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Abstract 22 

Social transmission of behavior can be realized through distinct mechanisms. Research on primate 23 

social learning typically distinguishes two forms of information that a learner can extract from a 24 

demonstrator: copying actions (defined as imitation), or copying only the consequential results (defined 25 

as emulation). We propose a decomposition of these learning mechanisms (plus individual learning) 26 

that incorporates the core idea that social learning can be represented as a search for an optimal 27 

behavior that is constrained by different kinds of information. We illustrate our approach with an 28 

individual based model in which individuals solve tasks in abstract “spaces” that represent behavioral 29 

actions, results, and benefits of those results. Depending on the learning mechanism at their disposal, 30 

individuals have differential access to the information conveyed in these spaces. We show how 31 

different classes of tasks may provide distinct advantages to individuals with different learning 32 

mechanisms, and discuss how our approach contributes to current empirical and theoretical research on 33 

social learning and culture. 34 
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1. Introduction 35 

Imitation and emulation are two of the most commonly researched social learning mechanisms, 36 

especially in studies of primates (Call, Carpenter & Tomasello 2005; Hopper et al. 2007; Horner & 37 

Whiten 2005; Tennie, Call & Tomasello 2009). Several definitions of imitation and emulation exist in 38 

the literature. Here, we define emulation as the copying of the results, or environmental outcomes of 39 

demonstrations (i.e., the products of behavior), and imitation as the copying of the actions of a 40 

demonstrator (i.e., the behavioral processes leading to the products; Call & Carpenter 2002; Whiten, 41 

McCuigan, Marshall-Pescini & Hopper 2009; Tennie, Call & Tomasello 2006; Tomasello & Call 1997; 42 

Whiten, Horner, Litchfield & Marshall-Pescini 2004).  43 

 The differences between imitation and emulation may have profound implications for the 44 

capacity and scope of cultural transmission. In particular, it has been proposed that the capacity to 45 

reliably copy the actions of a demonstrator could make cumulative culture, technology and complex 46 

cultural behaviors possible, as is the case in humans, while non-human ape cultures may be better 47 

referred to as “traditions” (Galef 1992; Tomasello 1996). A reason for this difference is that emulation 48 

learning may be too inaccurate for a cultural ratchet to operate (Richerson & Boyd 2005; Shea 2009; 49 

Tennie et al. 2006, 2009; Tomasello 1999; compare also Whiten & van Schaik 2007). In fact, while 50 

imitation potentially results in the preservation of both process and product with a close one-to-one 51 

relationship between the two, emulation, by focusing only on the product or environmental effects, may 52 

lead to a failure in the preservation of the processes (Tennie et al. 2009). 53 

 To help understand the distinction between emulation and imitation, it is useful to consider a 54 

concrete task. For example, consider the specific task of tying a certain type of knot, and imagine 55 

individuals use different learning mechanisms. Emulators and imitators have access to information 56 

provided by a knowledgeable individual they observe, while individual learners do not have socially 57 

mediated information to guide their actions. If an individual is an emulator, she might have information 58 

about the form of the knot when it is completed, but she is “blind” to the process that produced the 59 
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knot. In order to arrive at the desired knot, the emulator may perform a series of actions with the rope 60 

without guidance and eventually “compare” her result with the observed knot. By comparison, if the 61 

individual is an imitator, she has additional information on the intermediate behavioral steps (more or 62 

less fine-grained) needed to produce the knot. She could use this information to guide her actions. 63 

Finally, individual learners have neither type of social information available. They rely only on self-64 

evaluation of the effects that their own actions achieve.  65 

 In what follows, we present an individual based model that investigates the consequences of 66 

using imitation, emulation and individual learning. The model is based on the core idea that social 67 

learning can be represented as a search for an optimal behavior that is constrained by different kinds of 68 

information. Crucially, our approach differs from most other theoretical models that investigate cultural 69 

dynamics using mathematical tools developed in population genetics and epidemiology, which 70 

typically treat the transmission of cultural traits as analogous to the transmission of genetic material 71 

(starting from Boyd & Richerson 1985; Cavalli-Sforza & Feldman 1981). Such models tend to focus 72 

on dynamics at the population level, whereas behavior at the individual level, i.e., with respect to social 73 

learning processes, is only loosely described. In these models, “cultural transmission” is usually a 74 

process that involves a simple “transfer” of a behavior between individuals, with some probability 75 

attached to this transfer (e.g. Nunn, Thrall, Bartz, Dasgupta & Boesch 2009). Moreover, very few 76 

quantitative models explicitly consider how different social learning mechanisms can influence the 77 

diffusion of a behavior in a population. In one noteworthy exception, Kendal J.L., Kendal R.L. & 78 

Laland K. (2007) used a mathematical model to distinguish between stimulus enhancement and 79 

observational learning.  80 

 In our model, individuals solve various tasks described in abstract spaces that represent 81 

behavioral processes (actions), environmental outcomes from the behavior (results), and benefits of the 82 

actions. We refer to these as actions space, results space and benefits space, respectively. Depending 83 

on the learning mechanism at their disposal (imitation, emulation, and individual learning), individuals 84 
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have differential access to the information conveyed in these spaces, with imitators using both actions 85 

and benefits spaces, emulators using both results and benefits spaces, and individual learners using only 86 

benefits space. We illustrate how differently shaped spaces represent different classes of tasks, and, 87 

with our model, we show that these classes provide different advantages for the three learning 88 

mechanisms that we investigated. In an extension of the main model we consider chains of individuals 89 

that learn iteratively from one another. This model draws inspiration from the linear transmission chain 90 

method used in cultural learning research and we therefore call it the “transmission chain 91 

model”(Mesoudi & Whiten 2008). The model allows us to check whether an initial optimal behavior 92 

can be transmitted and maintained across generation using either imitation or emulation. Moreover, 93 

since in the iterative learning process the initial optimal behavior can get “lost”, we can test the effect 94 

of sub-optimal demonstrators on the two social learning mechanisms. In the last section, we discuss the 95 

relevance of our results to cultural evolutionary modeling, current experimental studies, and the 96 

relationship between social learning mechanisms and the evolution of human culture.  97 

 98 

 99 

2. Methods 100 

 101 

2.1 The search space 102 

A task can be described as involving a certain number of actions to be accomplished (Na). For each 103 

action a certain number of different variants (Nv) is allowed. One can consider all possible behaviors as 104 

points in this Na-dimensional actions space. The number of dimensions represents the number of 105 

actions needed to accomplish the task, while the size of each dimension represents the number of 106 

variants that are allowed for that specific action. To illustrate our approach, we use a simple actions 107 

space, with Na=2 and Nv=15. In other words, a task can be accomplished by using the right 108 

combination of two actions, and each of the two actions is chosen from fifteen possible different 109 
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variants (giving 152 possible combinations). Different combinations of these two actions (i.e., any 110 

determined point in the actions space) are considered different behaviors. We call the actions in the 111 

first dimension “action X” and the actions in the second dimension “action Y.” 112 

The actions space has a correspondence in the results space (see Fig. 1 right panels). Here, for 113 

each point in the actions space (i.e., for each possible behavior) a result may (or may not) be present, 114 

where a “result” refers to an environmental modification that is similar to the observed one. Depending 115 

on the task at hand, some fraction of the environmental modifications may fail this criterion, which is 116 

why not all behaviors lead to results. Again it is useful to think of tying a knot: some combination(s) of 117 

actions can bring the rope to a physical configuration that is perceived by the individual as similar to 118 

the observed knot, while other combinations of actions leave the rope in a configuration perceived as 119 

non-matching, and thus not considered to be a result. 120 

The actions space and results space have a final correspondence in the benefits space (see Fig.1 121 

left panels). Here, each behavior that produces a result also produces a net benefit. Note that the same 122 

result can have different benefits depending on the specific combination of actions used to obtain it. 123 

The underlying logic is that some actions combinations may be more effective than others, even if the 124 

result appears to be the same. These differences in benefits could arise because one action is less costly 125 

than another, as might occur if actions vary in time or energy needed for completion. Consider, for 126 

example, printing out several pages from a long word processing document versus writing them out by 127 

hand. The hand-written document would take much longer to produce and would be of lower quality, 128 

resulting in higher costs and lower benefit. In what follows, we simply use the term “benefit” referring 129 

to net benefits, i.e. benefits minus costs. 130 

Together, the actions space, the results space, and the benefits space form the overall search 131 

space in which individuals search for optimal behavior. Individuals with different learning mechanisms 132 

access different spaces when solving problems – and thus can be “blind” to other spaces. Individual 133 

learners have only the benefits space at their disposal.  Social learners can additionally make use of 134 
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information produced by a demonstrator in the actions space (for imitators) and in the results space (for 135 

emulators). Thus, the three learning mechanisms differ in their access to information conveyed by 136 

different spaces.  137 

 138 

2.2 Experimental conditions: different types of tasks 139 

To illustrate how the different learning mechanisms can give different advantages to individuals, we 140 

conceived three experimental conditions that correspond to different classes of tasks. We call the 141 

conditions smooth task, peaked task, and hidden plateau task. In all three conditions, there is a single 142 

optimal behavior, that is, a single point at which individuals obtain maximum benefit (bmax=1), as 143 

shown in Figure 1.  144 

In the smooth task (see Fig.1, a-b), action combinations lie on a linear gradient of benefits. The 145 

closer an action combination is to the single optimum, the higher is the benefit that this combination 146 

gives to the individual. Furthermore, all action combinations that give benefit to individuals produce 147 

the same result. Such tasks might characterize behaviors for which, first, even if a best possible 148 

solution exists, it is only of relative importance to perform exactly the highest rewarding combination 149 

of actions and, second, similar actions combinations give similar benefits to individuals. An example of 150 

a smooth task could be learning to catch a prey. The result (the prey caught) is always the same, but 151 

different action combinations may be more or less effective (e.g. involving more or less effort). 152 

Individuals may copy how knowledgeable demonstrators hunt but they can also try different action 153 

combinations and possibly self-evaluate the benefits obtained.    154 

In the peaked task (see Fig. 1, c-d), only one single combination provides results as well as 155 

benefits. Unlike the smooth task, performing action combinations close to the single optimum in the 156 

peaked task does not produce any result and provides no benefit to the individual. For this family of 157 

tasks it is important to perform the exact combination of actions. Such tasks might characterize 158 

complex combinations of behavior involved in highly technical activities, where slight deviations from 159 
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a specific protocol lead to a failure in producing a result. To further elucidate the features of a peaked 160 

task, consider again the example of tying a knot. For some knots, if one performs action combinations 161 

that are similar but not identical to the correct combination needed to tie them, these will produce 162 

neither any usable result nor any tangible modification of the environment. 163 

In the third and last condition, the hidden plateau task (see Fig. 1, e-f), only the single optimal 164 

combination provides benefits, but performing action combinations similar to the single optimal one 165 

produce results that appear to be correct. Such tasks might again represent highly technical behavioral 166 

activities, but in this case, a single correct combination occurs among closely related behaviors that 167 

produce comparable results. Once more we can refer to the knot example: for some type of knots, if the 168 

individual performs action combinations similar to the correct one, she can obtain some physical 169 

configuration of the rope similar to the knot of interest. Even if ineffective as a knot (i.e., benefits are 170 

zero), the result gives some indication that it is “close” to the optimal behavior.  171 

 172 

- FIG. 1 about here - 173 

 174 

2.3 The learning mechanisms 175 

Individuals perform searches with the aim of finding the optimal behavior on the search space. At each 176 

time step, an individual may modify her behavior by moving in the search space to adjacent actions 177 

combinations or may retain her previous behavior.  178 

 We model this search as a two-stage process. In the first stage, a possible modification of 179 

behavior is selected using the following rule: with respect to the current position of the individual, one 180 

of the two adjacent horizontal cells (action X) or one of the two adjacent vertical cells (action Y) is 181 

randomly selected as a possible new action, which would thus lead to a new behavior. This 182 

modification rule makes two assumptions: individuals can change only one action variant at a time 183 

(either X or Y), and individuals do not have access to all the possible action variants of this type in the 184 
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whole space, but only to a subset of two neighboring variants. The underlying rationale is that 185 

individuals likely experiment with actions that are somewhat similar to those they performed most 186 

recently. Note that this rule holds for all types of learners, so we are assuming a general “innovation” 187 

rule that underlies all types of learning. 188 

In the second stage, individuals accept or discard the action modifications from stage one. If 189 

they discard the new action, they stay in the same point of the action space they were in before stage 190 

one, i.e. their behavior does not change. If they accept the new action, they will show a different 191 

behavior in the next time step. Three specific learning rules are used, depending on the learning 192 

mechanisms that individuals have at their disposal. Social learners make this decision by exploiting 193 

information from an “ideal” demonstrator who is performing the correct behavior at bmax on the space.  194 

(1) Individual learners accept a new action if it does not reduce the benefit they were obtaining; 195 

otherwise, they discard the new action. Thus, individual learners always accept beneficial or neutral 196 

modifications. The assumption is that individual learners are able to quantify the net benefits of 197 

different actions and compare these benefits through time. 198 

(2) Imitators base their decisions on how well the actions match the actions performed by the 199 

demonstrator. If they are already performing one of the demonstrator's action variants, they accept the 200 

modification only if they would then keep performing the same variant; otherwise they discard the 201 

newly selected action. For example, if an imitator already correctly performs the demonstrated action X 202 

(but not the action Y), she will not change her position with regard to the action X, but she will accept 203 

any modification on the action she uses from the action Y. If imitators are not performing any of the 204 

two demonstrator's action variants they always accept every modification. The assumption underlying 205 

this rule is that imitators initially lack knowledge of how to perform an action, but they can compare 206 

their actions with those of the demonstrator. 207 

 (3) Emulators base their decisions on whether the result is obtained (i.e., gray areas of Fig. 1, 208 

right panels). In contrast to imitators, emulators are blind to the actions of the demonstrator, but they do 209 
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have information on the result. If emulators are already obtaining the demonstrator's result they accept 210 

the proposed modification only if they keep obtaining the same result; otherwise, they discard it (in a 211 

way logically comparable to imitators). In contrast, if they have not yet obtained the demonstrator's 212 

result they always accept modifications. The assumption is that emulators do not know how to obtain a 213 

result, but they know how well their result matches the demonstrator’s result. 214 

As noted above, social learners are likely to also make decisions based on the net benefits that 215 

they obtain.  Thus, in our model, imitators and emulators also make use of the benefits space. More 216 

specifically, they use the benefits space to guide their decisions when the information provided by the 217 

demonstrator can not be used to orient their search, i.e. when they accept the random behavior in the 218 

first stage of the behavioral modification rule (this procedure is analogous to the “critical social 219 

learner” in Enquist, Eriksson & Ghirlanda, 2007). 220 

 221 

2.4 Simulations procedures 222 

For each of the three conditions, we tested 104 individuals for each learning mechanism (imitation, 223 

emulation, and individual learning), giving 3·104 simulations for each condition, for a total of 9·104 224 

simulations. At the beginning of the simulation each individual is placed randomly in the actions space 225 

(i.e., she has a random behavior) and the simulation runs until the individual reaches the behavior that 226 

produces the maximum benefit (bmax=1). We collected output on the individual benefit through time 227 

and on the time it took the individual to reach bmax (i.e., the time step in which she performed the 228 

optimal behavior). We also recorded the number of time steps in which social learners made use of the 229 

benefits space information, rather than using the information provided by the demonstrator (results or 230 

actions). 231 

 In a second set of simulations we sketched a possible extension of the main model that 232 

simulates multiple generations of individuals (“transmission chain model”).  We focused only on two 233 

conditions (peaked task and hidden plateau task) and on the two social learning mechanisms (imitation 234 
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and emulation) without considering pure individual learning. At the beginning of the transmission 235 

chain simulation, a single individual with random behavior learns from a knowledgeable demonstrator 236 

that shows the optimal behavior. After a certain number of time steps the learning phase ends and the 237 

observer, regardless of her behavior, now becomes the demonstrator for a newly introduced naïve 238 

individual. Differently from the main model, in the transmission chain model the demonstrator may 239 

thus show a sub-optimal behavior. In this case, if the observer succeeds in copying the demonstrator's 240 

behavior without reaching bmax=1 (meaning that behavior is sub-optimal), the observer continues to 241 

explore the search space using individual learning, until she reaches bmax=1 or the learning phase ends. 242 

 We iterated this process for 100 generations, varying the length of the learning phase from 100 243 

to 1000 steps (incremented in units of 100) and comparing the results of imitation and emulation for the 244 

2 conditions. This involved a total of 40 simulations (2 conditions X 2 learning mechanisms X 10 sets 245 

of learning steps), which we replicated 1000 times. We collected output on the benefit at the last 246 

generation and on the individual benefit through generations. 247 

 248 

 249 

3. Results 250 

3.1. Main model 251 

In the smooth task condition, the effectiveness of the three learning mechanisms was similar in terms of 252 

average benefits through time and in the average length of time required to reach bmax (Fig. 2, a). 253 

Individual learners exploited the benefits gradient to orient their search for optimal behavior, and social 254 

learning appeared to provide no advantages relative to individual learning. Thus, we found that social 255 

learners generally behaved as individual learners, meaning that they made use of the benefits space 256 

rather than the information (actions or results) provided by the demonstrator. Imitators used the 257 

benefits space in 77% (± 18 SD) of the time steps, showing that in the majority of cases, social 258 

knowledge was not informative in their search for the optimal behavior.  Emulators used benefits space 259 
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more often than imitators (98% ± 3 SD).  260 

In contrast to the smooth task condition, in the peaked task condition, imitation outperformed 261 

both emulation and individual learning (Fig. 2, b). In this task, the benefits and results spaces did not 262 

contain information useful to emulators and individual learners; hence, emulators and individual 263 

learners basically performed a random search, resulting in a longer average time to find bmax. Imitators 264 

were advantaged because they exploited information on the actions of the demonstrator to orient their 265 

search.  266 

Lastly, in the hidden plateau task, both types of social learners outperformed individual learners 267 

(Fig. 2, c). Imitators were again advantaged over individual learners, as seen in the peaked task.  In the 268 

hidden plateau task, emulators also experienced advantages relative to individual learners, but they 269 

benefited in a different way from imitators. While imitators gained advantages by homing in on the 270 

specific actions to use, emulators used the “plateau” of close results too orient their search (see Fig. 1,  271 

e). Importantly, this plateau is “hidden” to individual learners and imitators. 272 

 273 

- FIG. 2 about here - 274 

 275 

To understand the differential performance of imitators and emulators it is useful to think about 276 

how individuals with different learning strategies view the spaces in terms of attractors (Fig. 3), and 277 

specifically how they use information to move through the space. Imitators move in the space as if they 278 

can attach to the “cross-hairs” of a target. Once they land on a correct action, they move randomly 279 

along the axis defined by this action until they reach the other correct action (Fig. 3, a). In contrast, the 280 

emulators' attractor is the area of the space in which they obtain the demonstrator's result (Fig. 3, b). 281 

Once in the plateau, they move randomly on the plateau until they find the optimum.  282 

 283 

- FIG. 3 about here - 284 
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 285 

As seen in Figure 3, the relative size of the plateau is likely to determine the effectiveness of 286 

emulation relative to other learning mechanisms. To assess this effect, we ran additional simulations of 287 

emulators in the hidden plateau task in which we varied the dimensions of the results plateau. Results 288 

are shown in Figure 4.  If the area is relatively small (as in the peaked task) the plateau is difficult to 289 

find, reducing the effectiveness of emulation. Similarly, if the plateau is relatively large (as in the 290 

smooth task) emulation is also less effective because finding the plateau does not provide much useful 291 

information to the agent. Finally, for intermediate sizes (as in our hidden plateau task) emulation can be 292 

as effective as imitation. 293 

 294 

- FIG. 4 about here - 295 

 296 

3.2. Transmission chain model 297 

 298 

In the transmission chain model, the learned behavior was iteratively transmitted across generations of 299 

individuals.  Our simulation of this process produced results that were largely congruent with those 300 

found in the main model. Thus, in the peaked task condition (Fig. 5, a), chains of imitators 301 

outperformed chains of emulators. Given a sufficient duration of the learning phase (approximately 302 

from 500 steps), imitation was effective in transmitting the initial optimal behavior across generations. 303 

Emulation was never as effective as imitation in the peaked task, and, even for relatively long learning 304 

phases (e.g. 1000 steps), chains of emulators never achieved the optimal behavior at the end of the 305 

iterative process (i.e. the average final benefit never reached 1). In the hidden plateau condition (Fig. 5, 306 

b), however, the two social learning mechanisms were equally effective in transmitting the optimal 307 

behavior across generations, provided an adequately long learning phase (i.e. greater than about 500 308 

steps). 309 
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 310 

- FIG. 5 about here - 311 

 312 

  The duration of the learning phase has two effects on learning dynamics. At the level of the 313 

single individual, short learning phases translate in lower probabilities to acquire the correct behavior 314 

from the demonstrator. At the level of inter-generational transmission, however, this effect is amplified 315 

by the fact that, across generations, naïve individuals have sub-optimal demonstrators. The two effects 316 

can be shown considering the case of imitation in the peaked task condition (Fig. 6).  Learning phase of 317 

100 and 300 steps produced an initial disadvantage at generation 1 (effect at individual level). This 318 

disadvantage was amplified across generations. By comparison, for the case of a learning phase of 500 319 

steps, the optimal behavior is maintained across generations. 320 

 321 

- FIG. 6 about here - 322 

 323 

4. Discussion 324 

Our results illustrate how different learning mechanisms may provide individuals with different 325 

advantages depending on the type of task at hand, and they suggest that different behavioral diffusion 326 

dynamics can be generated under different learning mechanisms. Specifically, real-world tasks 327 

comparable to our smooth task can be solved effectively using individual learning, since the benefits 328 

gradient provides a way to orient search behavior. In nonhuman apes, such a situation might be found 329 

in gorilla “nettle feeding” behavior, which involves neutralizing stinging hairs on nettle leaves (a plant 330 

food source). The task space here is indeed likely to be smooth: given extended practice, many actions 331 

can be tried, their relative effectiveness evaluated, and individuals can thus learn how to optimize the 332 

process of neutralizing stinging hairs efficiently. We therefore expect that individual gorillas adjust 333 

their actions so that individuals (and even populations) converge on the same behavior. Indeed, even 334 
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though social learning of an imitation type was first proposed as a candidate to equip subjects with the 335 

necessary skill (e.g. Byrne & Russon 1998), it was recently found in captive settings that individual 336 

learning (likely together with genetic predispositions) is a more parsimonious explanation (Tennie, 337 

Hedwig, Call & Tomasello 2008).  338 

In contrast, our findings indicate that imitation is especially useful for solving peaked tasks. 339 

Such tasks not only require the chaining of correct actions (in a correct sequence), but they also provide 340 

little or no feedback for performing behaviors other than the optimal one (here we assumed no 341 

feedback was provided). Individuals thus cannot orient their search in any way other than by copying 342 

the actions of a demonstrator. In real-life human culture, many tasks are likely to fit this description, 343 

including using cognitively opaque artifacts, learning a gestural language, or performing correct 344 

performances of religious rituals or dances (see Tennie et al. 2009).  345 

Finally, emulation can provide advantages in situations analogous to our hidden plateau tasks, 346 

where emulators may take advantage of the fact that performing actions similar to the correct one 347 

produce a result. Even if the result is ineffective (i.e., benefit is zero), the plateau of results can give 348 

emulators guidance towards achieving the optimal behavior. 349 

These results are confirmed in an extension of the model (“transmission chain model”) where 350 

we considered the effectiveness of social learning mechanisms when individuals learn iteratively across 351 

generations. In particular, imitation can maintain an optimal behavior through generations regardless of 352 

which kind of tasks is at hand (peaked task or hidden plateau task), while emulation, even when 353 

individuals can learn for relatively more time steps, is unable to preserve good solutions to problems 354 

presented by peaked tasks, which are frequent in human culture (see above). 355 

Different social learning mechanisms are rarely differentiated in cultural evolution models 356 

(Mesoudi 2009), yet our results show that specific dynamics are generated through interactions of the 357 

tasks and learning mechanisms used. Modeling social learning as a general mechanism of behavioral 358 

transfer can hide this important interplay. Including specific modeling of social learning mechanisms 359 
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(as done here) seems advisable in order to help distinguish between social and asocial learning 360 

diffusion dynamics (Franz & Nunn 2009; Kendal et al. 2007; Kendal, Kendal, Hoppit & Laland 2009;  361 

Hoppit, Boogert & Laland 2010; Reader 2004), as well as for models explicitly dedicated to the study 362 

of social learning in animals or, more broadly, to the evolution of cultural capacities (Nunn et al. 2009; 363 

van Schaik & Pradhan 2003; Whitehead 2007). The case of human culture can be different because the 364 

extensive use of imitation and teaching (Gergely & Csibra 2006; Tomasello 1999) can render social 365 

learning reliable enough to generally interpret behavioral diffusions as genuine “transmission” 366 

processes. However, it could also be the case that a selective switching of social learning mechanisms 367 

could generate different dynamics in humans. For example, the distribution of artifacts in the 368 

archaeological record suggests a need to explain patterns not only in terms of population level biases 369 

(e.g. Mesoudi & O'Brien 2008) but also in terms of different mechanisms of learning at the individual 370 

level (Tehrani & Riede 2008). 371 

 Our model could provide new insights to the results of animal behavior studies concerning the 372 

distinction between imitation and emulation. In particular, the results of our model help to better define 373 

which kind of tasks may give rise to an imitative strategy. Many scientists agree that the “difficulty” of 374 

a task can represent an important variable in determining which social learning mechanism an 375 

individual will potentially use, with “easy” tasks readily solved by individual learning but 376 

“challenging” tasks better solved by imitation (see Tennie et al. 2009; Whiten et al. 2009). In our 377 

model, a “challenging” task is represented by the peaked task and the challenge arises from the absence 378 

of feedback for performing behaviors similar to the correct one. For animal behavior studies this means 379 

that experimental tasks with these particular features are needed to determine whether a species can and 380 

does use imitation. Successful social learning in tasks with smooth structures or hidden plateau 381 

structures could be explained with mechanisms other than imitation, while, on the other hand, the 382 

absence of imitation in solving those tasks can be due to the search structure rather than an intrinsic 383 

limitation of the species’ imitative ability. This is not to say that a species capable of imitation would 384 
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only imitate in tasks that have this type of structure. A species able to imitate might use this learning 385 

strategy in a wider range of contexts. For example, humans also imitate in types of tasks for which 386 

other strategies would be equally useful or even better (see above and Horner & Whiten 2005; Tennie 387 

et al. 2006). This phenomenon has recently been dubbed "over-imitation" (Lyons, Young & Keil 2007), 388 

and it seems to hold cross-culturally (Nielsen & Tomaselli, 2010). 389 

 Finally, our results offer some considerations regarding the relationship between general 390 

intelligence, the rarity of imitation in primates, and the evolution of culture. In a peaked task, the ability 391 

to reliably copy the actions of a demonstrator is, in our model, much more effective than emulation and 392 

individual learning. Humans face this kind of task repeatedly throughout life and they readily use 393 

imitation to solve these tasks, while this class of tasks is probably uncommon in other primates (Tennie 394 

et al. 2009). Hence, the problems that non-human primates confront in the wild are characterized by an 395 

interaction between genetic predispositions and environmental feedback which may effectively orient 396 

their “search” without the need to copy the specific actions of a demonstrator (van Schaik & Pradhan 397 

2003; Tennie et al. 2009, Tennie, Call & Tomasello 2010), and the same may have been true of some 398 

early hominin artifacts (e.g. handaxes, compare also Richerson & Boyd 2005). 399 

 Perhaps non-human primates do not imitate because socio–ecological conditions have not 400 

favored imitation. The learning mechanisms available to them suffice. However, when solutions to 401 

problems in the form of peaked structures started to be invented and provided marked fitness 402 

advantages to individuals, selection for imitative learning likely increased. This suggests that the initial 403 

diffusion of task solutions in the form of peaked structure created an environment that boosted the 404 

pressure to develop imitative skills (i.e., niche construction effects, see Laland, Odling-Smee & 405 

Feldman 2000). Widespread imitation in a given population could be used to support a process of 406 

cumulative culture that, in turn, opens up new fitness landscapes involving technological innovations 407 

which are likely to create “complex” solutions to adaptive problems perhaps in the form of peaked 408 

structures, which then favor greater imitative learning ability.  409 
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It is important to be clear about several simplifications that we made in this first investigation of 410 

the modeling framework. First, we assumed that for each condition only a single optimal behavior 411 

existed (for a coverage of multimodal adaptive landscapes in cultural evolution see Boyd & Richerson 412 

1992; Mesoudi 2008). Second, we assumed a “perfect demonstrator” who, from the beginning and 413 

reliably, performed the optimal behavior (but note that in the transmission chain model this behavior 414 

could get “lost” through the iterative process and so this model is relatively free from such problem). 415 

Third, we assumed that all learning mechanisms have the same implementation costs. As a final issue, 416 

it is important to stress that we deliberately omitted several psychological aspects that influence 417 

learning processes, including memory and cognitive constraints. The two-stage process of behavioral 418 

modification that we used should not be viewed as an accurate model of real behavioral learning 419 

processes. For example, we are not claiming that real-life imitators actually perform novel behaviors 420 

quasi-randomly and that they then “compare and discard” them if different from a demonstrator’s 421 

behavior. We consider our approach as a modeling device (and thus necessarily and intentionally 422 

minimalistic) to illustrate the aspect we stated in the introductory section, namely, that social learning 423 

can be interpreted as a search for an optimal behavior constrained by different kind of information in 424 

the social context, and moreover, that different tasks can be modeled as information spaces that have 425 

different shapes. 426 

In summary, our model illustrates a new framework for interpreting social learning mechanisms 427 

that could hopefully be incorporated in cultural evolutionary modeling. The model also suggests 428 

directions for new experiments, shows that the structure of a task is crucial for the interpretation of 429 

experimental outcomes, and proposes a framework to characterize different experimental tasks. 430 

Moreover, the highlighted interplay between a learning mechanism’s effectiveness and features of 431 

different tasks suggest some considerations on the relationship between general intelligence, the ability 432 

to imitate, and the evolution of cultural capacities. 433 

 434 
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Figure 1: Features of benefits spaces (left) and results spaces (right) in the three experimental 571 

conditions. Each point on the X- and Y-axes show a particular variant for X and Y actions (i.e., actions 572 

space). From top to bottom, panels show smooth task, peaked task, and hidden plateau task. For 573 

benefits spaces, benefits goes from b=0 (black) to bmax=1 (white). For results spaces, gray color 574 

represents points in which individuals obtain a result and white color points in which they do not obtain 575 

a result. 576 
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Figure 2: Synthesis of results of the main model. From top to bottom, panels show smooth task 578 

condition, peaked task condition, and hidden plateau task condition. Left panels: Time steps until 579 

individuals reach bmax=1. Boxes represent the inter-quartile range of the data. The horizontal lines 580 

inside the boxes indicate the median values. The horizontal lines outside the boxes indicate the 581 

minimum and maximum values not considered outliers. Circles represent outliers. Right panels: 582 

Average benefits (on 104 individuals) in the first 500 time steps. Circles = imitation. Squares = 583 

emulation. Diamonds = individual learning. 584 
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Figure 3: Space attractors for imitators (a) and emulators (b). The black square represents the 586 

optimal behavior in the search space, while the dark gray squares represent the behavioral attractors. 587 

(a): Hypothetical trajectory of an imitator searching for the optimal behavior in the peaked task 588 

condition. After the individual arrives in the “crosshairs,” she only accepts moves that keep her in the 589 

crosshairs. Thus, the crosshairs serve as an attractor. (b): Hypothetical trajectory of an emulators 590 

searching for the optimal behavior in the hidden plateau task condition. In this case, the plateau is the 591 

attractor. Thus, when an emulator lands in the plateau, she only accepts moves that keep her in the 592 

plateau.  593 
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 601 

Figure 4: Effectiveness of emulation when varying the size of the results plateau in the hidden 602 

plateau task. Average time steps until emulators reach bmax=1 in the hidden plateau task versus 603 

dimension of the results plateau. The dimension of the results plateau is expressed as the length of the 604 

side of the results area (a square). In the main simulation this length is equal to 5 points in the results 605 

space (see Figure 1-f). 606 
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 609 

 610 

Figure 5: Synthesis of results of the transmission chain model. Average final benefit (on 1000 611 

replications) versus duration of the learning phase. Circles = imitation. Squares = emulation. (a): 612 

peaked task condition. (b): hidden plateau task condition.  613 
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 625 

 626 

Figure 6: Effectiveness of imitation across generations (peaked task condition). Average benefit 627 

across generations for imitators with different durations of the learning phase in the peaked task 628 

condition.  Circles = 100 time steps. Squares = 300 time steps. Diamonds = 500 time steps. 629 
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