
Plan Recognition in Exploratory Domains

Citation
Gal, Ya’akov, Swapna Reddy, Stuart M. Shieber, Andee Rubin, and Barbara J. Grosz. 2012. Plan
recognition in exploratory domains. Artificial Intelligence 176(1): 2270-2290.

Published Version
doi:10.1016/j.artint.2011.09.002

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:5343166

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:5343166
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Plan%20Recognition%20in%20Exploratory%20Domains&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=bb6bca95e42a9070c2186142e7c15d7a&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Plan Recognition in Exploratory Domains

Ya’akov Gal1,2, Swapna Reddy2, Stuart Shieber2, Andee
Rubin3, and Barbara Grosz2

1Department of Information Systems Engineering, Ben-Gurion
University of the Negev, Israel

2School of Engineering and Applied Sciences, Harvard
University, USA

3TERC, USA

Abstract

This paper describes a challenging plan recognition problem that
arises in environments in which agents engage widely in exploratory
behavior, and presents new algorithms for effective plan recognition in
such settings. In exploratory domains, agents’ actions map onto logs of
behavior that include switching between activities, extraneous actions,
and mistakes. Flexible pedagogical software, such as the application
considered in this paper for statistics education, is a paradigmatic ex-
ample of such domains, but many other settings exhibit similar char-
acteristics. The paper establishes the task of plan recognition in ex-
ploratory domains to be NP-hard and compares several approaches for
recognizing plans in these domains, including new heuristic methods
that vary the extent to which they employ backtracking, as well as
a reduction to constraint-satisfaction problems. The algorithms were
empirically evaluated on people’s interaction with flexible, open-ended
statistics education software used in schools. Data was collected from
adults using the software in a lab setting as well as middle school
students using the software in the classroom. The constraint satis-
faction approaches were complete, but were an order of magnitude
slower than the heuristic approaches. In addition, the heuristic ap-
proaches were able to perform within 4% of the constraint satisfaction

1

approaches on student data from the classroom, which reflects the
intended user population of the software. These results demonstrate
that the heuristic approaches offer a good balance between perfor-
mance and computation time when recognizing people’s activities in
the pedagogical domain of interest.

1 Introduction

In this paper we report on the development and evaluation of algorithms
for recognizing users’ plans in domains in which users engage in exploratory
and error-prone behaviors. The challenges presented by these domains were
made evident by our work with students using open-ended computer software
for learning statistics, but they arise in human-computer interaction more
broadly.

Indeed, developing technology is changing rote and monolithic interaction
styles between computers and their users to more flexible types of interac-
tions that allow users to explore and interleave between different activities.
Examples of these flexible systems include interactive drawing tools (Ryall
et al., 1997), Integrated Development Environments (IDEs), collaborative
writing assistants (Babaian et al., 2002), computer games, and educational
software (Yaron et al., 2009).

To be effective partners, these systems need to recognize the activities
their users are carrying out and to use that information to provide support
in a way that guides users’ interactions effectively. For example, an intelligent
drawing tool may infer that several objects on the canvas are all representa-
tives of the same class. When the user modifies an attribute in one of the
forms, the system will identify and duplicate this change in the other objects
in the class. Another benefit of recognizing users’ activities in software is
to provide assessments of user performance. Such capabilities in educational
and pedagogical systems could increase teachers’ abilities to identify those
students who are having difficulty.

Classical approaches to plan recognition have assumed a goal-oriented
agent whose activities are consistent with the recognizers’ knowledge base
and who forms a single encompassing plan. In contrast, flexible systems
allow users to follow multiple plans, interleave actions from different plans,
and perform redundant actions; they also tolerate user mistakes. Thus, in-
ferring users’ plans in these systems gives rise to a more complex sort of plan

2

recognition problem.
This paper presents several new algorithms for keyhole plan recognition

in exploratory domains1. The algorithms are post-hoc, in that they infer
plans from complete interaction sequences, rather than after each observed
action, as in on-line recognition (Bui, 2003). The algorithms we present vary
in completeness (that is, whether plans are guaranteed to be found) and
computational complexity. We investigate the trade-off between complete-
ness and complexity empirically, by comparing the performance of different
plan recognition algorithms on real-world data.

Our empirical analysis uses an educational software system for statistics
education. Educational software is increasingly designed to be open-ended
and flexible in order to support the types of exploratory activities that fa-
cilitate students’ learning experience. This gives students the resources to
explore concepts in new ways, but their interactions may be erratic or unfo-
cused, making it challenging to recognize plans. During the chaos of a lab
session, it is impossible for teachers to track each student’s progress. As a
result it is difficult to adapt their teaching to their students’ work. Edu-
cational software thus provides an important domain for plan recognition.
A well structured post-hoc representation of the plans behind students’ ac-
tivities would enable teachers to make better pedagogical decisions in the
classroom.

The research we report used a commercial system called TinkerPlots,
used world-wide to teach students in grades 4 through 8 about statistics and
mathematics (Konold and Miller, 2004). Using TinkerPlots, students build
stochastic models and generate pseudo-random samples to analyze the un-
derlying probability distributions. Our study used four different problems for
which students interacted with TinkerPlots to model hypothetical situations
and to determine the probability of events.

Students’ interactions with TinkerPlots are complex. They may pursue
multiple plans and interleave actions from different plans. They may be
confused about the appropriate plan to take, and they may make mistakes.
These behaviors create a challenging domain for plan recognition algorithms.
Any number of extraneous actions may be interleaved among those that are
a part of a successful plan. In addition, actions that are crucial to successful
plans may occur in almost any order.

1We use the term “keyhole plan recognition,” coined by Cohen et al. (1981), to refer
to the fact that the acting agent is not signalling its plan to the observer.

3

All of the algorithms presented in the paper compose (possibly non-
contiguous) interaction sequences from users’ interactions into a series of
interdependent tasks and sub-tasks. They infer students’ plans by compar-
ing their interaction sequence to ideal solutions, or recipes, that were spec-
ified by domain experts. At the end of this process, the algorithms output
a hierarchical plan that explains the student’s strategy during the session.
The algorithms separate those actions that contribute to solving the problem
from extraneous actions and mistakes.

This paper integrates and extends initial reports of past studies (Gal et al.,
2008; Reddy et al., 2009) and makes several contributions. First, it formally
defines the task of plan recognition in exploratory domains and provides a
proof of its NP-completeness. Second, it presents new greedy and complete
algorithms for solving the plan recognition problem in these domains, pro-
viding a formal complexity analysis of these algorithms and comparing them
to existing methods. Third, it is the first work to evaluate plan recognition
algorithms on real-world data in the domain of flexible pedagogical software.

We compared two algorithmic approaches for recognizing users’ inter-
actions. One of the approaches employed incomplete greedy algorithms to
attempt to build plans from the bottom-up. The complexity of one of these
algorithms is polynomial in the size of the interaction sequence, while the
complexity of the other algorithm is exponential (in the worst case) in the
size of this sequence. The second approach converts the recognition process
to a Constraint Satisfaction Problem (CSP) using one of two methods. One
of these methods builds a complete plan to recognize the entire interaction
sequence. The other method works piecemeal in a way that uses subsets
of the activity sequence to eliminate infeasible plans before attempting to
recognize the entire sequence. This second method was suggested by Quilici
et al. (1998) but first tested empirically here. In contrast to the greedy ap-
proach, the constraint satisfaction approach is complete, in the sense that
if all of the recipes for solving a given TinkerPlots problem exist, and the
student solved the problem, the algorithm is guaranteed to find the plan that
explains the student’s interaction. The complexity of both of the complete
methods is exponential in the size of both the interaction sequence and the
data set containing ideal solutions.

We conducted a number of empirical studies to evaluate the ability of
these algorithms to recognize the plans used to solve TinkerPlots problems.
The studies involved two types of settings: adults using TinkerPlots in a lab
setting, and middle school students using TinkerPlots in a classroom setting.

4

The results confirmed that the complete algorithms were able to recognize
all plans when the relevant recipes for the TinkerPlots problems existed, and
students were able to solve the problems. However, there was a system-
atic difference between these two empirical settings and their effect on the
plan recognition algorithms. For adult data, the complete methods outper-
formed the heuristic approaches by 25%. For student data, which reflects
the intended user population of TikerPlots, this difference was just 4%. In
addition, the heuristic approaches were (on average) an order of magnitude
faster than the complete approaches for both data sets. We show that the de-
terminant for run-time is the size of the interaction sequence for the heuristic
approaches, and the size of the plan data-base for the complete approaches.
Lastly, the interaction sequences obtained from middle school students were
significantly longer than those of adults, and in general, students’ interactions
corresponded to complete solutions less often than adults.

These results show that the heuristic algorithms we devised provide a
good balance between performance and time in the pedagogical software do-
main we considered. More generally, they demonstrate the feasibility of using
Artificial Intelligence techniques to support the analysis of users’ interaction
with flexible, open-ended software. Although our study uses one type of soft-
ware, the techniques presented here are general and can be used to support
the analysis of users’ interactions for different types of exploratory systems.
Our techniques are of value to software designers and researchers who wish
to understand the way people learn and use computer software, as well as to
teachers.

After describing related work (Section 1.1), we introduce the Tinker-
Plots software (Section 2), highlighting the properties that characterize an
exploratory domain. In Section 3, we describe the formal tools for represent-
ing plans in exploratory domains and the abstract problem of recognizing
plans relative to idealized recipes for achieving domain goals. We then (Sec-
tion 4) draw an analogy between this plan recognition problem and grammar
recognition, showing that the problem is equivalent to context-free recogni-
tion under a variant interpretation of such grammars. The analogy allows a
simple proof of the NP-completeness of plan recognition in exploratory do-
mains. We present a variety of plan recognition algorithms for this problem
in Section 5, and evaluate their performance empirically on data obtained
from users’ interactions with TinkerPlots in Section 6, demonstrating the
practicality of the best of our algorithms in both coverage and speed.

5

1.1 Related Work

Plan recognition is a cornerstone problem of AI and a necessary component
of many applications such as software help systems (Bauer et al., 1993; May-
field, 1992), story understanding (Charniak and Goldman, 1993; Wilensky,
1978), and natural language dialogue (Carberry, 1990; Grosz and Sidner,
1990). Early approaches have assumed a goal-oriented agent whose activities
were consistent with its knowledge base, and which formed a single encom-
passing plan (Kautz, 1987; Lochbaum, 1998). A notable exception is Pollack
(1987) that allowed for agents to have ill-formed plans about achieving cer-
tain goals, and Brown and Burton (1978) that allowed for agents’ knowledge
to be possibly incorrect. We refer the reader to Carberry (2001) for a de-
tailed account of these approaches and focus this section on more recent
works which capture some of the endemic qualities of exploratory domains,
namely extraneous actions or mistakes, interleaving of activities, and free
order among plan constituents.

We first detail approaches that considered temporal relationships among
actions that make up agents’ plans. Weida and Litman (1992) proposed a
method for recognizing plans that explicitly included ordering constraints in
the plan library and suggested various criteria for matching plans to action
sequences, assuming that each action is directed at completing one of the
plans in the library. Avrahami-Zilberbrand and Kaminka (2005) encoded
relationships between action parameters in plans using tree structures and
provided methods for plan recognition that traverse the tree in a manner
that is temporally consistent with the observations. Another approach to
handling temporal relationships in plans derives from the analogy between
plan recognition and grammar recognition (Sidner, 1985; Geib and Steedman,
2007). Immediate-Dominance/Linear-Precedence (ID/LP) grammars (Gaz-
dar, 1985) describe languages that allowed for linear precedence and free
word ordering over rule constituents. Algorithms for parsing ID/LP gram-
mars, which are analogous to recognizing plans, can at times provide expo-
nential savings as compared to considering every possible order configuration
of the rule constituents (Shieber, 1984; Barton, 1985). Pynadath and Well-
man (2000) developed a probabilistic grammar for modeling agents’ plans
that also included their beliefs about the environment. These techniques did
not allow for interleaving plans. All reordering among plan constituents in
these above works was restricted to local permutation among the constituent
actions of sub-plans.

6

Goldman et al. (1999) proposed a probabilistic model of plan recogni-
tion that recognized interleaving actions and output a disjunction of plans
— rather than a single hierarchy — to explain an action sequence. It also
accounted for missing observations (e.g., not seeing an expected action in a
candidate plan makes another candidate plan more likely). The algorithm
was generative, that is, with each observation, a pending set of possible
hypotheses were generated that were subsequently matched against future
observations. Geib and Goldman (2009) have augmented this work to allow
to recognize multiple instances of the same plan, in addition to interleaving
actions. This work provides a bottom-up algorithm that maintains a dis-
tribution over the set of possible explanations matching users’ observations,
while not assuming that agent’s top-level goal is known. Our work is distinct
from this approach in several ways. First, the settings studied by Geib and
Goldman do not account for agents’ extraneous actions, an endemic property
of the exploratory domain we consider in this paper. Second, the probabilistic
approach used by Geib and Goldman is complete when considering full obser-
vation sequences, with a worst-case complexity that is exponential in the size
of the grammar. We provide heuristic algorithms that may be exponentially
more efficient than complete approaches. Our algorithms are parameter-
free, designed for ecologically realistic settings (such as classrooms) in which
tuning or learning parameters is difficult because of the effort involved in
obtaining large amounts of training data. Third, we show the efficacy of
our approach on real-world data obtained from students and adults using
pedagogical software, whereas Geib and Goldman use synthetic data.

Several works have used probabilistic reasoning to recognize students’
goals when interacting with pedagogical software. Conati et al. (2002) used
Bayesian networks to model students’ interactions with an intelligent tu-
tor, using probabilistic inference to recognize interleaving actions. Albrecht
et al. (1998) suggested a probabilistic approach to infer players’ goals as
well as their future actions from observation sequences. They used Dynamic
Bayesian Networks to compute a posterior distribution over possible goals
given players’ actions in the game. They are able to capture agents’ mis-
takes, but infer the likelihood of a single goal or action, rather than recog-
nizing a hierarchical plan representing the entire action sequence. Quilici
et al. (1998) proposed an algorithm for implementing plan recognition as a
constraint satisfaction problem but do not evaluate it on real data. We aug-
ment this work in several ways. First, by implementing this algorithm on
ecologically realistic data, that of adults and middle school students using

7

pedagogical software. Second, by describing alternative, heuristic approaches
to complete algorithms in exploratory domains that provide a balance be-
tween completeness and time, and comparing the efficacy of these algorithms
to the complete, CSP approach.

Lastly, we will mention work in the intelligent tutoring systems commu-
nity that has been applied to models of students’ learning of mathematics and
physics (Corbett et al., 2000; Beck and Woolf, 1998; Anderson et al., 1995;
VanLehn et al., 2005). In these domains the tutor is an active participant
in the student’s learning process and ambiguities or uncertainties about the
students’ plan of action are resolved by querying the student. By contrast,
the TinkerPlots style of educational software allows students to “learn by
doing” in an exploratory open-ended manner without explicit guidance by
a software tutor. Our approach addresses a different problem, that of non-
intrusive recognition of students’ activities given their complete interaction
histories with the software. Past work on recognition of users’ goals with
computer systems has focused on fixed, strongly constrained settings such as
UNIX command line syntax (Blaylock and Allen, 2005), or applications such
as medical diagnosis and email notifications in which users tend to adopt the
same goals many times (Bauer, 1996; Horvitz, 1999; Lesh, 1997). In educa-
tional domains, goals are constantly evolving to reflect new concepts, and it
may be difficult to collect student-specific training data for each type of goal.

2 The TinkerPlots Domain

TinkerPlots is an educational software system used world-wide to teach stu-
dents in grades 4 through 8 about statistics and mathematics (Konold and
Miller, 2004). It provides students with a toolkit to actively model stochas-
tic events, and to create and investigate a large number of statistical mod-
els (Hammerman and Rubin, 2004). As such, it is an extremely flexible
application, allowing for data to be modeled, generated, and analyzed in
many ways using an open-ended interface.

To demonstrate our approach towards recognizing activities in Tinker-
Plots we will use the following running example, called rain.

rain: The probability of rain on any given day is 75%. Use
TinkerPlots to compute the probability that it will rain on each of
the next four consecutive days.

8

This problem is a simple example drawn from a set of problems posed to stu-
dents using TinkerPlots in schools and to subjects during our data collection
procedure.

(a) Using one spinner

(b) Using four spinners

Figure 1: Two sampler models for rain

Two of the several possible approaches towards modeling this problem
in TinkerPlots are shown in Figure 1. One uses the same stochastic device
multiple times, while the other uses multiple stochastic devices. Figure 1a
shows a sampler object containing a single “spinner” device. Devices are
added to sampler objects to model distributions. There are several types of
devices; spinner devices recall the distribution formed by spinning a dial. The
spinner device in the left-hand model contains two possible events, “rain” and
“sun”. The likelihood of “rain” is three times that of “sun”, as determined
by the surface area of these events within the spinner. Each draw of this
sampler will sample the weather for a given day. The number of draws is
set to four, making the sampler a stochastic model of the weather on four
consecutive days.

Another possible approach to modeling the rain distribution is presented
in Figure 1b, which shows a sampler with four spinner devices. Each of

9

(a) Table of Sam-
ple Results

(b) Plotted Results

Figure 2: Generating and analyzing data for the rain problem.

these devices is a stochastic model of the weather on a given day, and the
sampler, set to a single draw, draws once from each device. In both of these
approaches, the sampler, along with the contained devices, is a model of the
joint probability distribution over the weather for four consecutive days.

When a sampler is run, it generates data that is sampled according to the
distribution defined by the parameters of its model. Figure 2a shows a table
object holding a portion of the sample generated by either of the sampler
models in Figure 1. Each line in the table represents a single repetition
of the sampler, consisting of a “sun” or “rain” value for each of four days.
Figure 2b shows the end-result of a process in which this data is plotted onto a
histogram for the purpose of inferring the likelihood of four consecutive days
of rain. There are many other approaches for modeling the rain distribution
and organizing the resulting data, which we do not show here.

As students interact with TinkerPlots through its engaging direct manip-
ulation interface, they create and modify devices, sample stochastic events,
graph the results, modify and retry aspects, in a fluid manner in which all
kinds of objects can be manipulated in different orders, and with false starts
and retries adding complexity to the exhibited behaviors. The TinkerPlots
system is metered to log all the primitive direct manipulation actions of the
user.

These logs constitute the trace of the observable behavior of the user.

10

Our goal is to explain the log in terms of the problem-solving goal that the
user was engaged in, such as solving the rain problem.

3 Methods and Representation

In this section we introduce representations and algorithms towards describ-
ing TinkerPlots activities in a formal way.

3.1 Actions, Recipes and Plans

The nomenclature in this paper follows the foundational planning terminol-
ogy grounded in philosophy (Bratman et al., 1988; Bratman, 1987; David-
son, 1980). The most fundamental components we define are called basic
actions, which are atomic, and cannot be decomposed. Complex actions
describe higher-level, more abstract activities that can be decomposed into
sub-actions, which can be basic actions or complex actions themselves. To
emphasize the distinction between basic and complex actions, we notate com-
plex actions using an underline notation.

A recipe (Pollack, 1990) for a complex action characterizes the sequences
of actions that result in successful completion of the action. The recipe for
a complex action C is a set of sub-actions S and constraints R such that
performing the sub-actions under the constraints constitutes completing the
complex action. We do not allow recursively defined recipes; i.e, a recipe for
the complex action C may not hereditarily include C in sub-action list S.

The set of restrictions R constrains how sub-actions may be completed
by expressing relationships over the parameters of the sub-actions that must
hold. Restrictions may take the form of any Boolean relation over sub-
actions’ parameters, which includes mathematical equations and inequalities.
A common type of restriction uses inequalities and the pos (position) param-
eter of various actions to limit the order in which these actions must occur.
In the absence of ordering restrictions, a recipe is completely free-ordered.
Other restrictions may enforce a relationship between object identifiers in
several TinkerPlots actions, requiring, for example, that two actions share
the same is parameter to represent constraints that are imposed on the same
sampler object s. To complete complex action C according to a recipe, all
sub-actions in S must be completed without violating any restrictions in R.

11

We notate a recipe for complex action C with sub-actions {s1, . . . , sn}
and restrictions R as

C → s′1, . . . , s
′
n where R

where s′i is the name of the sub-action si (with optional subscripts to uniquely
identify sub-actions with the same name). The restrictions R use the notation
A[p] to refer to the value of a parameter p of some sub-action with name A.
(In case multiple sub-actions have the same name, the subscripts are used to
disambiguate.) Standard conventions are used to notate multiple inequalities
(for example, a ≺ b ≺ c).2

A recipe library (Bratman et al., 1988) contains the complete set of recipes
for all of the complex actions of the domain. Each complex action type may
have multiple recipes in the library providing alternatives for its completion.3

A plan is a hierarchical construction of basic and complex actions used
to complete a complex action called the root action. The plan for completing
a root action C is a tree of parametrized actions rooted at C such that each
complex action is decomposed into sub-actions according to some recipe in
the database.

3.2 Representation of TinkerPlots Activities

The nature of the questions (such as rain) for teaching statistical skills
in TinkerPlots typically will require students to plan a series of activities
to derive answers. Students interact with TinkerPlots through a series of
operations that create, modify, or delete objects such as samplers, plots, and
tables. Basic actions in TinkerPlots refer to rudimentary operations that can
be carried out by a single keystroke or mouse action. It is these instances
of basic actions that are logged as the system is used. Examples of basic
actions in TinkerPlots include creating a new sampler, generating a random
sample, or deleting a plot. Complex actions in TinkerPlots are activities such
as adding a spinner with six equally weighted events to a sampler, fitting
sampler data to a plot, or solving the rain problem. We impute complex

2Our representations of recipes and restrictions are similar to classical planning for-
malisms such as Hierarchical Task Networks (Ghallab et al., 2004), but do not allow for
recursion.

3Other works have used the term “plan library” to refer to complete plan hierarchies
from an agent’s root goal down to the basic level actions; see for example Nau et al. (1998).
We use the term “recipe library” to refer to a set of recipes.

12

. . .

AS[is = 11, pos = 5]

ADS[is = 11, id = 2, td = spinner, pos = 6]

ALE[is = 11, id = 2, ie = 1, le = a, pos = 7]

ALE[is = 11, id = 2, ie = 2, le = b, pos = 8]

AS[is = 9, pos = 9]

CEL[is = 11, id = 2, ie = 1, le = rain, pos = 10]

CEL[is = 11, id = 2, ie = 2, le = sun, pos = 11]

CPD[is = 11, id = 2, ss = 1 : 3, pos = 12]

ADS[is = 11, id = 3, td = mixer, pos = 13]

. . .

Figure 3: A snippet of an action sequence taken from a user’s interaction
with TinkerPlots

actions to users of the software in our analysis of users’ actions as pursuing
plans.

Users’ interactions with TinkerPlots are recorded as finite, chronological
sequences of basic actions that are performed by the users. It is these ac-
tion sequences that constitute the input to the plan recognition algorithm.
Figure 3 shows a portion of an action sequence for creating the stochastic
component (called a “device”) in the sampler of Figure 1a.4 For example,
the action ADS[is = 11, id = 2, td = spinner, pos = 6] (Add Device to Sampler)
refers to the action of adding a device with an identifier id = 2 and type
td = spinner to a sampler with an identifier is = 11. The pos parameter spec-
ifies the temporal position of the action within an action sequence; in this
case ADS is the sixth action performed by the user. Figure 4 provides a
key to abbreviations for all actions (in upper-case script) and parameters (in
lower-case script) used throughout the paper.

In the TinkerPlots domain, a recipe captures an ideal sequence of actions
for performing a particular activity. We represent each basic or complex
action type in TinkerPlots as a unique name (such as ADS for the basic

4This sampler was used to generate the data in Figure 2.

13

Basic Actions Parameters
ADS = Add Device to Sampler id = Device ID
ALE = Add Labelled Event ie = Event ID
AS = Add Sampler is = Sampler ID
CEL = Change Event Label le = Event Label
CPD = Change Probability in Device td = Device Type
CSA = Create Sampler with Event A ss = Subsection Size

pos = Temporal Position
Complex Actions
AED = Add Event to Device
CCD = Create Correct Device

Figure 4: Action and parameter abbreviation key

action Add Device to Sampler, or CCD for the complex action Create Correct
Device); they are parametrized to describe features of the objects to which
an instance of the action refers. We notate an action with its parameters
by placing the parameter values, keyed to the parameter names, in brackets
after the name. For example, the set of sub-actions for one of the possible
recipes for solving rain includes creating a sampler that models the weather
on four consecutive days, running the sampler, and plotting the results on
a graph. Examples of such samplers are shown in Figure 1a and Figure 1b.
An example of a graph is shown in Figure 2b.

Figure 5 shows a recipe for the complex action CCD, which creates the
sampler shown in Figure 1a. It includes two basic sub-actions, ADS and CPD,
as well as two complex AED (Add Event to Device) actions. This recipe also
contains several restrictions. The first, an ordering restriction, mandates
that a device must be added to a sampler (action ADS) before any events
are added to that device (action AED), which in turn must occur before the
probability of those events is changed (action CPD). The second and third
restrictions require that sampler and device identifiers are consistent across
these actions, and the fourth restriction requires that the surface area of
events be resized to a 3:1 ratio.

The purpose of giving TinkerPlots problems to students is to test their
ability to construct appropriate, applicable models for solving the problem.
We treat recipes as idealized descriptions of the use of TinkerPlots to solve
problems by constructing a plan for achieving the complex root action for

14

CCD→ ADS,AED1,AED2,CPD

where

ADS[pos] ≺ AED1[pos] ≺ AED2[pos] ≺ CPD[pos]

ADS[is] = AED1[is] = AED2[is] = CPD[is]

ADS[id] = AED1[id] = AED2[id] = CPD[id]

CPD[ss] = (3 : 1)

Figure 5: A recipe for the CCD (Create Correct Device) complex action

AED→ ALE,CEL

where

ALE[pos] ≺ CEL[pos]
ALE[is] = CEL[is]
ALE[id] = CEL[id]
ALE[ie] = CEL[ie]

Figure 6: A recipe for the AED (Add Element to Device) complex action

solving the problem. For example, a plan for the complex action CCD is
shown in Figure 7. Here, each complex AED action is decomposed into sub-
actions ALE and CEL using the recipe shown in Figure 6. The plan was
inferred from the student’s actions in the sequence shown in Figure 3, and
results in the creation of a spinner device, such as the one shown in Figure 1a
for solving the rain problem.

The flexible nature of TinkerPlots supports exploratory and open-ended
use of the software in several ways. First, students may perform extrane-
ous activities that do not play a salient part in the solution to the problem.
For example, the action AS[is = 9, pos = 9] in the student’s action sequence of
Figure 3 plays no role in the student’s plan in Figure 7. Second, students may
interleave the sub-actions of different complex actions. For example, in the
plan of Figure 7, the ALE[is = 11, id = 2, ie = 2, le = b, pos = 8] action in posi-
tion 8 (a sub-action of the complex action AED[is = 11, id = 2, ie = 2, le = sun, pos = 11]),

15

CCD[is=11, pos=12]

ADS[is=11,id=2,
pos=5]

AED[is=11, id=2, pos=10] AED[is=11, id=2, pos=11] CPD[is=11, id=2,
ss=1:3, pos=12]

ALE[is=11, id=2, ie=1,
le=a, pos=7]

CEL[is=11, id=2, ie=1,
le=rain, pos=10]

ALE[is=11, id=2, ie=2,
le=b, pos=8]

CEL[is=11, id=2, ie=2,
le=sun, pos=11]

Figure 7: A possible plan for the CCD complex action

temporally occurs among the actions ALE[is = 11, id = 2, ie = 1, le = a, pos = 7]
and CEL[is = 11, id = 2, ie = 1, le = rain, pos = 10] in positions 7 and 10 (sub-
actions of the complex action AED[is = 11, id = 2, pos = 10]). Lastly, students
may make mistakes when solving problems or only succeed in solving part of
the problem. The combination of these different properties make it challeng-
ing to recognize the plans underlying students’ interactions with TinkerPlots,
as we argue formally in the next section.

4 Grammars and Complexity

The general problem of recognizing whether a sequence of basic actions em-
beds a plan that accords with the recipes in the database includes satisfy-
ing an arbitrary set of constraints. This problem is at least as complex as
constraint satisfaction for the constraint language, which can be NP-hard or
worse depending on the particular of the constraint language. But even with-
out the solving of restrictions, the plan recognition problem is NP-complete.
Geib and Goldman (2009) show that a related plan recognition problem —
involving interleaving and ordering restrictions but not extraneous actions
— is NP-hard via a simple reduction from three-dimensional matching to a
grammar formalism they call plan tree grammars. The extension to our con-
text, in which extraneous actions in the log are allowed, is straightforward.

In this section, we review and extend the Geib and Goldman proof to
derive a complexity result for plan recognition in exploratory domains. For
simplicity, we use a simpler formal characterization than the plan tree gram-
mars used by Geib and Goldman. We define a grammar formalism that,
like plan tree grammars, allows interleaving, but unlike plan tree grammars,

16

has no temporal ordering restrictions. This allows us to greatly simplify the
description of the formalism. For concreteness, we call the formalism simple
plan grammars.

A simple plan grammar is structured exactly like a context-free gram-
mar, with a set of terminal and nonterminal symbols including a specified
start symbol, plus a set of productions rewriting a nonterminal symbol to a
sequence of terminals and nonterminals. As with other grammatical char-
acterizations of planning, the nonterminal symbols correspond to complex
actions and the terminal symbols to basic actions. Under this analogy, a
recipe corresponds to a grammatical production, a plan to a parse tree, and
an action sequence to a string to be parsed. Reconstructing a plan from an
action sequence relative to a recipe library would then correspond to parsing
a string relative to a grammar (Vilain, 1990).

Although simple plan grammars are structured identically to context-free
grammars, the language of a simple plan grammar is defined differently from
the corresponding context-free grammar, so as to manifest interleaving and
extraneous actions. (Indeed, one can think of a simple plan grammar as an
alternate interpretation of the context-free grammar notation.)

The language of a simple plan grammar is defined in two steps. First,
we define the base language of a simple plan grammar to be the language
of the corresponding context-free grammar. The language of a simple plan
grammar is then the set of all strings containing a subsequence that is a
permutation of a string in the base language.

This simple definition captures exactly the reordering, interleaving, and
extraneous action aspects of the plan recognition problem, while abstracting
away from temporal ordering and other constraints. The reordering and in-
terleaving is captured by the fact that all permutations of the base language
strings are in the language of the grammar. The extraneous actions are cap-
tured by including supersequences in the language as well, the extra symbols
constituting the extraneous actions.

What is not captured by simple plan grammars is the ordering restric-
tions. It is the ordering restrictions that greatly complicates the definition
of plan tree grammars. As we will show, the ordering restrictions are not
needed to carry through the NP-hardness proof, and therefore the simpler
formalism is sufficient for showing that the plan recognition setting we are
considering is NP-hard.

17

By way of example, consider the following productions:

S → M M M
M → a b c
M → d e f
M → g h i

(1)

If we take these to be the productions of a context-free grammar, the gram-
mar recognizes several strings, including the strings abcdefghi and abcabcabc.
However, when viewed as a simple plan grammar, it recognizes all superse-
quences of permutations of these strings, including the strings themselves,
but also strings like adgbehcfi or ihgfedcba or aaaabcdefghiaa.

It is easy to show that the problem of string recognition for simple plan
grammars is NP-complete. We extend the proof of Geib and Goldman (2009),
which uses a reduction from the NP-complete problem 3-Dimensional Match-
ing:

3-Dimensional Matching (3DM): Given three identically sized
disjoint sets W = {w1, . . . , wq}, X = {x1, . . . , xq} and Y =
{y1 . . . , yq}, and a set M ⊆ W ×X×Y , does there exist a match-
ing consisting of a subset M ′ ⊆ M of size q such that no two
elements of M ′ agree on any coordinate (that is, all elements of
W , X, and Y appear exactly once in M ′).

This problem was shown to be NP-complete by Karp (1972).
We reduce an instance of 3DM to a simple plan grammar as follows.

Given an instance of 3DM, we construct a simple plan grammar with two
non-terminals S (the start symbol) and M , and terminal symbols W ∪X∪Y .
The productions of the grammar include one for each element 〈w, x, y〉 of M :

M → w x y (2)

and a production generating q instances of nonterminal M :

S →
q times︷ ︸︸ ︷
M · · ·M (3)

Note that the base language of the grammar, that is, the language of the
productions when viewed as a context-free grammar, comprises strings all of

18

length 3q. Thus, if a string in the language includes all of the elements of
W , X, and Y , each must occur exactly once.

In addition, we construct the string s = w1 · · ·wqx1 · · ·xqy1 · · · yq contain-
ing each of the elements of W , X, and Y exactly once. We ask whether the
string s is admitted by the constructed grammar.

By way of example, the simple plan grammar (1) is exactly the one gen-
erated by this construction for the 3DM problem in which W = {a, d, g},
X = {b, e, h}, and Y = {c, f, i} and where M = {〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉}.
The constructed string to recognize would be adgbehcfi.

The construction has the property that s is admitted by the constructed
simple plan grammar if and only if the corresponding 3DM instance has a
solution. (In the example, the constructed string adgbehcfi is in the language
of the simple plan grammar because its permutation abcdefghi is in the base
language.) The argument is straightforward, and essentially that of Geib and
Goldman (2009), with variation only for the lack of ordering restrictions and
the issue of extraneous items.

If there is a solution to the 3DM problem, then there is a subset M ′ of
M that covers all and only the 3q elements of W ∪X ∪ Y . By construction,
then, there is a string in the base language that includes all of these elements
as well. The constructed string s is a permutation of that string, hence is in
the language of the simple plan grammar.

If the string s is in the language of the simple plan grammar, then there is
a context-free derivation for some permutation of some subset of the elements
of s. Because all strings in the base language are of length 3q, which is the
length of s itself, the base language string must be an improper subset, that
is, have exactly the elements of s. But in that case, a solution of the 3DM
problem can be read off of the context-free derivation of the base language
string. The particular M -productions used in that derivation correspond to
the M ′ subset.

This proof differs from that of Geib and Goldman (2009) in a few ways.
First, we do not incorporate ordering constraints in the rule M → w x y to
require w ≺ x and x ≺ y as they do. These constraints are not necessary,
because by construction the string to be recognized obeys such constraints
directly. The same is true of the proof by Geib and Goldman (2009); the
ordering constraints are superfluous there too. By observing the superfluity
of ordering restrictions for the proof, we allow a simpler grammar setup.

Second, our definition of the language of a simple plan grammar incorpo-
rates all supersequences of base language strings, corresponding to allowing

19

extraneous actions in logs in the plan recognition problem. The original proof
was modified to hold even in this context by forcing all base language strings
to include exactly 3q elements, the same as the constructed string to be rec-
ognized, so the issue of supersequences becomes irrelevant. Although the
simple plan grammar constructed does admit strings longer than 3q, they
are irrelevant to the argument, as the string to be parsed is of length 3q.
Forcing the string to be of length at least 3q is the role of the S production,
which has no analog in the Geib and Goldman proof.

Along similar lines, nothing in the constructed grammar enforces the
condition that the elements of M chosen are distinct (that is, that no M -
production is reused), and no such constraint on the grammar is necessary.
If such duplication were to occur, the string generated would have repeated
elements as well, but in that case, the derivation will never admit the string
to be recognized, which by construction has no repeated elements.

We can conclude, then, that simple plan grammar recognition is NP-hard.
The problem is also clearly in NP, as the constructed grammar is polynomial
in the size of the 3DM instance, and the context-free derivation for the base
language permutation of s serves as a polynomially-sized witness for the
recognition problem. Checking that the witness is for a permutation of s is
trivially done in polynomial time.

Thus, plan recognition in our model, in which recipes can be interleaved
and extraneous actions can be observed, is NP-hard as well. Indeed, this
holds whether or not extraneous actions can be observed; they were not made
use of in the proof. Similarly, no use was made of recursion in the grammar,
so a restriction to non-recursive recipes does not reduce the complexity. Fi-
nally, no use of ordering restrictions was made in the proof; satisfying such
restrictions makes the recognition problem only more complex.

Given the computational complexity of this plan recognition problem,
the question arises as to whether it can be solved in practice for problems
of the scope that confront us in real-world cases. We turn to heuristic plan
recognition algorithms and their performance in the next section.

5 Plan Recognition Algorithms

In this section we present several plan recognition algorithms that are able
to handle the interleaving and extraneous actions that are endemic to ex-
ploratory domains such as TinkerPlots. All of these approaches make use of

20

CCD

{ADS,AED,AED,AED,AED}

.

{ADS,AED,AED,CDT,CPD}

.

{ADS,AED,AED,CPD}

CPDAED

{ALE}

ALE

{ALE,CEL}

ALE,CEL

AED

{ALE}

ALE

{ALE,CEL}

ALE,CEL

ADS

Figure 8: A partial plan tree for the CCD complex action

a structure called a plan tree for representing and reasoning about recipes in
the database, essentially a search tree for capturing the set of possible plans
consistent with the recipe database. A plan tree has two types of nodes: and
nodes, whose children represent actions that must be carried out to complete
a recipe, and or nodes, whose children represent a choice of recipes for com-
pleting an action. The root, action C, is an OR node. For each recipe for
C, a child and node is added to the root and labeled with the sub-actions
of that recipe. The children of this and node are the plan trees of each
sub-action. A branch terminates when a basic action is reached, as a basic
action has no recipe by definition.

A partial plan tree for the CCD action is shown in Figure 8. The and
nodes contain set brackets, while or nodes do not. Triangles denote unfin-
ished subtrees which were omitted for expository convenience. The plan for
creating the spinner object shown in Figure 1a can be found by selecting the
leftmost child at each or node. This resulting plan mirrors the plan shown
in Figure 7.

5.1 Greedy Algorithms

We present two greedy algorithms for inferring users’ plans. Informally speak-
ing, the algorithms work bottom-up, starting with the user log, and itera-
tively replacing a set of actions that match the sub-actions of a given recipe
by the complex action the recipe implements so as to form a new action list.

A brute-force approach would involve non-deterministically finding all
ways in which a complex action might be implemented in the action list.
For example, the recipe library for the rain problem includes ten recipes
and six complex actions. The different recipes for the rain problem can
form 167,076 possible plans without considering different orderings between

21

actions.5 If we consider all possible orderings within recipes, we get that
there are 2,109,182,681,760 possible plans for the rain problem. Naively
considering each of these possibilities is infeasible.6 The heuristic approaches
presented in this section make various assumptions about exploratory do-
mains that serve to significantly reduce their complexity as compared to the
brute-force method. However, they are incomplete, in the sense that users
may construct valid plans that the algorithms fail to infer.

At each step t, the algorithms incrementally build a plan by maintaining
an ordered sequence of actions, denoted Pt. The action sequence P0, repre-
senting the “ground level” of the user’s plan, is denoted as X. During each
step, the algorithms attempt to replace subsets of actions from Pt with the
complex actions they represent. Each of the complex actions in Pt is a partial
plan that explains some activity in the user’s interaction.

Because our recipe formalization does not allow for recursion, we can
define an ordering over all complex actions in the plan library that reflects
their depth. Specifically, if B is a constituent sub-action for complex action
A, then all recipes for B must appear before the recipes for A in the ordering.
The heuristic algorithms consider recipes according to this order.

Both greedy algorithms are based on a function BuildPlan shown in
Figure 9 for constructing users’ plans bottom-up. BuildPlan takes two
inputs: An action sequence X, and a recipe library, R. The method calls
SortRecipes to topologically sort R by depth from lowest to highest.

For each recipe RC for complex action C, the action list Pt+1 and an
open list OL are initialized with the actions in Pt. The algorithm repeatedly
tries to find a match for Rc in the open list by calling the function Find-
Match(RC , OL), which returns a tuple (Mc, OL), representing the actions
MC in the match and a modified open list. (The two methods we shall soon
present for FindMatch modify the open list in different ways.) If a match
exists, BuildPlan removes the actions in MC from Pt+1 and replaces them
with the complex action C, placed where the latest action in the match oc-
curred. (In addition, it marks the actions in MC in Pt to be the children
of action C in Pt+1.) Actions are removed from Pt only when a match is

5For example, there are 16 possible ways to complete the CCD action, because there
are two possible recipes in our recipe library for each of the four MS actions.

6While it is theoretically possible to use string matching to align recipes to the action
sequences, a naive approach would need to consider a prohibitive number of possible
orderings. The complete approaches (the CSP algorithms) that we describe in the next
session essentially perform this matching more efficiently.

22

1: procedure BuildPlan(R, X) . R: a recipe list, X: an action
sequence

2: t← 0
3: P0 ← X . Pt: list of actions at stage t
4: for RC ∈ SortRecipes(R) do . RC : a recipe for action C
5: Pt+1, OL← Pt . OL: an open list
6: (MC , OL)← FindMatch(RC , OL) . MC : a match
7: while MC is not null do
8: Add C to Pt+1 positioned after last a ∈MC . a: an action
9: for all a ∈MC do

10: Create a branch from C in Pt+1 to a in Pt

11: Remove a from Pt+1

12: (MC , OL) = FindMatch(RC , OL, null)

13: t← t + 1

Figure 9: Bottom-up plan recognition method

found, according to the criteria defined in the method FindMatch. (We
will provide two possible types of criteria in the algorithms below). Once
no more matches for RC can be found, the algorithm moves on to the next
recipe, until all the recipes have been considered.

Figure 10 shows several stages of the BuildPlan procedure. Edges are
shown between complex actions in each step and their constituent actions in
the previous step. The first stage, titled P0, contains only basic user actions.
During the second stage, titled P1, two pairs of non-contiguous basic ALE and
CEL actions are found to be matches for two complex AED actions. This is
an example of interleaving actions, because in P0, the ALE constituent of the
second AED action is positioned between the ALE and CEL constituents of
the first AED action. In the third stage, a match for the CCD action is found,
whose sub-actions consist of the first ADS action, both complex AED actions,
and the CPD action. Figure 10 defines a structure that is similar to the ideal
plan for the CCD action shown in Figure 7, except that it explicitly indicates
the interleaving action sequences for the two AED actions, as well as includes
redundant actions that were not part of the plan (e.g., AS[is = 9, pos = 8]).

BuildPlan is a greedy approach because it does not backtrack. After it
chooses a match C for a given recipe RC , it replaces the actions in Pt+1 with
complex action C without looking ahead to future stages. As a result, the

23

...
ADS[is=11,id=2,td=spinner,pos=6]
ALE[is=11,id=2,ie=1,le=a,pos=7]
ALE[is=11,id=2,ie=2,le=b,pos=8]
AS[is=9,pos=9]
CEL[is=11,id=2,ie=1,le=rain,pos=10]
CEL[is=11,id=2,ie=2,le=sun,pos=11]
CPD[is=11,id=2,ss=3:1,pos=12]
ADS[is=11,id=3,td=mixer,pos=13]
... P0 P2P1

...
AS[is=9,pos=9]
CCD[is=11,id=2,pos=11]
ADS[is=11,id=3,td=mixer,pos=13]
...

...
ADS[is=11,id=2,td=spinner,pos=6]
AS[is=9,pos=9]
AED[is=11,id=2,ie=1,le=rain,pos=10]
AED[is=11,id=2,ie=2,le=sun,pos=11]
CPD[is=11,id=2,ss=3:1,pos=12]
ADS[is=11,id=3,td=mixer,pos=13]
...

Figure 10: Progression of BuildPlan over three steps

algorithm may fail to find a match for a recipe because a necessary sub-action
was committed to another match at an earlier stage. The complexity of the
BuildPlan algorithm is dominated by the complexity of the FindMatch
algorithm, call it CFM , discussed in the next section. Let |R| and |X| be the
number of recipes in R and the number of actions in the action sequence X,
respectively. Then, BuildPlan calls FindMatch at most |X| times per
recipe, yielding an overall complexity of O(|R| · |X| ·CFM) for BuildPlan.

5.1.1 Matching Algorithms

We present two possible matching algorithms for implementing the Find-
Match(RC , OL) process. Both of these make use of the Extends function,
a Boolean function that takes as input an action aP , a partial match MC , and
recipe RC . It returns true if aP can be added to MC , such that (1) aP corre-
sponds to one of the constituent sub-actions of RC and is not already in MC

and (2) the addition of aP to MC will not violate any of the recipe constraints
in RC . For example, the basic action ADS[is = 11, id = 2, td = spinner, pos = 6]
in the action sequence of Figure 3 extends the recipe for CCD shown in Fig-
ure 5 given that MC = ∅.

The Boolean function Fulfills(MC , RC) returns true if MC is a complete
match for the recipe RC . We then say that MC fulfills RC . Note that MC

24

can include both basic and complex actions. For example, the actions

ADS[is = 11, id = 2, td = spinner, pos = 6],

AED[is = 11, id = 2, td = spinner, pos = 10],

AED[is = 11, id = 2, td = spinner, pos = 11],

CPD[is = 11, id = 2, pos = 12]

fulfill the recipe for CCD shown in Figure 5.
Both of the matching algorithms choose actions that extend MC in any

order that is allowed by the restrictions of recipe RC . In particular, the
actions in OL may be non-contiguous; this allows the algorithms to capture
interleaving plans. However, the two methods differ in the way they update
the action list OL as they build a match.

1: procedure NoBktrk(RC , OL) . RC : a recipe, OL: an open list
2: MC ← null
3: for aP ∈ OL do . aP : an action
4: if Extends(aP , MC , RC) then . MC : a partial match
5: Add aP to MC

6: Remove aP from OL

7: if Fulfills(MC , RC) then
8: return (MC , OL)
9: else if MC is null then

10: return (null, OL)
11: else
12: clear MC and goto line 2

Figure 11: Algorithm for finding a match without backtracking

The first algorithm, NoBktrk(RC , OL), shown in Figure 11, is an ex-
tension of an earlier algorithm proposed by Gal et al. (2008). It receives as
input RC , a recipe for some complex action C and an open list OL, which
is initially equivalent to the action set in Pt+1. NoBktrk removes actions,
one by one, from the open list and places them into a partial match, MC .
Once removed from the open list, these actions will not be reconsidered until
a new recipe is provided at step t + 2.7

7We hypothesized that actions that occur late in the interaction process are more salient
than actions that occur earlier. However, in practice, traversing the open list in reverse
order and increasing order of the pos parameter yielded the same results.

25

The algorithm is quadratic in the size of the action sequence |X|. To
see this, consider that in the worst case, it takes a complete pass over the
action list, which is bounded by the size of the action sequence, to fulfill a
recipe. Because recipes in TinkerPlots are non-recursive, the number of times
a recipe can be fulfilled is also bounded by the size of the action sequence.
Therefore, the complexity of NoBktrk is O(|X|2).

1: procedure SomeBktrk(RC , OL) . RC : a recipe, OL: open list
2: return SomeBktrkRec(RC , OL, null)

3: procedure SomeBktrkRec(RC , OL,MC) . MC : a partial match
4: if Fulfills(MC , RC) then
5: return (MC , OL)

6: OL′ ← OL
7: for aP ∈ OL do . aP : an action
8: remove aP from OL′

9: if Extends(aP , MC , RC) then
10: Add aP to MC

11: (MC , OL) = FindMatch(RC , OL′, MC)
12: if Fulfills(MC , RC) then
13: return (MC , OL)

14: remove aP from MC

15: return (null, OL)

Figure 12: Algorithm for finding a match with depth-first search

The second algorithm for finding a match, called SomeBktrk, performs
a complete depth-first search given a recipe RC and an open list OL. It
defines a sub-function that extends a partial match MC with a single action,
and makes a recursive call to the sub-function. In contrast to the NoBktrk
algorithm, it is complete given a recipe RC and an open list OL; that is, it is
guaranteed to find a match for RC if one exists in OL. However, SomeBktrk
cannot guarantee that a plan is found, because BuildPlan itself is greedy.
Due to BuildPlan’s lack of forward-checking or backtracking across time
steps, SomeBktrk may assign an action to a match during an early step
and permanently remove that sub-action from the open list. SomeBktrk
may later be unable to fulfill a crucial recipe requiring the same sub-action
because a match no longer exists in the open list.

26

CSA→ AS,ADS,ALE
where

AS[pos] ≺ ADS[pos] ≺ ALE[pos]
AS[is] = ADS[is] = ALE[is]
ADS[id] = ALE[id]
ALE[le] = ’A’

Figure 13: A recipe for the CSA (Create Sampler with event “A”) complex
action

As an example of the way these two algorithms differ, consider a recipe for
a complex action CSA (Create Sampler with Event A) for creating a sampler
with one device and a single event labelled “A”, shown in Figure 13. Recall
that both NoBktrk and SomeBktrk algorithms extend the current partial
match by choosing actions in any order from the interaction sequence that
meets the recipe constraints. Given the action sequence shown in Figure 3,
the SomeBktrk algorithm, which is complete given the recipe for CSA and
the action sequence, will find the following match, which includes a sampler
with identifier is = 11 and device with identifier id = 2.

AS[is = 11, pos = 5],
ADS[is = 11, id = 2, td = spinner, pos = 6],
ALE[is = 11, id = 2, ie = 1, le = ’A’, pos = 7]

However, the NoBktrk may decide to add the following actions to the
partial match MC :

ADS[is = 11, id = 3, td = mixer, pos = 13],
AS[is = 11, pos = 5]

The NoBktrk algorithm will now try to find an ALE[is = 11, id = 3, le = ’A’]
action which relates to a device with identifier id = 3, which does not ex-
ist in the interaction sequence. Therefore, it will remove the actions in
the partial match from consideration. As a result, it will fail to find the
AS[is = 11, pos = 5] action in future calls, and will not be able to fulfill the
recipe.

To compute the complexity of SomeBktrk, let S be the maximum num-
ber of sub-actions in any recipe. A first-depth recursive call can be made at

27

CCD→ ADS,ALE1,CEL1,ALE2,CEL2,CPD

where

ADS ≺ ALE1,ALE2 ≺ CPD

CEL1,CEL2 ≺ CPD

ADS[is] = ALE1[is] = CEL1[is] = ALE2[is] = CEL2[is] = CPD[is]

ADS[id] = ALE1[id] = CEL1[id] = ALE2[id] = CEL2[id] = CPD[id]

Figure 14: Expanded version of CCD recipe

most |X| times. Within each of these recursive calls, at most |X| − 1 ac-
tions can remain in OL′. So, at most |X| − 1 second-depth recursive calls
can be made for each first-depth recursive call, yielding an overall maximum
of |X|(|X| − 1) second-depth recursive calls. After S − 1 recursive calls of
increasing depth have been made, a match must be completed or backtrack-
ing must occur. Within each lowest-depth recursive call, there can be at
most |X| − (S − 1) actions left to consider. So, a worst-case complexity of

SomeBktrk is O(|X|!
S!

).

5.2 Complete Algorithms

In this section we present two plan recognition algorithms that are complete.
Both algorithms work by converting the plan recognition problem into one
or more constraint satisfaction problems and using standard techniques for
their solution. The conversion makes use of the Expand function, shown
in Figure 15, to convert plans to flat representations containing solely basic
actions, called expanded recipes. Note that like their conventional counter-
parts, expanded recipes also include constraints defined over their set of
actions. The first complete algorithm performs the conversion naively, while
the second use a cascade of conversions to significantly reduce the size of
expanded plans.

Expand(TA) takes as input a plan tree TA for complex action A and
returns a set of expanded recipes for A. Each and node represents a possible
recipe for its parent node, a complex action. For each and node, Expand

28

recursively generates all expanded recipes for each sub-action of the recipe.
This algorithms alternates between two sub-procedures, DirectSum and
Union. Given a recipe, the DirectSum procedure computes all possible
replacements of complex sub-actions with basic actions. Each time a complex
action is replaced, DirectSum ensures that all restrictions involving the
complex action are propagated to its sub-actions. For example, consider a
single recipe RA with sub-actions B, C, and D:

A→ B,C,D

with restrictions:

B ≺ D

C ≺ D

Suppose also that recursive calls of Expand have found the expanded
recipes for B to be {E,F and the expanded recipes for C to be {G,H} and
{I, J}. In this case, DirectSum will return the following expanded recipes
for A:

{E,G,H,D}, {E, I, J,D}, {F,G,H,D}, {F, I, J,D}

with each recipe including either the restriction E ≺ D or F ≺ D in place
of the B ≺ D restriction, and including either the restriction G ≺ D and
H ≺ D, or I ≺ D and J ≺ D in place of the C ≺ D restriction. Lastly, the
Union sub-procedure takes the union over the expanded recipes generated
for each recipe of A.

An expanded recipe is a series of basic actions (with associated restric-
tions) that the user may perform to realize a potential plan. To create an
expanded recipe, a path is traversed through the plan tree, beginning at
the root and ending with basic actions at the leaves. This path provides a
trace of the plan corresponding to the expanded recipe. For example, one
expanded recipe can be achieved by traversing the plan tree in Figure 8 and
choosing the left-most recipe at each or node. Notice that the path taken
matches the plan in Figure 7. In this expanded recipe, each complex AED
action and its restrictions are replaced with two basic actions, ALE and CEL,
and corresponding restrictions, as shown in Figure 14.

The complexity of Expand is costly in the worst case. Let S be the
maximum number of complex sub-actions for each recipe, N be the maximum

29

1: procedure Expand(TC) . TC : the plan tree for action C
2: ERs[C] ← ∅ . ERs[C]: the expanded recipes for C
3: for all rj, a child of C do . rj: a recipe
4: ERs[rj] ← ∅
5: for all ai, a child of rj do . ai: an action
6: ERs[rj] ← DirectSum(Expand(Tai), ERs[rj])

7: ERs[a] ← Union(ERs[a], ERs[rj])

8: if ERs[a] = ∅ then
9: ERs[a] ← {a}

10: return ERs[a]

Figure 15: Algorithm for generating expanded recipes

number of recipes for a single complex action, and C be the number of distinct
complex actions. A plan tree has depth of at most C + 1, as we do not allow
for recursive recipes. At the lowest depth of the plan tree, all actions are
basic and do not have recipes. At the second lowest depth, complex actions
have at most N expanded recipes, as none of the N recipes contain any
complex sub-actions, At the third lowest depth, each recipe for a complex
action may contain at most S complex sub-actions, and each sub-action may
have at most N recipes. The DirectSum procedure then creates at most
NS expanded recipes per recipe. The Union procedure collects the expanded
recipes resulting from each recipe for that action, resulting in a maximum of
N(N)S, or NS+1, recipes. At the fourth lowest depth, each complex action
can again have at most N recipes with at most S complex sub-actions in each.
Each of these S sub-actions can contain at most N(N)S expanded recipes.
So, the DirectSum and Union procedures create at most N(N(N)S)S, or
NS2+S+1, expanded recipes per recipe. Continuing this reasoning, the top-
level action can have at most NΣC−1

i=0 Si
recipes, yielding an overall complexity

of NO(SC).

5.2.1 Constraint Satisfaction Algorithms

In this section we explain how to combine an expanded recipe and action
sequence to create a constraint satisfaction problem (CSP). A solution to the
resulting CSP is the plan representing the users’ activities. Formally, a CSP
is a triple (X,Dom,C), where X = {x1, . . . , xn} is a finite set of variables

30

1: procedure ConvertToCSP(EA = (S,R), X) . EA: an expanded
recipe S and restrictions R for complex action A, X: an action sequence

2: for all s ∈ S do . S: a set of sub-actions
3: AddVariableAndDomain(s, X)

4: for all r ∈ R do . R: a set of restrictions
5: AddRestrictionConstraint(r)

6: for all s ∈ S do
7: AddRedundancyConstraint(s)

Figure 16: Converting an expanded recipe and action sequence to a CSP

with respective domains Dom = {D1, . . . , Dn}, each a set of possible values
for the corresponding variable, Di = {vi1, . . . , vik}, and a set of constraints
C = {c1 . . . , cm} that limit the values that can be assigned to any set of
variables.

The algorithm ConvertToCSP, shown in Figure 16, receives as input
an expanded recipe EA and an action sequence X and returns a CSP. If a
solution exists for this CSP, a subset of the actions in X realize the expanded
recipe EA. We first show how to create variables in the CSP, and we use as
a reference Figure 17, which provides a graphical representation of the CSP
resulting from the action sequence of Figure 3 and the expanded recipe of
Figure 14. We used a graphical layout suggested by Dechter (2003). Note
that parameters belonging to actions are not pictured unless they participate
in some constraint.

Let S = {s1, . . . , sn} and R be the set of sub-actions and restrictions in the
expanded recipe, respectively. Each action in S becomes a unique variable in
the CSP by calling the subroutine AddVariableAndDomain(s,X). Based
on the expanded recipe, six variables are added at this time: ADS, ALE1,
CEL1, ALE2, CEL2, and CPD. These variables appear, outlined, in the graph
of Figure 17. Each variable’s domain is then derived from the actions in the
action sequence. For each occurrence of action s in the action sequence, a
value is added to the domain of s in the CSP. The right-hand box of Figure 17
gives the resulting domain for each variable based on the action sequence.

Lastly, we add restrictions to our CSP. For each restriction r in R over
actions (s1. . . . , sm) in S, a constraint over the corresponding CSP variables
is added to the CSP using the AddRestrictionConstraint(r) subrou-
tine. At this point, all restrictions listed in Figure 14 are added, including

31

ALE1

ADS CPD

CEL1

ALE2 CEL2

= [is,id]

= [is,id]

= [is,id]

= [is,id]

= [is,id]

= [is,id]

[ss] = (3:1)

Variable: Domain

ADS:

ALE1,ALE2:

CEL1,CEL2:

CPD:

ADS[is = 11, id = 2, td = spinner, pos = 6],

ADS[is = 11, id = 3, td = mixer, pos = 13]

ALE[is = 11, id = 2, ie = 1, le = a, pos = 7],

ALE[is = 11, id = 2, ie = 2, le = b, pos = 8]

CEL[is = 11, id = 2, ie = 1, le = rain, pos = 10],

CEL[is = 11, id = 2, ie = 2, le = sun, pos = 11]

CPD[is = 11, id = 2, ss = 1 : 3, pos = 12]

[pos] [pos]

Figure 17: CSP resulting from an action sequence and an expanded recipe

CPD[ss] = (3 : 1). Directed edges in the figure represent temporal constraints
between two variables. Undirected edges represent other parametric con-
straints. The edge from ADS to ALE1 expresses the constraint ADS ≺ ALE1

as well as the constraint ADS[is, id] = ALE1[is, id].
For variables corresponding to the same action, additional redundancy

constraints are added using the AddRedundancyConstraint subroutine.
These constraints ensure that such variables are assigned distinct values,
as these variables share the same domain. An example is the constraint
connecting the ALE1 and ALE2 variables, which requires that these variable
assignments have distinct pos parameters.

5.2.2 Brute Force Algorithm

A solution for a CSP provides a match between an expanded recipe and an
action sequence. In this section we present two algorithms that use CSPs
to output a plan from an action sequined X for a desired complex action C
given a set of recipes R.

The first algorithm, shown in Figure 18, takes a brute force approach,
calling Expand to generate each expanded recipe for C, converting it to a
CSP and solving the CSP. This algorithm returns the first solution found to
the CSP or ∅ if no solution is found.

The complexity of CSPbrute can be analyzed in terms of the Find-
Match2 and Expand procedures. Recall that calling Expand results in
at most NO(SC) expanded recipes, where N is the the maximum number of
recipes for a single complex action. In the worst case, all expanded recipes
are considered, and for each expanded recipe a CSP solver must be run.
The complexity of this CSP solver can be bounded by the complexity of a
complete backtracking search, which we have seen to be |X|!

S!
. So, an overall

32

1: procedure CSPbrute(TC ,X) . TC : the plan tree for action C, X: an
action sequence

2: E ← Expand(TC) . E: a set of expanded recipes
3: for all e ∈ E do
4: C← ConvertToCSP(e, X) . C: a CSP
5: solution ← Solve(C)
6: if solution 6= ∅ then
7: return solution
8: return ∅

Figure 18: Brute force algorithm

worst-case complexity of CSPbrute is NO(SC)O(|X|!
S!

).

5.2.3 Pruning Algorithm

The second algorithm, shown in Figure 19, takes a more sophisticated ap-
proach and traverses the plan tree from the bottom-up. At each or node,
the algorithm determines whether the user completed the corresponding sub-
action by either calling CSPbrute or referring to the cached result of an
earlier CSPbrute call. If the user failed to complete that sub-action, the
algorithm prunes the relevant recipe, the parent of the current node, from
the tree, as the user cannot complete a recipe without completing each sub-
action in that recipe. By eliminating branches from the plan tree for the
desired complex action C, this pruning process narrows the search space of
possible expanded recipes for root action C. This algorithm was suggested
by Quilici et al. (1998).

The CSPprune method calls the CSPbrute algorithm once per distinct
complex sub-action. Let C again represent the number of distinct complex
sub-actions in our recipe list. Then, the worst-case complexity of the pruning
method is NO(SC)O(C|X|!

S!
). The worst case occurs when the user has com-

pleted each of the C complex actions, causing no potential expanded recipes
to be eliminated. However, we hypothesized that users would be likely to
solve TinkerPlots problems just once, and therefore some complex actions
within the plan trees would not be matched in the action sequence.

33

1: procedure CSPprune(C, R, X) . R: a recipe library, X: an action
sequence

2: TC ← CreateRecipeTree(C,R) . TC : the plan tree for action C
3: Perform a bottom-up traversal of TC .
4: for each OR node representing action A do
5: if A has not been cached then
6: Cache solution[A]← CSPbrute(TA, X)

7: if solution[A] = ∅ then
8: Prune parent of A from TA

9: return solution[C]

Figure 19: Bottom-up algorithm

6 Evaluation

The plan recognition problem inherent in domains such as TinkerPlots, where
agents are engaged in exploratory behavior with false starts in addition to
successful plan construction, leads, as we have shown, to an NP-complete
computation. The algorithms presented in the previous section, both incom-
plete and complete, were intended to allow solution of real-world problems in
practice, despite the complexity issue inherent in the problem. To determine
their real-world performance, we collected actual logs of TinkerPlots usage on
standard pedagogical problems, and compared the algorithms’ coverage and
performance. The results show that the best of the algorithms has excellent
coverage and practical performance.

6.1 Experimental Design

We collected interaction sequences of people’s interaction with TinkerPlots in
two different settings. The first setting included 12 adults with a wide variety
of educational backgrounds, ranging from some high school to some post-
graduate education. The second setting included 12 eighth grade students in
a middle school in Cambridge MA.8 Each adult subject received an identical
30-minute tutorial about TinkerPlots and was then asked to complete four
problems in succession; these problems are detailed in Appendix A. Students

8Appropriate IRB approval was obtained for both settings, and parental consent was
obtained for the data collected from the eighth graders.

34

were given a slightly longer 45 minute demonstration of the software and were
asked to solve two of the four problems. User logs and videos of the users’
screens were recorded for all user sessions. TinkerPlots is equipped with
a logging facility that records the basic actions that make up users’ action
sequences. To evaluate the various plan recognition algorithms, we manually
traced the videos of their interaction with TinkerPlots. We noted whether
each problem was solved, and we constructed the (possibly multiple) plans
used to solve the problem. We define a recognition algorithm to be “correct”
if the plans that it outputs exactly corresponds to the plans constructed from
the videos, or if it fails to output a plan when the student did not successfully
complete the problem as determined by an expert.9 If a user has solved a
problem in several different ways, a recognition algorithm is deemed correct
if it recognizes any of these solutions.

We created a set of recipes to the TinkerPlots problems in our study
to serve as input to the plan recognition algorithms. Our purpose in this
study was to evaluate algorithms for matching these ideal solutions with the
appropriate basic level actions in users’ interaction sequences. Therefore,
the recipes we manually constructed were created prior to the collection of
and were not informed by the data of people’s interactions with TinkerPlots.
Rather, they represented what we perceived a priori to be a broad range
of possible solutions for TinkerPlots problems. Ultimately, our database
contained recipes sufficient to explain all but three user interactions. The
lack of inclusion of these recipes is discussed in Section 6.2.2. The recipe
library used to run the recognition algorithms on each problem consisted
of those recipes that were constructed for the problem. This corresponds
to knowing which TinkerPlots problem students are trying to solve. This
assumption is logical in the context of pedagogical software.10

6.2 Results and Discussion

We compared the performance of the four recognition algorithms presented,
called the NoBktrk, SomeBktrk, CSPbrute, and CSPprune tech-

9The domain expert was a researcher of educational technology who has worked with
TinkerPlots for several years. For each action sequence, the expert was shown a movie of
the desktop of the user, as well as the plan outputted by the algorithm.

10Dropping this assumption corresponds to running our algorithms using a recipe data
base that contains the complete set of recipes for all problems. This may affect correctness
for the greedy algorithms, but not for the complete algorithms.

35

possible plans S N C
rosa O(26) 4 2 13
rain O(217) 4 2 6

earrings O(211) 4 2 6
seatbelts O(212) 4 4 6

Table 1: Number of possible plans per problem, maximal number of complex
actions per recipe (S), maximal number of recipes for a single complex action
(N), maximal number of distinct complex actions (C).

Algorithm
Data Problem NoBktrk SomeBktrk CSPbrute CSPprune

Adults + rosa (23) 78% (18) 87% (20) 100% (23) 100% (23)
Students rain (16) 88% (14) 88% (14) 100% (16) 100% (16)

seat belts (12) 42% (5) 67% (8) 75% (9) 75% (9)
Adults earrings (11) 91% (10) 100% (11) 100% (11) 100% (11)

Overall (62) 76% (47) 85% (53) 95% (59) 95% (59)

Table 2: Accuracy of recognition algorithms by percentage. Parenthesized
numbers are the number of logs.

niques.11 We analyzed the user logs corresponding to the problems outlined
in Appendix A. Table 1 lists features for each problem that affect the com-
plexity analysis of Section 5.1.1.

The analyzed user logs ranged in length from 14 to 80 actions. The av-
erage length of an interaction sequence for problems collected from adult
subjects was 35 actions. Adults solved the assigned problems 70% of the
time. In contrast, the average length of an interaction sequence for problems
collected from students was 68 actions. Students solved the assigned prob-
lems 60% of the time. Also, people engaged in exploratory behavior using
the software. For example, there were on average 15 exogenous actions in
each problem that was obtained from adults.

Table 2 shows the accuracy of the recognition algorithms on data col-
lected for students and adults. As shown by the Table, the heuristic al-
gorithms NoBktrk and SomeBktrk were correct for 47 of 62 (76%) and

11We used the python-constraint package created by Gustavo Niemeyer and available
at http://labix.org/python-constraint to implement our constraint satisfaction al-
gorithms.

36

53 of 62 (85%) interactions, respectively. The heuristic algorithms were out-
performed by both CSPbruteForce and CSPprune algorithms, which
performed correctly for 59 of 62 (95%) interactions. The incorrect inferences
in all algorithms were false negatives, that is, the algorithms were unable to
find solutions existing within the interaction sequence. All of the solutions
outputted by all of the algorithms matched the expert’s opinion regarding
the activities used by the students.

The constraint satisfaction algorithms are guaranteed to find users’ plans
if they exist, provided that the relevant recipes are contained in the recipe
database. Each of the three incorrect inferences of these algorithms can
be traced to recipes missing from the database. In addition to incorrect
inferences due to missing recipes, the incomplete approaches suffered from
prematurely committing to a match without being able to backtrack. An ex-
ample of the latter case occurred frequently within the seat belts problem
(see Appendix). This problem required the user to construct a conditional
distribution representing the fact that people wearing seat belts are less likely
to be hurt in an accident. Some users created a sampler with the wrong dis-
tribution parameters and proceeded to correct these parameter settings. The
incomplete approaches tended to match sub-recipes for creating a sampler
with actions corresponding to the wrong parameters. Consequently, they
failed to find matches for the sampler construction recipe. In contrast, the
CSP algorithms were able to backtrack and pick the right match for the
expanded sampler construction recipe.

6.2.1 Performance of Algorithms on Ecologically Realistic Data

There was a significant difference in the performance of the heuristic algo-
rithm on data that was obtained from adults and the data that was obtained
from middle school students. Figure 20 shows the average accuracy of the
plan recognition algorithms on student data (left, 19 instances) and adult
data (right, 20 instances) from two problems, rosa and rain.12 The Figure
details the performance of these algorithms when correctly identifying suc-
cessful solutions (true positives), correctly identifying failed solutions (true
negatives), and incorrectly identifying failed solutions (false negatives).

As shown in Figure 20, both of the heuristic algorithms were always able
to recognize unsolved problems (true negatives). There were 6 such cases

12We performed analysis on these two problems for which we have both student and
adult data.

37

NoBktrk

SomeBktrk

CSP

positive

negative

positive

negative

avg student

True Negative

True Positive

total

false neg

avg adult

True Negative

True Positive

total

False
Negative

RAIN

Heuristic CSP
23 30
69 70

Heuristic CSP
23 30
69 70

NoBktrk SomeBktrk CSP
0.596153846 0.596153846 0.596153846
0.365384615 0.365384615 0.403846154
0.961538462 0.961538462 1
0.038461538 0.038461538 0

NoBktrk SomeBktrk CSP
0.3 0.3 0.3
0.4 0.5 0.7
0.7 0.8 1
0.3 0.2 0

7/7

6/7

6/7

12/12

12/12

12/12

100%

100

80%

70%

6/7

14/14

6/6

6/6!

6/6 10/14

8/141/7

1/7

True Negative True Positive False Negative

6/14

4/14

100%

96%

96%

Figure 20: Performance for data obtained from students (left) and adults
(right)

for adult data and 12 cases for student data). More generally, for student
data the accuracy of both heuristic algorithms averaged 96%, just 4% lower
than the accuracy of the complete CSP algorithms for this data. However,
for adult data, the average accuracy of the heuristic algorithms was 75%,
significantly lower than that the average accuracy of the CSP algorithms.
This is also apparent from Table 3, which compares the precision and recall
measures of the different approaches on student and adult data. All of the
algorithms achieved perfect precision, because there were no false positive
classifications, as we described above. The complete CSP algorithms both
achieved perfect recall because they did not incur false negatives. For the
heuristic approaches, both NoBktrk and SomeBktrk algorithms achieved
lower recall measures than the CSP approaches for both student and adult
data. However, the average recall measure achieved by the heuristic ap-
proaches for student data was significantly higher than the average recall
they achieved for adult data.

To explain the effect of the type of the setting on the various plan recog-
nition algorithms, we compared the number of times in which students and
adults were able to solve the problems that were assigned to them. As shown
in Figure 20 students were able to solve TinkerPlots problems less often than
adults (for students, 12 data instances represented failures out of a total of
19 instances; for adults, 6 data instances represented failures out of a total of
20 instances). We attribute this to the fact that students were more likely to
engage in exploratory behavior or to make mistakes while using TinkerPlots,

38

Algorithm
Data

NoBktrk SomeBktrk CSP
Student (1, 0.86) (1, 0.86) (1, 1)
Adult (1, 0.57) (1, 0.71) (1,1)

Table 3: Precision (left) and recall (right) measures for student and adult
data

as is attested by their longer interaction sequences. Thus, one explanation
for the success of the heuristic algorithms when analyzing student data is
that there were more true negative classifications for student data, and these
were always recognizable by our recognition algorithms.

However, the performance of the heuristic algorithms on student data
cannot be attributed solely to the fact that there were more true negative
classifications for student data. Both of the heuristic algorithms also achieved
higher accuracy rates for students than for adults on data instances represent-
ing true positives. As shown by Figure 20, for student data, the heuristic
algorithms were able to recognize 6 out of 7 true positive instances (aver-
age accuracy 85%), but were only able to recognize 8 and 10 out of 14 true
positive instances (average accuracy 65%) for adult data. Thus, both NoBk-
trk and SomeBktrk algorithms were better at recognizing successful and
unsuccessful plans for students than for adults. These results provide addi-
tional support for the applicability of these algorithms, showing that they are
particularly suitable for data that was obtained in an ecologically realistic
fashion, rather than a lab setting.

6.2.2 Limitations of Approaches

A significant hurdle to accurate recognition is the difficulty of expressing
certain types of user strategies as recipes. As previously mentioned, both
the greedy and constraint satisfaction algorithms were susceptible to the fact
that the recipe database failed to capture all of the possible ways in which
people solved problems. Because we do not allow recipes to be defined recur-
sively, our recipes can only specify that a fixed, rather than variable, number
of actions occur. In the rain problem, for instance, there are several possible
samplers that model the probability of rain as 75%. A natural solution is
one (as in Figure 1a) in which there are unique events for “rain” and “sun”,

39

causing “rain” to be weighted as three times more likely than “sun”. In
actuality, any proportional number of “rain” and “sun” events would suf-
fice, as long as “rain” is three times more likely than “sun”. This limitation
prevented our library from succinctly expressing the infinite number of per-
missible strategies – three of which were used by students – for the seat
belts problem.

Although there were no false-positive classifications in our experimental
sessions, they can happen in theory. One reason for this is that the recipe
language cannot express actions that must not occur. For example, the
rosa problem requires the user to create a device with four events labelled
R, O, S, and A. If a fifth event were added, the sampler would no longer be
correct. However, all of our recognition algorithms would incorrectly match
the actions corresponding to the four previous values with the recipe for
creating a sampler.

It is possible to construct plans using recipes that cannot happen in prac-
tice because they are disallowed by the software. For example, two interleaved
actions may add and delete each other’s preconditions.

Finally, we note that our recipes are not designed to describe approxi-
mately correct user approaches. For example, one problem required users to
add two identically labeled events to a device, without specifying what that
label must be. One user failed to complete this task according to the recipe
database because he or she used event labels “pierced” and (sic) “piecred”.
Despite this oversight, a teacher would likely consider this strategy a suc-
cessful one. However, our algorithms were unable to distinguish this mistake
from other, more conceptual mistakes. One way to overcome such difficulties
is to search for the “closest” plan for explaining users’ TinkerPlots activities
in terms of recipes, rather than searching for only complete and correct plans.
This can be done by using flexible CSP solvers, which search for solutions
that minimize the number of violated constraints.

6.2.3 Performance Considerations

In this section we compare the performance incurred in practice by the four
recognition algorithms we have presented (measured as run-time on a com-
modity computer). By working to recognize interleaving plans in user logs
containing incorrect strategies and up to 80 actions, we test whether the
worst-case exponential complexity presents a significant barrier to real-world
plan recognition. In Table 4 we present run-times for each of our four algo-

40

Algorithm

Problem NoBkrk SomeBktrk CSPbrute CSPprune

rosa 0.15 3.34 0.11 0.09
rain 0.35 0.54 131.54 21.88
seat belts 0.02 0.34 6.07 8.42
earrings 0.01 1.82 6.92 3.99

Overall 0.13 1.54 36.75 8.02

Table 4: Average runtime (in seconds) of recognition algorithms

rithms organized by increasing theoretical computational complexity. These
results are averaged over all action sequences for each problem.

As shown in the table, the average run-time of the heuristic approaches,
which employed limited or no backtracking, was significantly faster than that
of the complete approaches. Within the complete approaches, the pruning
algorithm was significantly faster than the brute force algorithm. This is
because there were “dead-ends” in the recipe tree that the pruning algorithm
was able to exploit. As can be seen in the table, CSPprune outperformed
the CSPbruteForce algorithm, and in reasonable time, despite having
greater worst-case complexity. However, in cases where the pruning approach
fails to eliminate branches from the plan-trees, it may turn out to be slower
than the brute force approach. For example, as shown in the Table, for the
seat belts problem, the CSPbruteForce algorithm was faster than the
CSPprune algorithms.

To examine the relationship between runtime and student interaction
length, we measured the correlation between these variables for each algo-
rithm. The heuristic algorithms NoBktrk and SomeBktrk showed pos-
itive correlations between runtime and interaction length of .752 and .508,
respectively. The CSPbruteForce algorithm showed a negative correla-
tion of -.333, while CSPprune showed a very weak, positive correlation of
.050. Also, as shown in Table 4, the complete approaches were significantly
slower when running on rain than when running on the other problem. The
number of possible plans for rain, as shown in Table 1, was significantly
higher than the number of possible plans for the other problems.

These results support our complexity findings that the bottleneck of the
incomplete algorithms is the size of the user’s interaction log, while the bottle-

41

CSPbrute CSPprune

Problem CSPs Variables CSPs Variables

rosa 19 18 14 4
rain 9300 29 141 9
seat belts 347 23 298 11
earrings 292 21 176 14

Overall 2490 23 157 10

Table 5: Average number of CSPs and variables for constraint satisfaction
algorithms

neck of the complete algorithms is the complexity of the recipe library. These
results also demonstrate the applicability of our algorithms to be used in ac-
tual classrooms. As shown in Table 1, the number of possible plans for some
TinkerPlots problems is is very large. Despite this fact, the almost-perfect
record of the heuristic approach, and the short runtime of the complete ap-
proaches on these instances speaks well for their overall performance.

Lastly, to further compare the performance of our constraint satisfaction
algorithms, Table 5 presents two additional statistics: the average number
of CSPs built per log and the average number of variables contained in each
CSP. CSPprune outperforms CSPbruteForce in each category, building
fewer and smaller CSPs, on average.

7 Future Work and Conclusion

This paper investigated a class of plan recognition problems for domains
in which agents engage widely in exploratory behavior. We showed that
constraint satisfaction algorithms are a viable and practical approach for plan
recognition in one such domain, that of an educational software application.
These algorithms were able to correctly capture users’ plans in real-world
logs of users’ sessions in reasonable time despite the theoretical worst-case
behavior and the flexible nature of the software. The algorithms compared
favorably to faster but greedier approaches.

This work is a first step towards a pedagogical agent that is truly col-
laborative, in the sense that it provides useful machine-generated support

42

to teachers and students. For teachers, this support consists of information
about students’ performance both during and after class. For example, pre-
senting teachers with a visualization of students’ plans will convey whether
and how students solved a particular problem more quickly than would be
possible if they had to analyze snapshots. Teachers can also benefit from the
fact that our algorithms capture false starts and incorrect solutions, alert-
ing them to mistakes and misconceptions by the students. Existing systems
for assessing students’ performance with pedagogical software work in highly
constrained settings, and report simple statistics, such as the number of cor-
rect answers solved (Feng et al., 2009). Our work extends such systems to
exploratory domains, in which students’ performance can be explained in part
by inferring their plans. In a recent user study we conducted with teachers
using TinkerPlots in the classroom, teachers favored the plan-based presen-
tation to other types of visualizations, such as seeing selected snapshots of
the students’ work.

We are currently extending these results in two ways. First, we are devel-
oping methods for presenting plan recognition output to teachers in order to
provide them with a broad and organized view of students’ activities. Second,
we are evaluating the ability of the algorithms to generalize to a different ped-
agogical software system for teaching chemistry to college students (Yaron
et al., 2009).

This work raises several new opportunities for involving the use of plan
recognition algorithms as a basis for building intelligent tutors that will aug-
ment existing software tools for mathematics education. These collaborative
tutors will provide machine-generated support that decides when and how to
intervene with students based on teachers’ feedback to the plans inferred by
the system. They will contribute to the thoughtful analysis of probabilistic
models by students and increased ability of teachers to identify those stu-
dents who would benefit from teacher advice. Together these abilities should
lead to improvements in both teaching and learning.

8 Acknowledgments

This work was supported by NSF grant number REC-0632544. We are in-
debted to Craig Miller for developing the TinkerPlots logging facility. Thanks
very much to the anonymous reviewers for their helpful comments. Thanks
to Elif Yamangil for assisting with the development of the greedy algorithm,

43

and to Cliff Konold for helpful discussions. A special thanks goes to Ofra
Amir for reading and commenting on previous drafts of this work.

A Experimental Problems

We detail the four TinkerPlots questions posed to subjects and considered
in our empirical evaluation of the algorithms.

rosa: Jessica has 4 letters printed on cards: R, O, S, and A. After mixing
them up, she blindly picks the 4 letters one at a time and arranges
them in line in the order she chose them. Build a TinkerPlots model
and use it to help you estimate the probability of Jessica spelling the
word ROSA.

rain: There is a 75% chance of rain for each of the next 4 days. Build a
TinkerPlots model and use it to help you estimate the probability of
getting rain on all 4 days.

seat-belts: If you get into an accident, you are much less likely to be
injured if you are wearing your seat belt. Build a TinkerPlots model
for people that

1. are either wearing seat belts or not,

2. then are either injured in accident or not injured in an accident.

Design your factory so that the people wearing seat belts are less likely
to get injured than those not wearing them. In your model, what is
the probability of people being injured in an accident? What is the
probability of being injured in an accident when you are wearing a
seat-belt?

earrings: Build a TinkerPlots factory that

1. makes people that are girls or boys,

2. then either pierces their ears or not.

According to your model, what is the probability that

1. a boy has a pierced ear?

44

2. a girl has a pierced ear?

According to your model, approximately what fraction of people you
meet on the street will have pierced ears?

References

D.W. Albrecht, I. Zukerman, and A.E. Nicholson. Bayesian models for key-
hole plan recognition in an adventure game. User modeling and user-
adapted interaction, 8(1):5–47, 1998.

J. R. Anderson, A. T. Corbett, K. R. Koedinger, and R. Pelletier. Cognitive
tutors: Lessons learned. The Journal of Learning Sciences, 4(2):167–207,
1995.

D. Avrahami-Zilberbrand and G.A. Kaminka. Fast and complete symbolic
plan recognition. In Proceedings of the International Joint Conference on
Artificial Intelligence, volume 14, 2005.

T. Babaian, B. J. Grosz, and S. M. Shieber. A writer’s collaborative assistant.
In Intelligent User Interfaces Conference, pages 7–14, 2002.

G. E. Barton. On the complexity of ID/LP parsing. Computational Linguis-
tics, 11(4):205–218, 1985. ISSN 0891-2017.

M. Bauer. Acquisition of user preferences for plan recognition. In Proceedings
of the Fifth International Conference on User Modeling, pages 105–112,
1996.

M. Bauer, S. Biundo, D. Dengler, J. Koehler, and G. Paul. A logic-based tool
for intelligent help systems. In Proc. 13th International Joint Conference
on Artificial Intelligence (IJCAI), 1993.

J. E. Beck and B. P. Woolf. Using a learning agent with a student model. In
Proc. of 4th international conference on Intelligent Tutors, 1998.

N. Blaylock and J. Allen. Recognizing instantiated goals using statistical
methods. In Workshop on Modeling Others from Observations, pages 79–
86, 2005.

45

M. E. Bratman. Intention, Plans, and Practical Reason. Harvard University
Press, Cambridge, MA, 1987.

M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded
practical reasoning. Computational intelligence, 4(3):349–355, 1988.

J.S. Brown and R.R. Burton. Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive science, 2(2):155–192, 1978.

H.H. Bui. A general model for online probabilistic plan recognition. In
Proc. 18th International Joint Conference on Artificial Intelligence (IJ-
CAI), 2003.

S. Carberry. Plan Recognition in Natural Language Dialogue. MIT Press,
1990.

S. Carberry. Techniques for plan recognition. User Modeling and User-
Adapted Interaction, 11(1):31–48, 2001.

E. Charniak and R. P. Goldman. A Bayesian model of plan recognition.
Artificial Intelligence, 64(1):53–79, 1993.

P.R. Cohen, C.R. Perrault, and J.F. Allen. Beyond question-answering. In
W. Lehnert and M. Ringle, editors, Strategies for Natural Language Pro-
cessing, pages 245–274. 1981.

C. Conati, A. Gertner, and K. VanLehn. Using Bayesian networks to manage
uncertainty in student modeling. Journal of User Modeling and User-
Adapted Interaction, 12(4):371–417, 2002.

A. Corbett, M. McLaughlin, and K. C. Scarpinatto. Modeling student knowl-
edge: Cognitive tutors in high school and college. User Modeling and
User-Adapted Interaction, 10:81—108, 2000.

D. Davidson. Intending. In Essays on Actions and Events, pages 83–102.
Clarendon Press, 1980.

R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

M. Feng, N. Heffernan, and K. Koedinger. Addressing the assessment chal-
lenge with an online system that tutors as it assesses. User Modeling and
User-Adapted Interaction, 19(3):243–266, 2009. ISSN 0924-1868.

46

Y. Gal, E. Yamangil, A. Rubin, S. M. Shieber, and B. J. Grosz. Towards
collaborative intelligent tutors: Automated recognition of users’ strategies.
In Proceedings of Ninth International Conference on Intelligent Tutoring
Systems (ITS), Montreal, Quebec, 2008.

G. Gazdar. Generalized phrase structure grammar. Harvard Univ Pr, 1985.

C. W. Geib and M. Steedman. On natural language processing and plan
recognition. In Proceedings of the 20th international joint conference on
Artifical intelligence (IJCAI), pages 1612–1617, San Francisco, CA, USA,
2007. Morgan Kaufmann Publishers Inc.

C.W. Geib and R.P. Goldman. A probabilistic plan recognition algorithm
based on plan tree grammars. Artificial Intelligence, 173(11):1101–1132,
2009.

M. Ghallab, D.S. Nau, and P. Traverso. Automated Planning: theory and
practice. Morgan Kaufmann Publishers, 2004.

R.P. Goldman, C.W. Geib, and C.A. Miller. A new model of plan recognition.
In Proc. 15th Conference on Uncertainty in Artificial Intelligence (UAI),
1999.

B. J. Grosz and C. L. Sidner. Plans for discourse. Intentions in Communi-
cation, pages 417–444, 1990.

J. K. Hammerman and A. Rubin. Strategies for managing statistical com-
plexity with new software tools. Statistics Education Research Journal, 3
(2):17–41, 2004.

E. Horvitz. Principles of mixed-initiative user interfaces. In Proc. of ACM
SIGCHI Conference on Human Factors in Computing Systems, 1999.

R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages
85–103. New York, 1972.

H. A. Kautz. A formal theory of plan recognition. PhD thesis, University of
Rochester, 1987.

C. Konold and C. Miller. TinkerPlots Dynamic Data Exploration 1.0. Key
Curriculum Press, 2004. URL http://www.keypress.com/x5715.xml.

47

N. Lesh. Adaptive goal recognition. In Proceedings of the 15th International
Joint Conference on Artificial Intelligence, pages 1208–1214, 1997.

K. E. Lochbaum. A collaborative planning model of intentional structure.
Computational Linguistics, 4(525–572), 1998.

J. Mayfield. Controlling inference in plan recognition. User Modeling and
User-Adapted Interaction, 2(1):55–82, 1992.

D.S. Nau, S.J.J. Smith, K. Erol, et al. Control strategies in HTN plan-
ning: Theory versus practice. In Proceedings of the National Conference
on Artificial Intelligence, pages 1127–1133, 1998.

M.E. Pollack. Some requirements for a model of the plan inference process in
conversation. Communication failure in dialogue and discourse: detection
and repair processes, 1987.

M.E. Pollack. Plans as complex mental attitudes. Intentions in communica-
tion, 1990.

D.V. Pynadath and M.P. Wellman. Probabilistic state-dependent grammars
for plan recognition. In Proceedings of the 16th Conference on Uncertainty
in Artificial Intelligence, pages 507–514, 2000.

A. Quilici, Q. Yang, and S. Woods. Applying plan recognition algorithms to
program understanding. Automated Software Engineering, 5(3):347–372,
1998.

S. Reddy, Y. Gal, and S. M. Shieber. Recognition of users’ activities using
constraint satisfaction. In Proceedings of the First and Seventeenth Inter-
national Conference on User Modeling, Adaptation and Personalization,
2009.

K. Ryall, J. Marks, and S. M. Shieber. An interactive constraint-based system
for drawing graphs. In Proceedings of the 10th Annual Symposium on User
Interface Software and Technology (UIST), 1997.

S.M. Shieber. Direct parsing of ID/LP grammars. Linguistics and Philoso-
phy, 7(2):135–154, 1984.

C.L. Sidner. Plan parsing for intended response recognition in discourse1.
Computational intelligence, 1(1):1–10, 1985.

48

K. VanLehn, C. Lynch, K. Schulze, J. A. Shapiro, R. H. Shelby, L. Taylor,
D. J. Treacy, A. Weinstein, and M. C. Wintersgill. The Andes physics
tutoring system: Lessons learned. International Journal of Artificial In-
telligence and Education, 15(3), 2005.

M. B. Vilain. Getting serious about parsing plans: A grammatical analysis
of plan recognition. In AAAI, pages 190–197, 1990.

R. Weida and D. Litman. Terminological reasoning with constraint networks
and an application to plan recognition. In Proc. of the 3rd Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR-92), pages
282–293. Citeseer, 1992.

R. Wilensky. Why John married Mary: Understanding stories involving
recurring goals. Cognitive Science, 2(3):235–266, 1978.

D. J. Yaron, M. Karabinos, A. Borek, B. McLaren, K. L. Evans, and G. Lein-
hardt. Tracking and supporting learning in open-ended activities involving
a virtual lab simulation. In The 238th American Chemical Society National
Meeting, Washington, DC, 2009.

49

