrounding the most significant SNP are color-coded to reflect their LD with this SNP as in the inset (taken from pairwise R2 values from the HapMap
CEU database, www.hapmap.org). Estimated recombination rates (from HapMap) are plotted in cyan to reflect the local LD structure. Genes and the
direction of transcription, are noted below the plots (data from UCSC genome browser, genome.ucsc.edu). Coding SNPs in high LD with the best SNP
are noted with rs number and protein change.
doi:10.1371/journal.pgen.1001324.g003
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The Amish. Subjects were identified from 2 studies of

cardiovascular health in the Old Order Amish community in

Lancaster County: the Amish Family Calcification Study (2001–

2006) [37] and the Amish Longevity Study (2000–2006) [38]. In

total, 541 individuals had both genome-wide SNP data and CT-

assessed hepatic steatosis. Thoracic electron-beam computerized

tomography (EBCT) scans were obtained as part of the Amish

Family Calcification Study by an Imatron C-150 EBCT scanner.

Measurements from two regions-of-interest, the liver and spleen,

were obtained. The spleen measurements were used as an

attenuation standard. Accu View (Accuimage Corp.) software

was used to calculate the attenuation coefficient in Hounsfield

Units for each region-of-interest. Two 1.0-cm2 region-of-interest

measurements were obtained from the liver and one was

obtained from the spleen. The average of the liver attenuation

measurements divided by the spleen attenuation measurement was

then calculated. The region-of-interest measurements were placed

in such a manner that minimized measurements from vessels, focal

lesions, areas of artifact or near the edges of the organs.

The liver attenuation/spleen attenuation ratio was inverse

normally transformed and association was tested with genotypes in

an additive genetic model controlling for age, age2, and gender

and relatedness; alcohol is generally not consumed in this

population. A (n-1)-degree-of-freedom t test was used to assess

the significance of the measured genotype. The polygenic

component was modeled using the relationship matrix derived

from the complete 14-generation pedigree structure, to properly

control for the relatedness of all subjects in the study.

The Family Heart Study. The Family Heart Study (https://

dsgweb.wustl.edu/PROJECTS/MP1.html) recruited 1,200 families,

half randomly sampled, and half selected because of an excess of

coronary heart disease (CHD) or risk factor abnormalities as

compared with age- and sex-specific population rates [39] from

four population-based parent studies: the Framingham Heart Study,

the Utah Family Tree Study, and two Atherosclerosis Risk in

Communities centers (Minneapolis, and Forsyth County, NC). Study

participants belonging to the largest pedigrees were invited for a

second clinical exam, at which time coronary artery calcification was

assessed using computed tomography, which included imaging of the

liver. A total of 2,767 Caucasian subjects in 508 extended families

were examined; the heritability was estimated in this sample . A two-

stage design was adopted for the GWAS. In the first stage, 1,016

subjects were chosen, equally distributed between the highest and

lowest quartiles of age- and sex-adjusted values for coronary artery

calcification, assessed by CT scan. These subjects were chosen to be

largely unrelated with 200 subjects having 1 or more siblings selected

into the sample. We report association results based on 886 subjects

after excluding 130 subjects ascertained from the Framingham

Massachusetts to avoid any possible overlap with the Framingham

Heart Study participants.

Participants underwent a cardiac multidetector CT exam with

four detectors using a standardized protocol as described

previously [40]. For participants weighing 100 kg (220 lbs) or

greater, the milliamperes were increased by 25%. Participants

received two sequential scans of the heart with ECG gating in late

diastole. A phantom with either 3 or 4 samples of calcium

hydroxylapatite was included in each participants scan. CT images

from all study centers were sent electronically to the central CT

reading center located at Wake Forest University Health Sciences,

Winston Salem, NC, USA.

CT images were analyzed using Medical Image Processing,

Analysis, and Visualization (MIPAV) software (McAuliffe 2009)

with custom programmed subroutines (a.k.a.‘‘plug-ins’’) coded at

Wake Forest University Health Sciences. CT images of the chest

were used to measure liver attenuation corresponding to superior

aspects of the right and medial lobes or hepatic segments 4a, 7 and

8 using the Couinaud system. An external calcium standard was

used as a control for penetrance of the films.

The liver attenuation was regressed on age, age2, age3, field

center, phantom average, alcohol consumption and 10 genetic

principal components, by sex, using a stepwise procedure and

retaining terms significant at the 5% level. We then applied an

inverse normal rank transformation to the adjusted phenotype

within sex strata and association was assessed assuming an additive

model using PROC MIXED in SAS to account for the siblings.

The Framingham Heart Study. The Framingham Heart

Study recruited 5,209 residents in 1948 from the population in

Framingham, Massachusetts [41]. These individuals have had

serial examinations and collection of respective data since. In

1971, 5,124 offspring from the original residents and their spouses

were recruited into the Offspring Study and have been followed

for four to eight years since [42]. In 2002, 4,095 third generation

members and their spouses were enrolled [43].

Between 2002 and 2005, 1,400 individuals from the Offspring

Study and 2,011 individuals from third generation underwent

multidectector computed tomograms on which we evaluated liver

attenuation as previously described [44]. Inclusion criteria

favored individuals who lived in the New England area and

included 755 families. Minimum age was 35 in men and 40 in

women. Women of childbearing age were screened and pregnant

women and individuals .160 kilograms were excluded from

scanning. Individuals with scans that could not be interpreted for

hepatic steatosis or did not attend offspring examination 7 as they

lacked covariate data were not used for analysis. The average of

the liver attenuation measures and a high density external

calcium control were used to create a liver/phantom ratio to

control for scan penetrance.

For GWAS analysis, inverse normally transformed liver

attenuation/phantom ratio was used in a mixed linear model

(controlling for relatedness) in R [45]with covariates of age, age

squared, gender, and alcoholic drinks (4 oz = 1 drink) with the first

ten principal components (as determined in Eigenstrat [46]) as

covariates. Principal components were first generated using an

unrelated sample of 718 and then projected to the rest of the

cohort. Individuals who deviated from the mean of the principal

components of more than six standard deviations were removed

prior to analysis (n = 1).

Heritability analyses. Three of the four studies parti-

cipating in this consortium were family studies and the family

structure characteristics used for heritability are shown in Table 1.

Liver attenuation adjusted for scan penetrance and then inverse

normally transformed and corrected for age gender and number of

alcoholic drinks (drinks in FamHS, and FRAM only as the Amish

do not drink) was estimated in each of the studies and then

heritability assessed using a variance components method as

implemented in the software SOLAR [47]. Despite the diverse

character of these family studies, there was remarkable consistency

in the estimates of the proportion of variance due to genetic effects,

and the magnitude of the heritabilities is comparable to many

complex quantitative traits and suggests that a search for

underlying genetic variants is warranted.

Meta-analysis and GWAS. Association data from the four

studies above were filtered for SNPs that had a minor allele

frequency .1% and for SNPs that had an imputation quality

score of .0.3. All files were GC corrected after filtering and before

meta-analysis. The inflation factor for the AGES study was 1.01,

for the Amish was 1.05, for the Family Heart Study was 1.03, for

the Framingham Heart Study was 1.02. Meta-analysis was
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conducted using a fixed effects model with a beta and standard

error as implemented in METAL (http://www.sph.umich.edu/

csg/abecasis/metal/). After meta-analysis, SNPs present in fewer

than 3 studies were eliminated from analysis. The inflation factor

for the overall meta-analysis was 1.03. The meta-analysis was GC

corrected before the final p values were reported. The variation in

CT hepatic steatosis explained by the tested SNPs was estimated

from stage 2 analyses using 2f (1 – f) a2, where f is the frequency of

the variant and a is its additive effect in units of standard

deviations from the meta analysis [48].

Selection of SNPs for validation/replication with
histologic NAFLD

To define independently associated SNPs, the LD was required

to be R2,0.10 and the SNPs located at least 1 megabase from

each other. From among these, the SNP with the strongest

association was chosen for follow up (P,0.0001). Two iPlex pools

consisting of 46 SNPs were designed and were successfully

genotyped in the NASH CRN samples. Of these, only 45 were

imputed well in MIGen, and only these SNPs were analyzed.

Variants with a false discovery rate of q ,0.05 were considered

associated with NAFLD.

NASH CRN samples
Study: The NASH CRN samples were collected from eight

different centers in the U.S. as previously described [2,49]. Adults

from both the Database and the PIVENS trial (Pioglitazone versus

Vitamin E versus Placebo for the Treatment of Nondiabetic Patients

with Nonalcoholic Steatohepatitis) were used for analysis. Briefly,

individuals from the Database were part of an observational study of

nonalcoholic fatty liver disease. Inclusion criteria included age .18,

histologic diagnosis for NAFLD, or histologic diagnosis for

cryptogenic cirrhosis or suspected NAFLD on the basis imaging

studies suggestive of NAFLD, or clinical evidence of cryptogenic

cirrhosis. No subjects reported regular excessive use of alcohol within

two years prior to the initial screening period. Exclusion criteria

included histologic evidence of liver disease besides nonalcoholic

liver disease, known HIV positivity, and conditions that would

interfere with study follow up. Individuals in the PIVENS database

were part of a multicenter placebo controlled study with three

parallel groups examining the effects of pioglitazone vs. vitamin E vs.

placebo on NAFLD. Inclusion and exclusion criteria were as

described previously [2,49]. For this analysis, we excluded

individuals who did not describe their race as being white and

non-Hispanic. There were 678 adults who matched these criteria.

Finally, individuals without histology available for central review

were excluded, leaving 592 adults for the current study.

Histology determination in NASH CRN
Histologic diagnoses were determined in the NASH CRN by

central review by NASH CRN hepatopathologists using previously

published criteria [2,49]. Predominantly macrovesicular steatosis

was scored from grade 0–3. Inflammation was graded from 0–3

and cytologic ballooning from 0–2. The fibrosis stage was assessed

from a Masson trichrome stain and classified from 0–4 according

to the NASH CRN criteria. Individuals could contribute to more

than one of these outcomes. The NASH CRN samples were

genotyped and analyzed as described in Tables S2 and S3.

Analysis in NASH CRN/MIGen samples
MIGen controls were matched to the NASH CRN samples for

genetic background. As previously described, the MIGen samples

were collected from various centers in the US and Europe by the

Myocardial Infarction Genetics Consortium (MIGen) [22] as

controls for individuals with early onset MI. The genetic ancestry

the MIGen samples was explored by using the program Eigenstrat

[46]; the first principal component was the most significant and

correlated with the commonly observed Northwest- Southeast axis

within Europe [20] and genetic ancestry along this principal

component is correlated with reported country of origin in the

MIGen sample [22]. From this analysis, 120 unlinked SNPs were

chosen from the MIGen genotype data that were most strongly

correlated with the first principal component. These SNPs were

genotyped in the NASH CRN samples to enable matching of

MIGen controls to the NASH CRN [20] cases for genetic

background. PLINK [50] was used to match individuals based on

identity by state (IBS) distance using a pairwise population

concordance test statistic of .161023 for matching. The SNPs

selected for validation were tested in this case-control sample using

logistic regression controlling for age, age2, gender, and the first 5

principal components as covariates in PLINK [50]. We report the

p-values, odds ratios and confidence intervals.

iCONT samples
We obtained 3,294 population based control samples with

genotypes from Illumina (see http://www.illumina.com/science/

icontroldb.ilmn). These individuals were used as controls in

various case control analyses. Individuals were removed as

described in Table S4 and 3,212 individuals were then used as

controls for the NASH CRN/iCONT analyses.

Analysis in NASH CRN/iCONT samples
The 592 individuals from the NASH CRN described above

were used as cases and 3,212 individuals from the iCONT

database were used as controls. Genome wide significant or

replicating SNPs were tested in this case-control sample using

logistic regression controlling for gender in PLINK [50]. We

report the p-values, odds ratios and confidence intervals.

Concordance analysis of imputed SNPs in MIGen and
iCONT with the HapMap3 TSI sample

To assess the concordance of imputed SNPs in the MIGen and

iCONT samples we obtained the genotyped SNPs from the

HapMap3 TSI (Tuscans from Italy) sample. Using only the SNPs

present on the Affymetrix 6.0 platform (used to genotype MIGen)

or only the SNPs present on the Illumina platform (used to

genotype iCONT samples) and the LD information from

HapMap2 we imputed the remainder of the SNPs using

MACH(1.0.16) and compared the imputed calls to the actual

genotypes stratified by imputation quality score (R2 hat).

Evaluation of effects on other metabolic traits
To obtain data on whether CT hepatic steatosis SNPs affect

other metabolic traits we obtained data from four consortia that

had the largest and most powered analyses of these traits.

Association results for HDL-, LDL- cholesterol levels and

triglycerides (TG) were obtained from publicly available data of

the GLOBAL Lipids Genetics Consortium (http://www.sph.

umich.edu/csg/abecasis/public/Teslovich et al. 2010) [13].

Association results for fasting insulin, glucose, 2 hr-glucose,

HOMA-IR and HOMA-B were obtained from the MAGIC

Investigators. Association results for risk of type 2 diabetes were

obtained from the DIAGRAM consortium [15].

Association results for risk of BMI and waist to hip ratio

controlled for BMI were obtained from the GIANT consortium

[14]. We used a conservative nominal p,0.0008 corresponding to
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a bonferroni correction of 12 phenotypes tested for 5 SNPs to

determine significance.

Expression QTL analyses
The expression QTL analyses in liver, subcutaneous and

omental fat tissue have been described in detail previously [17].

Tissue were obtained from patients who underwent bariatric

surgery, and RNA expression assessed using a custom Agilent

44,000 feature microarray composed of 39,280 oligonucleotide

probes targeting transcripts representing 34,266 known and

predicted genes. Patients were also genotyped on the Illumina

650Y SNP genotyping arrays. SNPs were tested for cis-associations

with transcripts within a 1 Mb region, assuming an additive effect

of the CT hepatic steatosis increasing allele adjusting for age, race,

gender, and surgery year using linear regression. Cis-associations

between each SNP and the adjusted gene expression data were

tested, and only associations with a nominal p-value ,3.561025

corresponding to a bonferroni correction for 284 gene transcripts x

5 SNPs tested are shown in Table S10. Conditional analyses were

performed by conditioning the CT hepatic steatosis associated

SNP on the most significant cis-associated SNP for that particular

gene transcript and vice versa.

Supporting Information

Table S1 Study sample characteristics. (*) Drinking alcohol is

not practiced in Amish culture and not measured this study.

GOLD: Genetics of Obesity-related Liver Disease; NASH CRN:

Nonalcoholic Steatohepatitis Clinical Research Network; MIGen:

Myocardial Infarction Genetics Consortium; iCONT: Illumina

Control Database; SD: standard deviation; P25, P75: 25th and

75th percentiles; Phantom LD or HD- low or high density external

hydroxyapetite CT control; Median raw liver measures in

Hounsfield units; steatosis .5% more than 5% steatosis on

histology; NASH: having histologic criteria for diagnosis of

nonalcoholic steatohepatitis (NASH); Fibrosis: having histologic

criteria for diagnosis of fibrosis.

Found at: doi:10.1371/journal.pgen.1001324.s001 (0.05 MB

DOC)

Table S2 Genotyping and association information. Imp’n:

Imputation; MAF: minor allele frequency; HWE: Hardy Wein-

berg Equilibrium; GOLD: Genetics of Obesity-related Liver

Disease; NASH CRN: Nonalcoholic Steatohepatitis Clinical

Research Network; MIGen: Myocardial Infarction Genetics

Consortium; iCONT: Illumina Control database.

Found at: doi:10.1371/journal.pgen.1001324.s002 (0.05 MB

DOC)

Table S3 Quality control. * Sample genotyping success rate; i.e.

percentage of successfully genotyped SNPs per sample. GOLD:

Genetics of Obesity-related Liver Disease; NASH CRN: Nonal-

coholic Steatohepatitis Clinical Research Network; MIGen:

Myocardial Infarction Genetics Consortium; iCONT: Illumina

Control database; IBD pi hat: value for identical by descent of

.0.15.

Found at: doi:10.1371/journal.pgen.1001324.s003 (0.05 MB

DOC)

Table S4 Top genotyped hits from GOLD, AGES, AMISH,

Family Heart Study, Framingham Heart Study. GOLD: Genetics

of Obesity-related Liver Disease; Chr.: Chromosome; Pos.:

position, build 35; EA: effect allele; OA: other allele; EAF:

Frequency of the effect allele in the analyses (weighted average in

GOLD); Effect: increase in inverse normalized fatty liver by

computed tomography SE: Standard Error; P: p-value of

association in the analyses; % Var: % variance explained; P het:

p-value for heterogeneity across studies; N: number of individuals

in the analyses.

Found at: doi:10.1371/journal.pgen.1001324.s004 (0.41 MB

DOC)

Table S5 Top genotyped hits in NASH CRN/MIGen analysis.

NASH CRN: Nonalcoholic Steatohepatitis Clinical Research

Network; MIGen: Myocardial Infarction Genetics Consortium;

Chr. Chromosome; Pos.: position, build 35; EA: effect allele;

OA:other allele; EAFa: Frequency of the effect allele in cases from

the NASH CRN study; EAFb :Frequency of the effect allele in

controls from the MIGen study; Impb: Imputation quality score in

MIGen; NAFLD: nonalcoholic fatty liver disease; OR NAFLD:

odds ratio for the presence of NAFLD on pathology per effect

allele; P NAFLD: False discovery rate p-value of association for

histologic NAFLD.

Found at: doi:10.1371/journal.pgen.1001324.s005 (0.10 MB

DOC)

Table S6 Genome-wide significant or replicating variants in

NASH CRN/iCONT analysis. NASH CRN: Nonalcoholic

Steatohepatitis Clinical Research Network; iCONT: Illumina

Control database; EA: effect allele; OA:other allele; EAFa:

Frequency of the effect allele in cases from the NASH-CRN

study; EAFb :Frequency of the effect allele in controls from

iCONT; Impb: Imputation quality score in iCONT; NAFLD:

nonalcoholic fatty liver disease; OR NAFLD: odds ratio for the

presence of NAFLD on pathology per effect allele; P NAFLD:

False discovery rate p-value of association for histologic NAFLD.

Found at: doi:10.1371/journal.pgen.1001324.s006 (0.03 MB

DOC)

Table S7 Imputation R2 hat measures versus concordance to

real genotypes in TSI individuals from HapMap 3. TSI: Toscans

in Italy; R2 hat: Imputation quality score from MACH; N SNPs:

number of SNPs used for concordance analysis; concordance:

average concordance amongst the SNPs assayed.

Found at: doi:10.1371/journal.pgen.1001324.s007 (0.01 MB

DOCX)

Table S8 Imputation R2 hat measures in MIGen and iCONT

versus concordance to real genotypes in TSI individuals from

HapMap 3. Impa: imputation quality score in MIGen; Con-

cordancea: average concordance of SNPs in TSI given imputation

quality score in MIGen; Impb: imputation quality score in

iCONT; Concordanceb: average concordance of SNPs in TSI

given imputation quality score in iCONT.

Found at: doi:10.1371/journal.pgen.1001324.s008 (0.01 MB

DOCX)

Table S9 Effect of genome-wide significant or replicating

variants on glucose, anthropometric and lipid traits. Association

results for high density lipoprotein (HDL)-, low density lipoprotein

(LDL)- Cholesterol levels and triglycerides (TG) were obtained

from publicly available data of the GLOBAL Lipids Genetics

Consortium (http://www.sph.umich.edu/csg/abecasis/public/

Teslovich et al. 2010) Association results for fasting Insulin and

glucose, 2hr-glucose, HOMA-IR and HOMA-B were obtained

from the MAGIC Consortium (Dupuis et al. Nature Genetics

2010). Association results for risk of type 2 diabetes were obtained

from the DIAGRAM consortium (Voight et al. Nature Genetics

2010). Association results for risk of BMI and waist to hip ratio

controlled for BMI were obtained from the GIANT consortium

(Speliotes et al. Nature Genetics 2010). BMI: body mass index;

HOMA-IR: homeostasis model assessment insulin resistance;

HOMA-B: homeostasis model assessment beta cell function; EA:
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effect allele; OA: other allele; Effect: The change in the trait per

effect allele from the various studies; SE: standard error in the

effect from the various studies; P: p-value of association from the

various studies; N: number of individuals in the analyses; OR:

odds ratio for the effect allele on diabetes; U95% and L95%-

upper and lower 95% confidence levels for the OR.

Found at: doi:10.1371/journal.pgen.1001324.s009 (0.08 MB

DOC)

Table S10 Significant associations between genome-wide signif-

icant or replicating SNPs and cis gene expression (cis -eQTLs) in

liver, omental fat and subcutaneous fat. SNP: the fatty liver

associating SNP from GWAS analysis. EA: effect allele (fatty liver

increasing allele from GWAS). Effecta: Direction of effect on the

gene transcript expression level for the effect allele. P: p-value of

association of the fatty liver SNP with change in gene expression.

Padjb :p-value for the fatty liver SNP after conditioning on the

most significant SNP for change in gene transcript. Peak SNPc:

SNP in the region that has the most significant eQTL p-value on

expression of the gene transcript Rsqd: the R squared correlation

between the fatty liver SNP and the peak SNP. Padje: p-value for

the peak SNP after conditioning on the fatty liver SNP for change

in gene transcript. NA: peak SNP is the same as the fatty liver

associating SNP.

Found at: doi:10.1371/journal.pgen.1001324.s010 (0.04 MB

DOC)
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