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Abstract

Background: A variety of obstacles including bureaucracy and lack of resources have interfered with timely detection and
reporting of dengue cases in many endemic countries. Surveillance efforts have turned to modern data sources, such as
Internet search queries, which have been shown to be effective for monitoring influenza-like illnesses. However, few have
evaluated the utility of web search query data for other diseases, especially those of high morbidity and mortality or where a
vaccine may not exist. In this study, we aimed to assess whether web search queries are a viable data source for the early
detection and monitoring of dengue epidemics.

Methodology/Principal Findings: Bolivia, Brazil, India, Indonesia and Singapore were chosen for analysis based on available
data and adequate search volume. For each country, a univariate linear model was then built by fitting a time series of the
fraction of Google search query volume for specific dengue-related queries from that country against a time series of official
dengue case counts for a time-frame within 2003–2010. The specific combination of queries used was chosen to maximize
model fit. Spurious spikes in the data were also removed prior to model fitting. The final models, fit using a training subset
of the data, were cross-validated against both the overall dataset and a holdout subset of the data. All models were found
to fit the data quite well, with validation correlations ranging from 0.82 to 0.99.

Conclusions/Significance: Web search query data were found to be capable of tracking dengue activity in Bolivia, Brazil,
India, Indonesia and Singapore. Whereas traditional dengue data from official sources are often not available until after
some substantial delay, web search query data are available in near real-time. These data represent valuable complement to
assist with traditional dengue surveillance.
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Introduction

With an estimated 500 million people infected each year [1],

dengue ranks as one of the most significant mosquito-borne viral

human diseases, and one of the most rapidly emerging vector-

borne diseases [2,3]. Considered to be endemic in over 100

countries, mostly in South-East Asia, the Americas and Western

Pacific islands [3], recent estimates according to the Pediatric

Dengue Vaccine Initiative put the population at risk, at 3.6 billion,

or 55% of the world population.

Most national surveillance systems for dengue in endemic

countries currently depend on passive or sentinel site surveillance

of hospitalizations with some countries also monitoring outpatient

clinics. However, weaknesses in these systems including non-

streamlined bureaucratic structuring, politics and lack of funding

for skilled personnel and equipment at local level laboratories have

been cited as interfering with timely reporting and confirmation of

cases [1,4].

Alternative approaches to surveillance have turned to data

outside of the virological or clinical domains with the hope of

capturing health-seeking behavior at the earlier stages of disease

progression, as well as capturing the population of the ill who do not

seek medical care formally. Examples of these data include

telephone triage calls [5], sales of over-the-counter drugs [6],

school/work absenteeism [7], and online activity [8–12]. These

data could complement traditional surveillance by potentially

facilitating earlier detection, though results with respect to

correlation and timeliness have been variable [13]. Even if the

signals in one data source are no earlier than in another, there is

benefit in using data that provide access to information on a more

real-time or near real-time basis. The value of "predicting the

present" for situations where data for the present may theoretically

be available but not be accessible until the future is discussed in [14].

These novel approaches have so far for the most part been

narrowly focused and validated on influenza-like and gastrointes-

tinal illness. One example of such an effort is Google Flu Trends
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(http://www.google.org/flutrends/). The system mines Google

search query data to estimate influenza activity in near real-time,

developed by matching trends in queries for flu-related search

terms to seasonal trends in the Centers for Disease Control and

Prevention’s (CDC) data for sentinel physician visits for influenza-

like illnesses in the United States [9]. While the system has been

successfully expanded to other nations to provide a near global

picture of influenza activity, there is clearly value in applying these

efforts to other pathogens where morbidity and mortality are more

significant, where clinical outcomes are more severe or where a

vaccine may not exist. Though one study has provided evidence

for this broader potential application [15], in general few have

evaluated the utility of web behavior data for other diseases and in

non-English speaking countries.

In this paper, we describe the extension of the Google Flu

Trends methodology to dengue surveillance. We provide initial

results for Bolivia, Brazil, India, Indonesia, and Singapore and

assess whether web search query data is a viable data source for

the early detection and monitoring of dengue epidemics.

Methods

Overview
Our objective was to build models that are able to estimate a

disease activity indicator for a significant high-burden disease by

using data on Google search patterns. In building these models,

time series of the fraction of Google search query volume for an

appropriate disease from a particular country (both chosen by

specific inclusion/exclusion criteria) were fit to a time series of case

counts from official data sources. Our model fitting and query

selection approach closely follows the precedent established by

Google Flu Trends [9]. Statistical analyses were conducted using

the statistical software R, version 2.10.1 (Vienna, Austria).

Disease and Country Selection
Several factors had to be taken into consideration in selecting a

specific disease and country around which a web query based

surveillance tool would be developed. Such a tool would be most

useful and successful for a high prevalence disease, in that the

benefit of prevented cases gained by early detection would be

maximized, but would work only where there is sufficient web

searching behavior for information about the disease. However,

concurrently, the disease should not be prone to ‘‘panic-induced

searching’’ that would lead to spurious spikes in the data for our

purposes. Our list of candidates was narrowed down further by the

fact that model building would require a time series of official case

counts against which web search query data could be fit and

validated. Therefore, a further requirement was the availability of

a corresponding official source dataset of case counts of at least a

monthly but ideally weekly temporal resolution, dated 2003 or

later (the time frame for which Google query data are available),

and of at least three years in length. A final consideration was that

the disease must exhibit fluctuations, via either a seasonal pattern

or occasional upsurges, in order to better assess the match in

trends in search data.

Initial disease and country candidates were identified based

on considerations of annual national data reported by the World

Health Organization (WHO) provided through its Global

Health Atlas platform (http://apps.who.int/globalatlas/) to

gauge the burden of a disease, and Google search query volume

for queries about the disease in the country of interest to

determine whether there was sufficient search interest. Attempts

to find official case count data involved searching through

various official websites including those of national Ministries of

Health and the WHO, as well as scientific publications. We

determined that endemic diseases were particularly suitable

candidates because of their high burden, lesser susceptibility to

panic-induced searching, and greater likelihood of available

official data as they are often monitored by a national

surveillance system. Ultimately, taking into consideration the

above criteria, we decided to focus on dengue in Bolivia, Brazil,

India, Indonesia, and Singapore.

Data Sources
Google search query time series. By aggregating

historical anonymized logs of online Google search queries

submitted between 2003 and 2010, we computed time series of

daily counts for the most common search queries in the selected

countries, irrespective of query language. Separate daily counts

were kept for every query in every country. Queries that occurred

infrequently were excluded. Each time series was normalized by

dividing the count for each query on a particular day by the total

number of online search queries submitted in that country on

that day, resulting in a search query fraction. Weekly and

monthly fractions of these queries were also produced. No

information about the identity of any user was retained, including

IP address, once the country of origin was determined.

Furthermore, any original web search logs older than nine

months are made anonymous in accordance with Google’s

privacy policy (http://www.google.com/privacy/privacy-policy.

html).

Official case count time series. A description of the official

case count data used for each of the five chosen countries is

provided in Table S1. All official data used were found online,

from official websites of national Ministries of Health or the

WHO, and are publicly available. These time series spanned a

period during 2003-2010 and were of a weekly resolution for

Bolivia and Singapore but monthly resolution for Brazil, India,

and Indonesia. For India and Indonesia, actual case counts were

not found, but approximate counts were reverse-extracted from

official source graphs using GetData Graph Digitizer Version 2.24

(Moscow, Russia).

Author Summary

A variety of obstacles, including bureaucracy and lack of
resources, delay detection and reporting of dengue and
exist in many countries where the disease is a major public
health threat. Surveillance efforts have turned to modern
data sources such as Internet usage data. People often
seek health-related information online and it has been
found that the frequency of, for example, influenza-related
web searches as a whole rises as the number of people sick
with influenza rises. Tools have been developed to help
track influenza epidemics by finding patterns in certain
web search activity. However, few have evaluated whether
this approach would also be effective for other diseases,
especially those that affect many people, that have severe
consequences, or for which there is no vaccine. In this
study, we found that aggregated, anonymized Google
search query data were also capable of tracking dengue
activity in Bolivia, Brazil, India, Indonesia and Singapore.
Whereas traditional dengue data from official sources are
often not available until after a long delay, web search
query data is available for analysis within a day. Therefore,
because it could potentially provide earlier warnings, these
data represent a valuable complement to traditional
dengue surveillance.

Using Web Search Query Data to Monitor Dengue
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Model Fitting
We fit a univariate linear model to the weekly or monthly

official case count time series for each country independently:

O~b0zb1Sze

where O is the official dengue case count, S is the dengue-related

Google search query fraction, b0 is the intercept, b1 is the

multiplicative coefficient, and e is the error term.

We split the official case count time series O into two sets: a

training set Ot and a holdout set Oh of a complete outbreak season

that spanned one year but not necessarily a calendar year. Oh was

used only for testing the final model. For Oh, we generally selected

the last full dengue season that was available in the time series;

Singapore was the one exception because there had not been a

significant outbreak that would be valuable to track from the point

of view of the public health community since its 2007 season.

Query Selection
Queries to include in the set of dengue-related Google search

queries were selected separately for each country. This selection

process started with first ranking individual search queries (from

the total pool of all queries) according to their correlation with Ot.

Starting with the most correlated query, and discarding queries

that were obviously unrelated to dengue, each query was

sequentially added to the variable S. With each new addition, if

the fit of the new model with Ot improved, the query was kept in

the set of queries, otherwise, the query was removed from the

model and the query selection process was stopped at that point.

We did not consider it necessary to utilize a cross-validation

methodology during query selection given the small number of

candidate queries that correlated well with Ot, and given that we

were estimating just two parameters, the intercept and the

multiplicative coefficient. Therefore, model overfitting was not a

major concern.

Removal of Spurious Spikes
Spikes in the time series indicate an increase in interest in

dengue, but it is important to determine whether they are ‘‘true

spikes’’ representative of the burden of illness in the population or

‘‘spurious spikes’’ not reflective of population health impact. For

example, spurious spikes may be caused by panic-induced

searching when media attention about a particular outbreak

triggers amplification of search activity that is disproportionate to

the actual extent of the outbreak. These spurious spikes occur

rarely but can be distinguished from true spikes when the rate of

growth of the values in the time series S exceeds the normal rate

of spread of the disease as determined by the basic reproduction

number R0. In the absence of precise data about R0, we used a

statistical approach to detect spurious spikes. Given a version of S

based on daily data and a candidate spike point p that belongs to

S, we computed the daily mean value and standard deviation

using the previous four weeks’ of daily data, and if p was found to

exceed five standard deviations from the mean, we considered it

to be a spike that was not driven by normal transmission of the

disease. In such a case, we replaced p with a daily value imputed

from the past data by simply continuing the trend of the last two

weeks. We continued imputing subsequent points until the

candidate points fell below the five standard deviation threshold.

We chose such a high threshold to ensure that S will be modified

only in extremely rare situations. Removal of spurious spikes was

performed subsequent to query selection and prior to model

fitting.

Model Validation
Lastly, the predictive performance of the final model for each

country was assessed by testing each model fit to the training set Ot

against the holdout set Oh as well as the overall set O.

Results

Dengue was determined to be a suitable candidate for search

query-based disease surveillance since it generates over a million

Google search queries every month. We found that the models

contained up to ten queries for each country when built using the

query selection approach described earlier. The queries were

generally directly about dengue, expressed predominantly in

Spanish, Portuguese, English, Indonesian and English for Bolivia,

Brazil, India, Indonesia, and Singapore respectively. Some queries

showed that the user was looking for more information about the

disease, while others were looking for symptoms or treatments.

Some of the queries contained misspellings of the word ‘‘dengue’’.

A few queries were related to mosquitoes and their control. There

would be significant overlap between queries from different

countries if translated to the same language. Training the models

using different time periods of the truth data sometimes resulted in

small changes to the list of selected queries, suggesting some

elasticity in the query selection process.

Model-fitted ‘‘expected’’ epidemic curves generally matched

official case counts ‘‘observed’’ epidemic curves quite well for all

five countries in most seasons, with the exception of Bolivia in

2007 when the model over-estimated the activity in that season,

and India in 2005 for which it under-estimated (Figure 1). More

formally, the correlation between values predicted by models fit to

the training data and the holdout set as well as the overall dataset

was generally quite high, ranging from 0.82 to 0.99 (Table 1).

Discussion

Although there is a trend towards modernizing surveillance of

infectious diseases, dengue surveillance is still very much

traditional, mostly based on passive routine reporting or sentinel

site surveillance, which is a preferable active but more costly

approach [4]. The current standard approaches to dengue

surveillance have recognized shortcomings including low sensitiv-

ity and accuracy and lack of timeliness. Therefore, the need to take

steps to improve dengue surveillance has been well acknowledged

[1,4,16], but cost and feasibility remain major obstacles.

The results of this study show that in general, models built on

the fraction of Google search volume for dengue-related queries

were able to adequately estimate true dengue activity according to

official dengue case counts reported by national ministries of

health or the WHO for five selected countries for the majority of

the seasons during the time-frame analyzed. To our knowledge,

few have explored non-traditional clinical/laboratory settings for

monitoring dengue epidemics. Our results provide evidence of the

availability of a novel data source that could supplement

traditional surveillance. Furthermore, a web data based approach

would be a low-cost option as it is passive and would require

minimal resources to run.

The main added benefit in monitoring web-searching behavior

is the potential for earlier detection. While notifications by doctors

or laboratories to ministries of health are often delayed until there

is a confirmed diagnosis [17], it is believed that individuals,

especially at earlier stages of illness, may seek health information

on the Internet before or even instead of making medical visits.

One study evaluating a community-based surveillance system in

rural Cambodia found that 67% of cases of hemorrhagic fever

Using Web Search Query Data to Monitor Dengue
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were treated at home as opposed to a health facility [18]. While

rural areas are less likely to be served by Internet access, in other

more developed areas, the Internet could be a source of

information for those who do not actively seek clinical care.

These data could therefore have the potential to provide earlier

signals of epidemics in the community than clinical or laboratory

data. Several studies have already demonstrated that web access

logs and search query data work well for tracking influenza [9–12],

although whether these data are actually timelier than traditional

data is uncertain, with differing results depending on the study and

gold standard of comparison.

However, even if the signals in web query data are no timelier

than in traditional laboratory/clinical surveillance data, a tool

built on the presented models could still provide a time advantage

in that it would provide immediate access to an indicator of

dengue activity that could help illustrate the dengue situation as it

is currently. This idea reflects the concept of ‘‘now-casting’’ as

opposed to forecasting, to predict the present rather than the

future [14]. Official case counts are not always made publicly

available in all countries, or if they are, there is a broad spectrum

in the timeliness of when these data become available, ranging

from only a couple days (as in the case of Singapore) to as much as

months, or even years (as in case of the WHO’s DengueNet system

which collects data for all countries). This tool is not meant to

serve to fill in these gaps with actual estimates of case counts, but

by estimating an indicator of dengue activity that would be

available in near real-time, it could serve as a stepping stone to

prompt further investigation if warranted.

The lack of data stems from a variety of factors, including

under-reporting. Even with mandatory reporting of dengue,

under-reporting is prevalent [1,4,16]. Field investigations, sero-

surveys and capture-recapture methods have yielded some

remarkably low estimates for the sensitivity of dengue case

notification, reflecting under-reporting [17,19–21]. Reasons for

under-reporting include lack of resources (both personnel and

equipment), motivation and leadership, in addition to misunder-

Figure 1. A comparison of the model-fitted and official case counts dengue epidemic curves in each country. The model-fitted
epidemic curve as compared to the official case counts epidemic curve for dengue in each of the five countries for which a model built on Google
search volume data was developed. Bolivia and Singapore are shown at a weekly resolution, the others on a monthly resolution. The activity index is
a scaled measure of the case counts, representing the relative amount of dengue activity in each country on a scale from 0 to 100. Shaded regions
indicate the season held out for testing the final models.
doi:10.1371/journal.pntd.0001206.g001

Table 1. Model predictions were correlated with a holdout data subset and the overall dataset.

Country Overall (O) Pearson’s Correlation Holdout (Oh) Pearson’s Correlation

Bolivia 0.94 0.83

Brazil 0.92 0.99

India 0.87 0.94

Indonesia 0.90 0.94

Singapore 0.82 0.94

doi:10.1371/journal.pntd.0001206.t001
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standings about or unfamiliarity with case definitions, complicated

reporting procedures, a tendency to report only the most severe

cases, lack of reporting from the private health sector [4,16] and

the reality that a proportion of the ill do not seek clinical care

whether because they self-treat at home [18] or because their

infection is asymptomatic or subclinical [21]. Unfortunately, the

problem of under-reporting extends to our models as well as they

were built on official data that are precisely affected by these

problems. Therefore, it is not sensitivity but the ability to capture

the same trends as the official data at a potentially earlier time

point that is the value that a tool built on such models would be

trying to capitalize.

A main challenge remains that rural areas and developing

nations tend to lack or have limited Internet access currently.

Web-query based surveillance depends on sufficient web search

volume from any country of interest in order to both generate

signals and drown out noise. In fact, it was this limitation of

sufficient search volume that turned out to be a significant limiting

factor in our process of identifying appropriate disease/location

candidates.

Another limitation to be kept in mind with respect to expanding

to different countries is that inter-country comparisons may be

difficult due to differences in case definition for the official time

series to which models were fitted. Unfortunately, because data

using a consistent case definition across all countries do not exist

(to our knowledge), each presented country and model must be

considered independently.

Lack of Internet access may also be a potential explanation for

the discrepancy between the fitted and actual values for the 2005

season in India. Though the gap is narrower today, there is a

tremendous amount of regional variation in Internet penetration

in India, a reflection of the country’s economic disparity, especially

between rural and urban areas [22]. The 2005 season was

predominantly driven by a major outbreak that occurred in the

state of West Bengal which includes the city of Kolkata, where per-

capita Google searches at that time were much less than in cities

like Delhi and Mumbai. Correspondingly, a model that fits

aggregate national-level search data to national official case count

data could underestimate true activity in regions with limited

Internet usage. If state level data becomes available, future

improvements to the model could include the addition of state-

level adjustments.

Another limitation is that not everyone who submits a dengue

related search query is actually ill with dengue. Indeed, a

prevailing concern in such uses of web-searching behavior data

for monitoring epidemic signals is the susceptibility of these data to

panic-induced searching; the announcement of a novel outbreak,

especially if compounded by media sensationalism, usually leads to

increased online searching activity, and while a proportion of that

behavior may be spurred by legitimate personal medical concern,

a larger proportion is likely driven by fear or curiosity. By training

the models over multiple years of data we are able to filter for

terms that might be popular at a specific point in time during one

season, but not over the multiple seasons. For example, when the

first wave of H1N1 swine influenza emerged in 2009, there were

large increases in search activity for ‘‘swine flu’’, but this term was

not included in Google Flu Trends models since it was not used

significantly prior to 2009. Additionally, dengue is probably

somewhat shielded from mass panic-induced searching; being an

endemic disease in the regions we have focused on, dengue is less

likely to receive the same degree of attention as would happen with

a novel or rare disease. This hypothesis is confirmed by our results

which demonstrate that dengue-related search queries are

generally not as influenced by news coverage. For example,

despite more severe and newsworthy outbreaks for Bolivia in 2009,

Brazil in 2008, Indonesia in 2004, and Singapore in 2005, the

models were able to handle these high levels of dengue activity

without any significant overestimation. The one exception

occurred in 2006 in India, when news about members of the

prime minister’s family being hospitalized for suspected dengue

caused an unusually large spike in dengue queries. However,

adjusting this spike prior to model fitting as described in our

methods proved to be an effective way of retaining model fit. As

with Google Flu Trends, despite strong historical correlations, our

system remains susceptible to false alerts that could be caused by a

sudden increase in dengue-related queries [9].

Incorrect self-diagnosis is another instance where dengue

related search queries may not correspond to true illness. Notably,

chikungunya and dengue are particularly difficult to distinguish

because they manifest with similar symptoms and share the same

vectors [23]. It has been made even more difficult since late 2005,

when chikungunya re-emerged and led to a major outbreak in the

Indian Ocean region, resulting in its current co-circulation with

dengue in India [24]. Misdiagnosis is an obvious limitation for this

tool, but it should be noted that in the case where it would be

difficult for even doctors to make that distinction based on clinical

symptoms alone, it is one that afflicts clinical data used in

traditional surveillance of dengue as well. Therefore, misdiagnosis

should be an acknowledged problem, but search query data could

nonetheless be useful for evidence-based decisions, providing

earlier signals on the basis of which more formal epidemiological

investigation and coordination with diagnostic laboratories could

be initiated.

Mining Google search query data raises obvious privacy

concerns and it must be ensured that policies to protect personal

information are extended to the application of this tool in public

health practice. The main safeguard is that such a tool only

presents query volume at the aggregate level where the unit of

analysis prevents any re-identification of patients. The product of

this work is freely available at www.google.org/denguetrends. The

presented tool is not intended to replace traditional dengue

surveillance, but by taking advantage of readily available data

essentially provided by millions of individuals, it could be a useful

and low-cost complement. These data can help mitigate some of

the many gaps that exist in the current dengue surveillance

landscape. More broadly, these results also contribute to a growing

pool of evidence demonstrating the capability of relatively novel

sources such as web-based data to assist with public health goals.

Supporting Information

Table S1 Description and source of each official case count time

series.

(DOC)
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