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Abstract

Statistical inference based on stepwise model selection is applied regularly in 

ecological, evolutionary and behavioral research. In addition to fundamental 

shortcomings with regard to finding the 'best' model, stepwise procedures are known 

to suffer from a multiple testing problem, yet the method is still widely used. As an 

illustration of this problem, we present results of a simulation study of artificial 

datasets of uncorrelated variables, with two to ten predictor variables and one 

dependent variable.  We then compared results from stepwise regression with a 

regression model in which all predictor variables were entered simultaneously. These 

analyses clearly demonstrate that significance tests based on stepwise procedures 

lead to greatly inflated Type I error rates (i.e., the probability of erroneously rejecting 

a true null-hypothesis). By using a simple simulation design, our study amplifies 

previous warnings about using stepwise procedures, and we follow others in 

recommending that biologists refrain from applying these methods.
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Ecological, evolutionary and behavioural research commonly involves multivariate 

tests in which the investigator examines which of several predictor variables 

influence a single response variable. Most commonly, such analyses are conducted 

using a 'Generalized Linear Model' (GLM). GLMs can be used for the analysis of data 

sets encompassing any combination of continuous and categorical predictor 

variables and for continuous and discrete response variables, provided that the 

distribution of the residuals fulfils certain assumptions. Well-known examples of 

GLMs are multiple (linear, logistic or poisson) regression, multi-way ANOVA, and 

ANCOVA (e.g. Dobson 2002). A frequently applied extension of the GLM is the 

'Generalized Linear Mixed Model' (GLMM), which allows users to control for 'random 

effects factors', such as individual subjects (Faraway 2006).

Recently, the question of how to draw statistical inference from such models

has caused considerable debate. Information criterion based multi-model inference 

(Burnham & Anderson 2002) has been advocated strongly in ecological and 

evolutionary research (e.g. Johnson & Omland 2004; Lukacs et al. 2007; Stephens et 

al. 2007). On the other hand, the classical statistical approach of null-hypothesis 

statistical testing (NHST) is still commonly used in many research fields (including 

ecology and evolution) and presumably will remain so for a considerable time in the 

future (e.g. Stephens et al. 2005; Steidl 2006; Sleep et al. 2007). Our goal here is to 

point to a special problem that arises when stepwise procedures are applied in 

combination with NHST.

When using GLMs, two fundamentally different approaches are available to 

investigate the effect of predictor variables on the response variable: variables can 

be entered simultaneously into the model, or they can be entered sequentially.  

When predictor variables are entered simultaneously (also referred to as 'forced 

entry' or 'all-variables-together' method), all predictor variables are entered at the 
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same time into the (full) model.  Their joint contribution in explaining the response 

variable is subsequently determined and summarised in a single global significance 

test of the full model. When predictor variables are investigated sequentially (also 

referred to as ’stepwise’), variables are sequentially entered into and/or removed 

from the model. When variables are sequentially entered into the model ('forward 

selection'), the initial model comprises only a constant, and at each subsequent step 

the variable that leads to the greatest (and significant) improvement in fit is added to 

the statistical model. In 'backward deletion', the initial model is the full model 

including all variables, and at each step a variable is excluded when its exclusion 

leads to the smallest (non-significant) decrease in model fit. A “combination” 

approach is also possible, which begins with forward selection, but after the inclusion 

of the second variable it tests at each step whether a variable already included can 

be dropped from the model without a significant decrease in model fit. The final 

model of each of these stepwise procedures is supposed to comprise that (sub-) set 

of the predictor variables that have an effect on the response variable and that best 

explains the response (Sokal and Rohlf 1995; Zar 1999; Tabachnick and Fidell 2001; 

Quinn and Keough 2002; Field 2005; note that different terms have been used to 

denote the stepwise procedures by different authors, and selection criteria other than 

P ≤ 0.05 have been suggested).

The application of stepwise procedures has been criticized on multiple grounds 

(for a review, see Wittingham et al. 2006). In fact, stepwise methods frequently fail to 

include all variables that have an actual influence on the dependent variable, while 

frequently also including other variables that do not influence the dependent variable 

(Derksen and Keselman 1992). Consequently, the final model is not generally the 

best model (Miller 1984). In addition, stepwise procedures tend to be unstable, 

meaning that only slight changes in the data can lead to different results as to which 
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variables are included in the final model and the sequence in which they are entered 

(James and McCulloch 1990). As a consequence, stepwise methods also fail to 

provide a valid means for ranking the relative importance of the predictor variables.

Here, we focus on an additional serious drawback of stepwise methods that 

occurs when they are used in conjunction with significance testing. Specifically, 

stepwise procedures can produce vastly elevated Type I error rates, i.e. the inference 

of a significant result when in fact none exists (false positives). Indeed, a 

considerable number of articles and statistical text books clearly state that stepwise 

procedures represent a case of multiple testing without error-level adjustment, thus 

making the approach invalid (i.e. too liberal) in the context of statistical null-

hypothesis testing (e.g. Pope and Webster 1972; Wilkinson 1979; Cohen and Cohen 

1983; Lovell 1983; Tabachnick and Fidell 2001; Quinn and Keough 2002; Wittingham 

et al. 2006). For instance, a stepwise forward selection conducted on a data set with 

ten predictor variables conducts ten significance tests in the first step, nine 

significance tests in the second step and so on, and each time includes a variable 

into the model when it reaches a specified criterion (conventionally the significance 

level set at 5%, but see below). Conducting a number of significance tests without an 

error-level adjustment, however, considerably increases the probability of rejecting at 

least one of them by chance, i.e. even in the complete absence of any influence of 

the predictor variables on the response (a Type I error).  Hence, statistical inference 

in the classical sense – in which the user attempts to reject the null-hypothesis about 

a set of predictor variables at a pre-specified error-level – is not possible when using 

stepwise procedures. Several methods have been proposed to overcome this issue 

(e.g., Pope and Webster 1972; Wilkinson 1979). However, none of these has been 

applied regularly in ecological or evolutionary research.
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Despite the warnings about stepwise procedures, statistical inference based on 

them is commonly used, obviously because many authors are not aware of the 

serious drawbacks of doing so. A recent study of three top behavioural and 

ecological journals published since 2004, for example, found that 57% of the 

publications in which a multiple regression was feasible used some form of stepwise 

regression (Whittingham et al. 2006). And, in quick a survey of the issues of the 

American Naturalist from 2007 (Volumes 169 and 170), we identified 10 to 12 articles 

in which at least one significance test was based on a stepwise procedure.

To bring more attention to this overlooked but serious issue, we systematically 

investigated the Type I error rates resulting from different stepwise methods, using 

multiple linear regression as an example. We did this by applying a simulation 

approach and comparing results from stepwise regression with a regression model in 

which all predictor variables were entered simultaneously.  We systematically varied 

the number of predictor variables from two to ten, but our simulation did not include 

any effects of predictors on the response variable (for details of the simulation, see 

appendix A).  Thus, we tested data sets for which the null-hypothesis is, by definition, 

true.

Results

When applying stepwise multiple regression, the proportion of erroneously 

significant results was above chance expectation for all stepwise procedures and for

each number of predictor variables (Fig. 1).  This contrasts markedly with the “forced 

entry” multiple regression, in which the number of significant models never exceeded 

chance level (Fig. 1). The probability of getting a significant result when using a

stepwise procedure clearly increased with the number of predictor variables included.  
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Remarkably, the error rate reached almost 40% when the data comprised ten 

predictor variables.  Thus, in case of the null-hypothesis being true, an investigator 

would have an approximately 40% chance of incorrectly identifying the set of 

predictor variables as having a statistically significant effect when using 10 predictor 

variables.  Even with just two predictors, the probability of incorrectly rejecting the 

null-hypothesis was significantly above chance level. Differences between forward 

selection and backward deletion were small; when using backward deletion, 

however, the probability of getting an erroneously significant finding was slightly 

higher (Fig. 1; Wilcoxon test: T+ = 43.5, N = 9, P = 0.012).

Discussion

Our results clearly demonstrate that using stepwise procedures rather than 

simultaneous entry of predictor variables greatly inflates the probability of incorrectly 

rejecting the null-hypothesis of no effect (i.e., Type I error rate). Specifically, the 

probability of making a Type I error was almost doubled when using two rather than 

one predictor variable and dramatically increased with increases in the number of 

predictor variables. This was the case for both forward selection and backward 

deletion, although in the latter procedure the effect was slightly more pronounced. As 

a result, significance tests based on stepwise procedures are invalid statistically, and 

the degree of their invalidity increases with increasing number of predictor variables. 

Nevertheless, statistical tests based on stepwise regression are seen commonly in 

the ecological, behavioural and evolutionary literature (see introduction and 

Whittingham et al. 2006). Based on our findings, it seems likely that some of the 

published findings based on stepwise methods represent Type I errors. 
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Why do stepwise procedures produce elevated Type I error rates, while forced 

entry regression methods produce expected error rates?  From our findings it seems 

that the inflated Type I error rate is largely due to multiple testing. In fact, the Type I 

error rates we found very closely followed what is theoretically expected based on 

multiple testing, where the probability of at least one Type I error in a number of tests 

of true null-hypotheses equals 1 - (1 - )n (with  being the error probability, i.e. 0.05, 

and n being the number of tests). This finding also clearly implies that what we found 

is not specific to multiple regression. Instead, we are convinced that it applies to 

stepwise methods in general, used in conjunction with any GLM, GLMM or 

discriminant function analysis.

Based on our findings, we recommend that stepwise procedures should not be 

used in the context of testing null-hypotheses about a set of predictor variables. In 

fact, the only valid options for combining stepwise procedures with statistical 

inference based on significance testing would be to adjust error-levels for the number 

of variables considered at each step, or to use adjusted sampling distributions of test 

statistics (e.g. Pope and Webster 1972; Wilkinson 1979). However, using error-level 

adjustment would come with its well known cost, which is greatly reduced power, i.e. 

the probability of correctly rejecting a false null-hypothesis (e.g. Moran 2003, 

Nakagawa 2004), and neither of the two options is implemented in statistical 

standard software. Hence, in the context of NHST one should use an overall and 

simultaneous test of the statistical significance of all the predictor variables together 

(the 'full model'). Selecting a subset of predictor variables explaining the response 

variable most parsimoniously could and should be done only after the initial full 

model revealed significance. It has been frequently pointed out, however, that 

stepwise procedures also have serious drawbacks in this context. For instance, they 

do not necessarily find the 'best' model, they may be unstable in the sense that only 



9

slight changes in the data lead to great changes in the variables included in the final 

model, and they do not necessarily allow for a valid ranking of variables by their 

importance (see Introduction). Hence, we recommend the use of information theory 

based model selection procedures for this purpose (e.g. Burnham and Anderson 

2002; Whittingham et al. 2006).

It is worth noting that we do not present anything new here, but just confirm 

what has already been stated in statistical articles and texts for more than two 

decades (e. g. Wilkinson 1979; Cohen and Cohen 1983; Lovell 1983; Derksen and 

Keselman 1992; Tabachnick and Fidell 2001; Quinn and Keough 2002; Wittingham 

et al. 2006).  In fact, even in the 1970’s, Pope and Webster (1972) complained about 

'the widespread use of stepwise procedures and the lack of understanding (by non-

statisticians) of their weaknesses.' Despite these many warnings, stepwise 

procedures remain in widespread use, perhaps because suitable examples have not 

been provided to convince ecologists and evolutionary biologists of the dangers of 

using stepwise methods.  Our simulations of variables under a null-hypothesis 

provide solid evidence for the highly elevated Type I errors associated with stepwise 

methods, and hopefully will convince others that these statistical procedures are 

statistically flawed for null-hypothesis testing purposes. 
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Appendix A

Methods

In all simulated data sets, the predictor variables and the response variable 

comprised pseudo random numbers that were drawn from a uniform distribution with 

the range 0  x < 10. The number of predictor variables ranged from 2 to 10 

(increment 1). For each number of predictor variables we generated one set of 

predictor variables and 1,000 response variables. Multiple regression requires a large 

number of cases compared to the number of predictor variables (Tabachnick and

Fidell 2001; Quinn and Keough 2002; Field 2005). In addition, the validity and 

stability of the result of a multiple regression depends on the relation between the 

number of predictor variables (k) and the number of cases (i.e. data points, N). 

Hence, Field (2005) recommends that when the significance of the overall model 

should be tested the minimum sample size should be N = (50 + 8 * k). Accordingly, to 

achieve comparable power in analyses of data sets with different number of predictor 

variables, we set the number of data points to be a function of the number of 

predictor variables, with N = 3 * (50 + 8 * k). Pseudo random numbers were 

generated using the function 'rnd()' implemented in Visual Basic for Applications 

(Excel, version 2002, SP3).

Each of the simulated data sets was analysed using the four different multiple 

regression methods described above: one simultaneous approach using forced entry, 

and three stepwise approaches involving forward selection, backward deletion, and 

the combination approach. However, as forward selection and the combination 

approach always produced identical results with regard to significance of the final 

model and the number of predictor variables included, we present only results for the 
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forward and backward selection procedures. All statistics were calculated using 

SPSS 13.0.1 for Windows. In stepwise regression analyses we used the default 

criteria for entering and removing variables (i.e. the P-value associated with an F-

test, with Pentry = 0.05 and Premoval = 0.1). For each number of predictor variables we 

determined the number of data sets for which the final model was significant (P 

0.05). Given that for all generated data sets the null-hypothesis was, by definition, 

true, we expected the proportion of significant findings to approximately equal 5%. 

We tested whether the number of significant results corresponded to chance 

expectation using a one-tailed binomial test. We used exact non-parametric tests 

when small samples required their use (Mundry and Fischer 1998).
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Figure legends

Fig. 1. Numbers of significant multiple regressions (out of 1,000) based on random 

data for which the null-hypothesis is, by definition, true. The plot shows results for 

two different methods of stepwise regression (backward deletion and forward 

selection, respectively) and for simultaneous entry of different numbers of predictor 

variables ('enter').  Results for the combination approach matched those for forward 

selection. Symbols above the dashed horizontal line represent proportions 

significantly in excess of chance expectation (50, solid line; binomial test). Note that 

for both stepwise procedures the probability of getting a significant result was 

invariably above the desired 5% for all numbers of predictor variables.
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