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Automated classification of starch granules using supervised pattern recognition of 
morphological properties

Julie Wilson, Karen Hardy, Richard Allen, Les Copeland, Richard Wrangham and 
Matthew Collins.

Abstract 

Image analysis techniques have been used to investigate the likelihood of being 
able to classify and assign a probability regarding the plant origin of individual starch 
granules in a collection of granules. Quantifiable variables were used to characterize the 
granules, and the assignments and probabilities were calculated objectively. We consider 
the classification of images containing granules of a single species and of mixed species 
and the possibility of assigning a class to granules of unknown species in an image of a 
slide obtained from the dental calculus of chimpanzees. 

1. Introduction

Starch is the main store of carbohydrate and energy in plants. It is deposited in 
semi-crystalline granules in most tissues but is particularly abundant in storage tissues 
such as seeds, roots and tubers. The granules consist almost entirely of two glucose 
polymers, amylose and amylopectin, with small amounts of lipids, minerals and 
phosphorus (Buléon et al., 1998; Copeland et al., 2009).  The complexity of starch 
biosynthesis results in natural variability in amylose and amylopectin molecules, which is 
reflected in diversity of granule morphology. This variability, notably in granule size and 
shape, is associated with differences in functional properties in food processing and 
nutrition (Peterson and Fulcher, 2001) and the possibility of relating granule morphology 
to manufacturing process or nutritional qualities is of importance to the food industry.

Starch granule morphology is determined by the action of the biosynthetic 
enzymes. These occur in multiple forms and both the expression of the underlying 
genetic diversity and the enzyme activities are influenced by external environmental 
factors that lead to variability of the starch end product (Morell and Myers, 2005).  This 
variability led Reichert (1913) to suggest the potential of granule morphology as a 
taxonomic tool. 

Starch granule analysis is becoming an increasingly widely used resource in 
bioarchaeological studies. Based largely on the classification of granules in 
archaeological samples retrieved from sediments, dental calculus and ancient tools and 
pots starch granules have been used for determining the diet of ancient human cultures 
(Hardy et al., 2009; Henry and Piperno, 2008; Mercader et al., 2008; Piperno et al., 2000,  
2009), the origins of agriculture, plant domestication and trajectories (Balter, 2007; Iriarte 
et al., 2004; Piperno and Holst, 1998; Denham et al 2003) and ancient tool use (Barton et 
al. 1998; Loy et al., 1992, ). Pollen and phytolith analyses are also used, often in 
combination with starch granule analysis (see, for example, Horrocks, 2005).  Holst et al. 



(2007) found fossil starch granules and phytoliths to be more useful than pollen in 
discriminating wild from domesticated maize. However, in their investigation to recover 
dietary information using plant microfossils from dental calculus, Henry and Piperno 
(2008) found that all of the teeth produced starch granules, some in large numbers, but 
that their sample contained very few phytoliths.

The identification of starch granules based on morphological characteristics have 
resulted in new interpretations in particular in relation to plant dispersals, for example in 
Central and South America (Dickau et al 2007), movement and arrivals of people, for 
example in Oceania (Horrocks et al., 2007), earliest evidence of agriculture (for example, 
Denham et al., 2003) and early processing of wild plants in the Near East (Piperno et al., 
2004), Europe (Aranguren et al., 2007) and Africa (van Peer et al., 2003). Whilst, starch 
granule identification is potentially an exciting way to access information on ancient 
plants, a better understanding of the origins of starch granule shape is required for this 
potential to be realised and results need to be placed within the context of a lack of 
explanation for starch granule shape. Currently, how variations in shape occur, the effects 
of local geographical and environmental effects on granule shape and the diagenetic 
effects of ageing are not fully understood or explained. 

In archaeological studies, starch granules are often assigned to species, based 
upon their morphological characteristics, but such studies usually do not use formal 
statistics and instead rely upon the visual comparison between individual archaeological 
granules with reference granules.  However there are a number of potential problems with 
this approach.  In most domestic cereal plant species (for example, corn, wheat, rice), 
there has been strong selective pressure through plant breeding and selection over 
thousands of years to enhance starch production. Starch granule phenotype will reflect 
expanding environmental conditions acting upon an increasingly domesticated genotype, 
and it is possible that different combinations of factors may result in similar 
morphological end points.

We believe it would therefore be useful to document the extent of morphological 
variation within and between species. There has only been one such study directed 
towards archaeological research; Torrence et al. (2004) used measurements obtained 
interactively from images of starch granules and multivariate analysis for classification. 
The discriminatory features also include categorical variables requiring subjective 
decisions by the researcher that may well be influenced by prior knowledge regarding the 
actual class of a granule. 

In the present study we investigate a completely objective classification of images 
of starch granules from nine genetically diverse species.  

2. Materials and Methods

2.1. Starch preparation 

Specimens of modern lotus root (Nelumbo nucifera)  (Gaertn.), maize (Zea mays 
L. ssp. mays), mung bean (Vigna radiate (L.) R. Wilczek), oat (Avena sativa), plantain 
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(Musa.Sp), sweet potato (Ipomoea batata), potato (Solanum tuberosum L.), cassava 
(Manihot esculenta), and water chestnut (Eleocharis dulcis) starch granules were 
prepared for image analysis. Of the samples used, lotus, maize, mung bean, potato, 
cassava, and water chestnut were highly refined starch powders. Oat, plantain, and sweet 
potato were prepared from meal (oats) and flesh preserved in alcohol (plantain and sweet 
potato).  

2.2 Image acquisition

For each of the starch types selected for analysis, a set of five slides were 
mounted with glycerol and left for a minimum of 24 hours at 21(+/- 3)oC before image 
analysis.  In addition, a set of five mixed starch slides were prepared consisting of 
plantain and sweet potato.  JPEG images at 300 dpi and 24 bit colour depth of the starch 
grains were obtained using the Digital Imaging Solutions program CellD, version 2.6 
(Build 1200) and an Olympus IX71 inverted microscope with fitted ColourView III 
camera. The magnification was set at x100 (x10 objective).  

For each slide a pair of images, consisting of one photograph taken in white light 
and a corresponding photograph in polarised light, were acquired from two different 
fields of view. Thus, 10 image pairs were obtained for each set of five slides.

In addition a pair of images were acquired from a sample of dental calculus from 
recently deceased chimpanzees from the Kibale Chimpanzee Project, Uganda (Carter et 
al., 2008).

2.3. Image processing

 The edges of objects in an image give rise to sudden changes in intensity from 
one pixel to the next and can therefore be identified by analyzing the gradient, or rate of 
change, of the image intensity. Mathematically the gradient is calculated by 
differentiation but simple operators can be used to approximate the gradient of an image 
(see Gonzalez and Woods , 2002, for example). Here we use the Sobel operator to 
approximate the rate of change at each pixel from its immediate neighbours. Figure 2 
shows how connected sets of pixels with gradient magnitudes above a threshold, 
calculated from the statistics of the image intensities, allows the granules to be identified. 

Groups of touching or overlapping granules will form single objects and must be 
separated. The edges of individual granules can be detected using the zero crossings of 
the image, which is first filtered with the Laplacian of Gaussian filter. This allows closed 
contours of single pixel width to be detected and shared boundaries identified as those 
that cross the object from one external boundary point to another (see Figure 3). Granules 
that were partially obscured by others lead to incomplete granules and some broken or 
cracked granules result in erroneous segmentation. However, such objects can be 
recognised using the shape descriptors described in the next section and eliminated from 
the analysis. Any granules in contact with the edge of the image are also removed to 
restrict the analysis to whole granules. Finally, a mask separating the individual granules 
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from the background is applied to the corresponding polarized image (Figure 4). Features 
to be used for classification are extracted from each granule using both images. For 
brevity, in the following sections, we refer to each image pair, the photograph taken in 
white light and the corresponding photograph taken in polarized light, as the image rather 
than the pair of images.
 The analysis was carried out using software written in-house in C and, with the 
exception of the elimination of background debris from one image, required no human 
intervention for starch granule classification.

2.4. Feature extraction

In order to classify the granules, characteristic features that can be quantified must 
be determined. Many variables have been used in the identification of granules to plant 
genus or species (e.g. Torrence & Barton, 2006). Torrence et al. (2004) define variables 
related to the size and shape of the granule and the polarization cross as well as a number 
of features described simply as present or absent. Here, the number of pixels the granule 
covers determines its area. The greatest distance between boundary pixels is taken as the 
length of the granule and the maximal distance orthogonal to this as its width. The 
minimum rectangular box enclosing the granule is determined and the ratio of its area to 
the area of the granule used as a simple shape descriptor. The ratio of length to width 
gives further information on granule shape as does the ratio of area to the square of the 
number of boundary pixels. Here the length of the boundary is squared to remove the 
effect of granule size on this variable. The variance in distance from the centroid of the 
granule to its boundary provides another variable and granule shape is also compared to 
an ellipse with major and minor axes equal to the length and width of the granule. The 
elliptic variance is defined as the mean-squared error of the granule with respect to the 
ellipse. 

Chain codes (Freeman, 1974) allow the boundaries of objects to be represented in 
a compact way. The chain code is an ordered sequence of integers encoding the direction 
of the vector connecting neighbouring boundary pixels. Straight sections of the boundary 
can be recognized by repeats in the sequence. We use the sum of the squared lengths of 
all straight segments to give greater weight to longer sections and the length of the 
longest straight section provides another variable. Chain codes can also be use to 
calculate curvature. However, as they use the change from one pixel to the next, chain 
codes are very sensitive to small changes in direction. Figure 5 shows how an estimate of 
the curvature at any boundary pixel can be obtained by considering two points, one n 
boundary pixels before it and one n boundary pixels after it. The difference between the 
straight-line distance between the two points and that along the boundary gives the 
curvature. The greater the value of n, the less localized the curvature. Here we take n = 2 
and the average over all pixels taken as a measure of curvature. Two further measures 
related to curvature are the total concavity, being the difference between the area of the 



granule and that of its convex hull and the maximum concavity defined as the greatest 
distance between the granule boundary and the convex hull as shown n Figure 6.

Torrence et al. (2004) define several variables related to the polarization cross in 
their classification of starch granules. These include categorical variables such as the 
style of the cross (straight, wavy, figure of eight) and quantitative variables (area of 
polarization cross, maximum dimension, distance between long arms and angle of the 
cross) measured using interactive graphics software. Here we estimate the area of the 
polarization cross by the percentage of pixels below a threshold of µ + 0.1σ, where µ and 
σ are the mean and standard deviation of the pixels in each masked granule (Figure 7). 
Obtaining other measurements automatically is more complicated. A thinning algorithm 
was applied to the pixels identified by the cross area to skeletonize the cross. For clear 
examples such as those shown in Figure 7, this allows the length and curvature of each 
cross arm and the angles between them to be calculated. However a number of problems 
arise in the skeletonization of the cross. Cracked granules and those with strong 
indentations produce extra branches that make further calculations impossible. The 
presence of multiple disperse branch points could be used to filter out such granules but 
extra loops and branches also occur for other perfectly good granules as can be seen in 
Figure 8. Some loops can be recognized and eliminated but others cannot and in these 
cases all variables relying on the skeletonization must be given null values. 
 The full list of variables calculated is shown in Table 1. All variables were mean 
centred and scaled to unit variance (using the mean and standard deviations calculated 
from the training data) to give equal weight to all variables. The results obtained without 
using variables that depend on the skeletonisation of the polarization cross (indicated by 
an asterisk in Table 1) are better than those obtained using all variables. This can be 
explained by the fact that there are granules of all species for which the skeletonization is 
deemed unreliable. Therefore the classification results described in the next section were 
obtained without the last three variables in Table 1.

3. Results

3.1. Granule classification

The large number of observations and limited number of variables make the data 
suitable for most supervised learning algorithms, which are trained to associate a certain 
output (the class) with a particular input (the feature vector of classification variables). 
The way in which the algorithm learns the rules of association differs between classifiers 
but all supervised methods are prone to over-fitting, i.e. the rules may fit the data used 
during training, but will not generalise to new observations. The use of a completely 
independent test set, consisting of data not used during training is therefore vital. Of the 
6120 individual granules identified in the images, 100 from each of the nine classes were 
chosen randomly to form a training set and the remaining 5220 granules used as an 
independent test set. The extracted feature vectors for the training set were used to train a 
Support Vector Machine (SVM) classifier with a radial basis function (RBF) kernel. 



Other classifiers, including a linear SVM, self-organising maps (SOM) and learning 
vector quantization (LVQ), were also tried and gave very similar results. Furthermore, 
combining classifiers using a majority vote system did not improve the results. The 
confusion matrix in Table 2 shows the classification rates obtained using the trained 
SVM-RBF classifier on the test set (never used during training). The rows in the table 
correspond to the actual type of granule in the test set with the number of granules of 
each type in brackets. The columns indicate the class that the granules were assigned to 
by the classifier. The figures given are percentages, so for example, 57% of the 548 lotus 
root granules in the test set were classified correctly, 17% were assigned to class 4 
(potato), 1% were assigned to each of class 3 (maize) and class 5 (water chestnut), 2% 
were assigned to class 6 (cassava), 1% were assigned to each of class 7 (sweet potato) 
and class 8 (oats) and 9% were classified as class 9 (plantain).  Thus the diagonal entries 
(in bold italic) show the percentages of correct classifications. It can be seen that plantain 
and potato granules classify reasonably well with 79% and 70% correct, respectively. 
Although 57% of lotus root granules are classified correctly, many (17%) are confused 
with potato granules. Most miss-classified mung bean granules are classed as maize 
(11%) whereas 64% are correctly classified. Similarly, maize granules (45% correct) are 
confused with mung bean (13%) and also cassava (16%). The classification of the other 
types of granules, water chestnut, cassava, sweet potato and oats is poor with much 
confusion between these groups.

Relating the classification rates to the example images in Figure 1, it could be 
argued that the granules that the best classification rates are obtained for species with 
granules that tend to be larger. This might suggest that the resolution of the images is not 
sufficient for discrimination of the smaller granules. However, these groups have the 
greatest variability of size as can be seen from the statistics in Table 3 and the box-plots 
in Figure 9. The population pyramid in Figure 10 does show that more than half the 
smallest granules are miss-classified and that bigger granules are correctly classified 
more often than not. However, there are miss-classifications for all sizes of granule, 
including the largest. Moreover, mung bean granules, which classify well, are generally 
of a similar size to cassava granules, which do not.

3.2. Image classification

In general the classification of individual granules is not very successful. Even 
with just nine species, there is a great deal of overlap between classes. We now consider 
classification of a group of granules. A number of granules can be identified in each 
image and therefore we can obtain a class for each image by combining the classification 
of the individual granules within that image. Any granules in an image that were used 
during training are not used here to classify the image. Different numbers of granules, 
ranging from just five up to 143, are obtained for the images.

3.2.1. Single species 



 For each single species image, a class was obtained by combining the predicted 
classes of the individual test set granules in the image. The results shown in Table 4 were 
obtained using four different classifiers (SVM-RBF, SVM-linear, SOM and LVQ). For 
every test set granule in an image, each class was assigned a probability of 0.25 for each 
classifier that assigned the class to the granule. Thus, if any granule was assigned the 
same class by all four classifiers, that class was given a probability of 1.0 for the granule. 
The probabilities for each class were added over all test set granules in the image and the 
class with the highest probability assigned to the image. In this case there was some 
improvement in the results when classifiers were combined, with four less images 
classified correctly when a single classifier was used.

The single species with the highest score was taken as the class of the image 
however close other scores might be. Most miss-classified images had similar scores for 
different species showing the classification to be unconvincing whereas, for some of the 
correctly classified images, the highest score identifying the species was significantly 
higher than other class scores. However, for other correctly classified images, the highest 
score was not much greater than that of other classes. It would not be clear that such 
images showed granules of a single species without prior knowledge. The classification 
of images with mixed species is considered in the next section.

3.2.2. Mixed species

In addition to the single species images, mixed starch images were obtained from 
slides of both plantain (class 7) and sweet potato (class 9). It can be seen from Table 2 
that plantain is one of the easiest species to classify but that sweet potato granules are 
often miss-classified.

In order to get a true indication of the classification results possible when multiple 
granules of any type are available, the likelihood of a class being incorrect should be 
taken into account. Reading down the columns in Table 2, we can see how many of the 
granules assigned to any class really do belong to that class. Thus 57% of the 548 lotus 
root granules, i.e. 312 of all granules classified as lotus root, really are lotus root but, for 
example, 1% of the 777 maize granules are also classified wrongly as lotus root. We can 
use this information to obtain a probability for each assigned class being correct. For 
example, the probability that any granule classified as lotus root really is lotus root is 
calculated as:

The probabilities obtained from the test set results are shown in the final row of Table 2.
However, using probabilities obtained from the test set results to assign classes to 

the images would mean that the results obtained were no longer independent. We 
therefore use the probabilities obtained from classification of the granules in the training 
set. The probability of granules of each species being classified correctly by each of the 
four classifiers is given in Table 5. The differences between classifiers give an indication 



as to why combining classifiers can improve the results. Although the SVM-RBF 
classifier looks like the best single classifier, the differences between the probabilities 
obtained from the training data (Table 5) and those obtained from the test set (Table 2) 
show that this classifier has a tendency to overfit the training data. For example, granules 
classed as oats (class 8) in particular were more likely to be correctly classified during 
training. 

As none of the granules in these images were used to train the classifiers, all may 
be used to provide the image score. For each image, class scores were obtained for each 
classifier by multiplying the number of granules in the image assigned to a particular 
class by the corresponding probability of the class being correct for that classifier. The 
results for the four classifiers were added to give class scores for the image, which were 
rescaled so that they summed to 1.0 to represent a probability distribution. Table 6 shows 
the classification results for the mixed-species images. For each one of the ten images, 
the probability calculated for each class is shown. It can be seen that class 7 (sweet 
potato) is given the highest probability for 7 of the 10 images and is second to class 9 
(plantain) for another. Plantain appears in the top three most likely species for 7 of the 
images. Other classes given a high probability for several images are class 6 (cassava) 
and class 8 (oats). Both of these species have small granules often confused with sweet 
potato. From these results images 5 and 6 do not look like sweet potato or plantain, 
although, according to the single species results, plantain granules usually classify well. 
However neither of these images shows granules that are obviously plantain on 
inspection by eye and it could be that the area of the slide shown contains only sweet 
potato granules.

3.2.3. Unknown species

 Figure 11(a) shows that the slide of unidentified starch granules from the dental 
calculus of chimpanzees has a great deal of background debris. The granules are difficult 
to see by eye in the white light image and it was not possible to identify the granules 
without further processing. The granules are more obvious in the polarized image (Figure 
11(b)) although the boundaries cannot be identified. We therefore combined the two 
images in order to accentuate the granules before using an interactive graphics 
programme (GraphicConverter) to trace the granule boundaries and delete the 
background between them. The mask obtained in this way was then applied to both the 
white light and polarized images and the processing continued as with all other images 
from this point. In all, feature vectors from 91 granules were extracted from the image, 
which were then used to provide the probability of each species being present in the 
image as described for the mixed-species images. The resulting probabilities are given in 
Table 7. It can be seen that class 9, plantain, is by far the most likely species (of those in 
the training set). 

3.3 Wider context



Any pattern recognition problem requires features to be extracted from the input 
data that  can be used in some pattern-matching or decision-making procedure for 
classification. These features should be measurable characteristics that are common 
within classes and discriminatory  between classes. We have found there is considerable 
variation within species. There are many  aspects of the biosynthesis and assembly of 
granules that are not well understood, and there are other factors that could be important 
in determining the size and shape of granules (Torrence and Barton, 2006). These 
include: the intracellular space available for granule deposition; the availability  of carbon 
in excess of immediate metabolic requirements for starch synthesis, that is, whether 
synthesis is continuous over an extended period or is sporadic or interrupted by  periods of 
degradation; diurnal fluctuations in synthesis; and the optimum size of macromolecules 
for stability and efficient packaging. Similar biological functionality in Nature may be 
achieved in different ways, and it  is not necessarily  surprising that  there are similarities 
among starch granules from the species chosen in this study, despite the considerable 
genetic diversity between them. 

3.3.2 Importance for Archaeological Research

	

 The analysis of starch granules from ancient plants is a rapidly expanding area of 
archaeological research, but classification often relies on the comparison of individual 
granules with reference granules. It is therefore important to recognize the shortcomings 
of this approach. Although some granules of certain species do have distinctive qualities 
the comparison of discrete granules is likely to be very unreliable. The style of the 
birefringent cross, clearly visible in polarized light, has been used in other analyses to 
classify starch granules. In our completely automated analysis, we have not been able to 
fully exploit the characteristics of the cross. However, Torrence et al. (2004) state that 
their study "may have placed too much emphasis on the characters visible under 
polarized lighting" and their analysis gave similar results. They considered acentric and 
centric views separately and obtained overall classification rates of 57% and 75%, 
respectively. Whilst they were able to classify two species with 100% accuracy for 
centric views, others had classification rates as low as 14%. Furthermore, the results 
reported by Torrence et al. (2004) are for all data, i.e. including the granules that were 
used during training rather than for an independent test set. It is not clear how much this 
has enhanced their results, as the number of granules used during training is not given.
 The assignment of probabilities to a collection of granules has been shown to be more 
dependable with some species being particularly consistent. We found that the choice of 
discriminatory variables is more important than the classifier chosen and a combination 
of classifiers allows more accurate assignment of probabilities when classifying 
collections of granules. Although reasonable results were obtained for most images 
showing granules of a single species, the confusion between species is still evident. Water 
chestnut granules in particular are frequently miss-classified so that only 4 out of 10 of 
these images are assigned the correct class using probabilities. For the images of sweet 
potato and plantain granules together, these two species appear among the top three most 



likely for 7 of the 10 images and for another image, although plantain seems unlikely, 
sweet potato is given the highest probability. However, for two of the mixed plant 
images, plantain and sweet potato are both given low probabilities. Using the same 
method, the previously unidentified starch granules from the dental calculus of 
chimpanzees were given a much higher probability of being plantain than any of the other 
eight species considered here. It is known that Kibale chimpanzees eat young stems of 
Musa from fields adjacent to Kibale National Park, and also occasionally eat ripe Musa 
fruits so the results seem reasonable. Of course, only species for which the classifier has 
been trained are possible candidates. In fact all classification is a process of elimination 
and we have only shown that the granules are more likely to be plantain than any of the 
other species tested.
 
4. Conclusions

The representation of three-dimensional starch granules in a two-dimensional 
image has obvious limitations and involves granules in different orientations. This 
additional variation could affect discrimination, but the use of sufficient training data 
allows multiple orientations to be represented in machine learning algorithms.

It has been recognised that a ‘population’ approach to analysis is likely to be 
more reliable than single granule identification, as any sample of plant starch contains a 
variety of granule shapes (see Torrence and Barton, 2006).  The results here using 
multiple granules also suggest that, when a number of granules are available, it may be 
possible to identify certain plants with a degree of security. However, the recovery of 
multiple granules may not always be possible, and even then not all the granules will 
necessarily derive from the same plant source. The classification rates obtained here and 
by others (Torrence et al., 2004) show that even with adequate reference collections 
morphological methods need to be used with caution and that other complementary 
information would be needed for credible identification of most plant species.  
Furthermore we suspect that the classification of starch granules from archaeological 
contexts requires a better understanding of the impacts of both domestication (selection 
pressure) and diagenesis on granule shape.
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Table 1:  Summary of variables used for classification. Variables marked with an asterisk rely on 
the skeletonization of the polarization cross and were not used to obtain the results described in 
section 5.

size granule areasize

granule length

size

granule width

shape granule length to width ratioshape

minimum box area to granule area ratio

shape

squared boundary length to area ratio

shape

variance in distance from boundary to centroid of 
granule

shape

elliptic variance

curvature overall straightness of boundarycurvature
length of maximum straight section as fraction of 
boundary

curvature

total curvature

curvature

total concavity

curvature

maximum concavity

polarization cross area of cross to granule area ratio 

total curvature of cross arms*

distance from cross centre to centroid of granule*
minimum angle between cross arms*



Table 2:  Classification rates for starch granules in the test set. Diagonal elements in bold italic 
show the percentages of correctly classified granules.

species  (#) actual
class

                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class

species  (#) actual
class lotus maize mung pot

ato

wat
er 
che
stn
ut

cas
sav
a

sw
eet 
pot
ato

oat
s

plant
ain

  1   2   3   4   5   6   7   8   9
lotus 
(548)      1  57  0   6  17   6   2   1   1   9

maize 
(777)      2  1 45  13   1   6  16   9   9   3

mung bean 
(933)      3  7 11  64   3   6   4   2   2   2

potato
(703)      4  5  0   7  70   7   0   3   3   5

water chestnut
(758)      5  5 16  11   4  22  14  13  11   2

cassava
(562)      6  2 17   6   2  10  32  17   6   10

sweet potato
(318)      7  1 11   2   3  12  12  35  17   7

oats
(204)      8  1 12   6  10  11   4  21  30   5

plantain
(317)      9  3  3   1   3   1   3   3   5  79

probability assigned                             
class is correct
probability assigned                             
class is correct 0.65 0.47 0.65 0.70 0.35 0.35 0.24 0.17 0.52



Table 3: Mean and standard deviation of granule size (as determined by granule length in pixels) 
for each species.

species mean size standard deviation 
        of size

lotus   807.5          515.4

maize   249.9            97.9

mung bean   363.4          169.1

potato   690.9           838.1

water chestnut   296.3          149.3

cassava   306.4          143.8

sweet potato   274.4          150.7

oats   242.7          126.9

plantain   611.2          336.2



Table 4:  Classification of starch images obtained from the assigned classes of the test set 
granules in each image. Figures given are the numbers of images where there are 10 images in 
total for each species.

species  species  

                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class

species  species  lotu
s

mai
ze 

mu
ng

pot
ato

wat
er 
che
stn
ut

cas
sav
a

sw
eet 
pot
ato

oat
s

pla
ntai
n

Actual class   1   2   3   4   5   6   7   8   9
lotus      1  10   0   0   0   0   0   0   0   0

maize      2  0   8   0   0   0   2   0   0   0

mung bean      3  0   0  10   0   0   0   0   0   0

potato      4  0   0   0  10   0   0   0   0   0

water chestnut      5  0   1   2   0   4   3   0   0   0

cassava      6  0   1   1   0   1   7   0   0   0

sweet potato      7  0   1   0   0   3   0   6   0   0

oats      8  0   0   0   1   1   0   2   6   0

plantain      9  3   0   0   0   0   0   0   0  10

Matthew Collins 8/8/11 11:33 
AM
I have added the species name 
underneath



Table 5:  Conditional probabilities of the class assigned by each classifier being correct. The 

probabilities were obtained from classification of the training set granules. 

                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class                        assigned class
  1   2   3   4   5   6   7   8   9

SVM-RBF 0.85 0.54 0.74 0.73 0.59 0.53 0.48 0.64 0.82
SVM-Linear 0.62 0.42 0.61 0.68 0.32 0.29 0.25 0.13 0.51
SOM 0.46 0.40 0.52 0.58 0.27 0.27 0.21 0.21 0.47
LVQ 0.50 0.45 0.47 0.57 0.27 0.25 0.16 0.14 0.37



image class (probability)class (probability)class (probability)class (probability)class (probability)class (probability)class (probability)class (probability)class (probability)

1 7  
(0.41)

8
(0.26)

6
(0.12)

2  
(0.11)

9
(0.04)

5    
(0.04)

1    
(0.01)

3    
(0.00)

4    (0.00)

2 9
(0.35)

7
(0.25)

8
(0.17)

2  
(0.08)

6    
(0.07)

1    
(0.04)

4    
(0.02)

5    
(0.02)

3    (0.00)

3 7 
(0.40)

9
(0.15)

6
(0.15)

8  
(0.15)

2    
(0.09)

5    
(0.03)

1    
(0.02)

4    
(0.01)

3    (0.01)

4 7 
(0.30)

8  
(0.23)

9
(0.22)

6  
(0.15)

2    
(0.03)

5    
(0.02)

3    
(0.02)

1    
(0.01)

4    (0.00)

5 3  
(0.24)

5  
(0.23)

2  
(0.18)

8  
(0.13)

6    
(0.11)

7    
(0.09)

9    
(0.02)

4    
(0.00)

1    (0.00)

6 5
(0.17)

6
(0.17)

2
(0.16)

9  
(0.15)

3    
(0.13)

7    
(0.09)

8    
(0.06)

1    
(0.05)

4    (0.03)

7 7 
(0.29)

6
(0.28)

9
(0.11)

8  
(0.11)

2    
(0.09)

5    
(0.04)

3    
(0.04)

4    
(0.03)

1    (0.02)

8 7
(0.35)

9
(0.25)

8
(0.16)

6  
(0.12)

2    
(0.05)

5    
(0.04)

1    
(0.01)

3    
(0.01)

4    (0.01)

9 7
(0.26)

9  
(0.24)

6
(0.16)

4  
(0.08)

2    
(0.08)

8    
(0.07)

5    
(0.05)

1    
(0.05)

3    (0.02)

10
7
(0.33)

8
(0.16)

9
(0.15)

6  (0.13) 2    
(0.09)

4    
(0.07)

5    
(0.05)

3    
(0.01)

1    (0.01)



Table 6:  Results of mixed species analysis: the classes are ordered according to the likelihood (as 
determined by the class probability in brackets) that the image consists of granules of the 
corresponding species. These ten images show granules of both plantain and sweet potato. Class 7 

corresponds to sweet 
potato and class 9 to plantain, both 
class numbers are shown in 
bold type in the table.

Table 7:  Probabilities for the 
presences of granules of each 
species in the slide prepared from 
the dental calculus of chimpanzees.

class 
number

species probability

    9 plantain 0.56
    6 cassava 0.14
    1 lotus root 0.11
    7 sweet potato 0.07
    8 oats 0.05
    2 maize 0.03
    3 mung bean 0.01
    5 water chestnut 0.01
    4 potato 0.01



Figure Legends 

Figure 1: Example images from each of the 9 types of starch granule used in this study: (a) lotus 
root, (b) maize, (c) mung bean, (d) potato, (e) water chestnut, (f) cassova, (g) sweet potato, (h) 
oats and (i) plantain. Each image section shown here is approximately one quarter of the original 
image.

Figure 2: The gradient magnitudes for the image in (a) are shown in (b). The pixels with 
magnitudes above the threshold are shown in black in (c) and the objects obtained after filling in 
holes are shown in (d). 

Figure 3: The gradient magnitudes obtained for the image section in (a) are shown in (b). 
Identification of the shared boundaries from the zero crossings in (c) allows the granules to be 
separated as shown in (d).

Figure 4: Masked images showing individual potato granules. The white light image is shown in 
(a) and the corresponding polarized image in (b). 

Figure 5: A measure of curvature at the pixel indicated by the grey point can be obtained from the 
difference in length between the sum of the two dotted lines and the dashed line. In (a) this 
difference is 

€ 

5 + 2 − 17 = 0.113, whereas in (b) we have 

€ 

4 2 − 4 =1.657 , reflecting the 
greater curvature. 

Figure 6: The black line shows the convex hull of the granule, i.e. the smallest convex polygon 
that contains all the pixels of the granule. The total concavity is defined as the difference between 
the area of a granule and its convex hull. The maximum concavity is defined as the greatest 
distance between the boundary of the granule and its convex hull, as indicated by the arrow.

Figure 7: A section of an original polarized image is shown in (a) with the corresponding section 
shown in (b) after the mask obtained from the white light image has been applied. In (c) the black 
pixels are those below the threshold, µ + 0.1σ, where µ and σ are the mean and standard 
deviation of the pixels in each masked granule. The percentage of  pixels that are black pixels 
provides a classification variable for each granule. The skeletonized image of the polarization 
cross is shown in (d).

Figure 8: The cracked granules seen in the white light image in (a) and corresponding polarized 
image in (b) give rise to extra branches in the skeletonized polarisation cross as shown in (c). 
Extra loops and branches also result from the thresholding procedure. The cross areas obtained 
for the granules in the polarized image in (d) are shown in (e) with the resulting skeletonization in 
(f).

Figure 9: Box-plots showing the distribution of granules sizes for each of the 9 species of granule. 
Granule sizes are given by area as a number of pixels where 200µm corresponds to ~390 pixels.

Figure 10: Population pyramid showing the distribution of correctly classified (type 1) and 
incorrectly classified (type 0) granules according to size. Granule sizes are given by area as a 
number of pixels where 200µm corresponds to ~390 pixels.

Figure 11.  The white light and polarized images for the chimp slide are shown in (a) and (b) 
respectively. The image obtained by combining these two images in shown in (c) with the 



resulting masked granules in (d). Each image section shown here is approximately one quarter of 
the original image. The full image is shown in (e) to give the scale of the granules.



Figure 1: Example images from each of the 9 types of starch granule used in this study: (a) lotus 
root, (b) maize, (c) mung bean, (d) potato, (e) water chestnut, (f) cassova, (g) sweet potato, (h) 
oats and (i) plantain. Each image section shown here is approximately one quarter of the original 
image.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)



Figure 2: The gradient magnitudes for the image in (a) are shown in (b). The pixels with 
magnitudes above the threshold are shown in black in (c) and the objects obtained after filling in 
holes are shown in (d). 

 

(a) (b)

(c) (d)



Figure 3: The gradient magnitudes obtained for the image section in (a) are shown in (b). 
Identification of the shared boundaries from the zero crossings in (c) allows the granules to be 
separated as shown in (d).

(d)(c)

(b)(a)





Figure 4: Masked images showing individual potato granules. The white light image is shown in 
(a) and the corresponding polarized image in (b). 

(a) (b)



Figure 5: A measure of curvature at the pixel indicated by the grey point can be obtained from the 
difference in length between the sum of the two dotted lines and the dashed line. In (a) this 
difference is 

€ 

5 + 2 − 17 = 0.113, whereas in (b) we have 

€ 

4 2 − 4 =1.657 , reflecting the 
greater curvature. 

(b)

(a)



Figure 6: The black line shows the convex hull of the granule, i.e. the smallest convex polygon 
that contains all the pixels of the granule. The total concavity is defined as the difference between 
the area of a granule and its convex hull. The maximum concavity is defined as the greatest 
distance between the boundary of the granule and its convex hull, as indicated by the arrow.



Figure 7: A section of an original polarized image is shown in (a) with the corresponding section 
shown in (b) after the mask obtained from the white light image has been applied. In (c) the black 
pixels are those below the threshold, µ + 0.1σ, where µ and σ are the mean and standard 
deviation of the pixels in each masked granule. The percentage of  pixels that are black pixels 
provides a classification variable for each granule. The skeletonized image of the polarization 
cross is shown in (d).

(a) (b)

(c) (d)



Figure 8: The cracked granules seen in the white light image in (a) and corresponding polarized 
image in (b) give rise to extra branches in the skeletonized polarisation cross as shown in (c). 
Extra loops and branches also result from the thresholding procedure. The cross areas obtained 
for the granules in the polarized image in (d) are shown in (e) with the resulting skeletonization in 
(f).

(a)

(c)

(b)

(d)

(e)

(f)



 
Figure 9: Box-plots showing the distribution of granules sizes for each of the 9 species of granule.
Here the size of a granule is determined its length.



Figure 10: Population pyramid showing the distribution of correctly classified (type 1) and 
incorrectly classified (type 0) granules according to size.



Figure 11.  The white light and polarized images for the chimp slide are shown in (a) and (b) 
respectively. The image obtained by combining these two images in shown in (c) with the 
resulting masked granules in (d). Each image section shown here is approximately one quarter of 
the original image.

(a) (b)

(c) (d)


