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Experimental observables near a nematic quantum critical point

in the pnictide and cuprate superconductors

Cenke Xu, Yang Qi, and Subir Sachdev
Department of Physics, Harvard University, Cambridge, MA 02138

(Dated: August 7, 2008)

The newly discovered high temperature superconductor SmFeAs(O1−xFx) shows a clear nematic
transition where the square lattice of Fe ions has a rectangular distortion. Similar nematic ordering
has also been observed in the cuprate superconductors. We provide a detailed theory of experimental
observables near such a nematic transition: we calculate the scaling of specific heat, local density of
states (LDOS) and NMR relaxation rate 1/T1T .

Rapid and important progress has been made in stud-
ies of Iron-oxypnictides superconductors. Various sam-
ples with similar FeAs plane and rare earths have been
synthesized and several different compounds have shown
superconductivity over 50K [1, 2, 3, 4, 5, 17], when the
parent compound is doped by either fluorine or oxygen
deficiency. Although many experimental facts, including
the pairing symmetry, are still under debate, all these
different samples share common features: a tetragonal-
monoclinic (orthorhombic) lattice distortion and (π, 0)
spin density wave (SDW) which commonly exist in the
undoped samples, and “compete” with superconductiv-
ity at finite doping. The SDW and lattice distortion
were first observed in LaFeAs(O1−xFx) by elastic neu-
tron scattering and X-ray spectroscopy [6]. Later on this
phenomenon was confirmed in many other samples with
La replaced by Ce [7], Sm [17, 18] and Nd [19, 20], and
also in oxygen free materials BaFe2As2 [8, 9], SrFe2As2
[12, 13], and CaFe2As2 [15, 16]. In all the samples, at the
lattice distortion temperature Tc1, the resistivity shows
a λ shaped anomaly; therefore the λ anomaly of resistiv-
ity can be taken as a measure of the lattice distortion in
experiments.

Both lattice distortion and SDW are suppressed under
doping, but, in general, the lattice distortion occurs at
higher temperature than the SDW. In SmFeAsO1−xFx,
the lattice distortion and superconductivity coexist in
a finite range of doping; the lattice distortion temper-
ature seems to vanish within the superconducting phase
[17, 18], while the coexistence between SDW and super-
conductor was never observed. In Ref. [21, 22], the
lattice distortion is attributed to anisotropic antiferro-
magnetic correlation between electrons along x and y di-
rections, without developing long range SDW. Since this
order deforms the electron Fermi surface, equivalently, it
can also be interpreted as electronic nematic order. This
nematic order has Ising symmetry, therefore the transi-
tion temperature is controlled by the intralayer spin in-
teraction, while the long range SDW is controlled by the
interlayer spin interaction which is much weaker. There-
fore the nematic transition (lattice distortion) occurs at a
higher temperature than the SDW in general, and unless
very close to the critical point, the nematic transition at

finite temperature should belong to the 2d Ising univer-
sality class. The distance between the lattice distortion
temperature and the SDW temperature depends on the
anisotropy between ab plane and c axis, which can be
checked by comparing the anisotropy of different sam-
ples.

The intimate relation between the structure distortion
and SDW phase proposed by Ref. [21, 22] has gained
support from recent experiments. It is suggested by de-
tailed X-ray, neutron and Mössbauer spectroscopy stud-
ies that both the lattice distortion transition and the
SDW transition of LaFeAs(O1−xFx) are second order
[23], where the two transitions occur separately. How-
ever, in AFe2As2 with A = Sr, Eu, Ba, Ca, the struc-
ture distortion and SDW occur at the same temperature,
and the structure distortion becomes a first order tran-
sition [10, 12, 13, 14, 16] (or a very steep second order
transition [24]). These results suggest that the SDW and
structure distortion are indeed strongly interacting with
each other, and the structure distortion is probably in-
duced by magnetism.

We also note that the importance of nematic ordering
has also been discussed recently in the context of the
cuprate superconductors [25, 26]. Our results below are
presented in the context of the pnictides, but all of the
scaling properties of the experimental observables apply
equally to the cuprates.

We focus on the zero temperature nematic phase tran-
sition at finite doping, motivated by the experimental
suggestion of the existence of structure distortion crit-
ical point within the superconducting phase of sample
SmFeAsO1−xFx [17, 18]. By contrast, the SDW phase
shows no overlap with the superconducting phase in all
the samples studied so far, therefore we will generally
ignore it except for noting that the transition from the
SDW to the nematic order is likely an z = 1 O(3) transi-
tion, based on the fact that the SDW order wave vector
is independent of doping [7], so the low energy particle-
hole excitations at the SDW wave vector vanishes rapidly
with small doping and hence make no contribution to the
damping of the SDW order parameter [21]. The univer-
sality class of the nematic transition strongly depends on
the pairing symmetry of the superconducting phase. If it

http://arXiv.org/abs/0807.1542v2
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FIG. 1: The global phase diagram. The blue, red and green
curves are phase boundaries of SDW, nematic (structure dis-
tortion) and superconductivity respectively.

is an s−wave superconductor without nodes, the transi-
tion of nematic order will be an ordinary 3D Ising transi-
tion; while if the superconductor is d−wave, the gapless
nodal particles may change the universality class of the
nematic transition. The recent STM [27] and Andreev re-
flection measurement [28] suggest that SmFeAsO1−xFx

has nodes in the cooper pair, and the spin susceptibil-
ity measured by Knight shift will tell us whether it is a
p−wave or d−wave pairing. In our current work we as-
sume a d−wave pairing. The universal behavior of the
nematic transition in a d−wave superconductor was first
studied in Ref. [25]. Recently the same theory was stud-
ied carefully, and it was shown that in the infrared limit
there is a special fixed point with logarithmically diverg-
ing velocity anisotropy of the nodal particles [26]. In the
current work we will calculate experimentally relevant
quantities close to this nematic quantum critical point.
The global phase diagram is shown in Fig. 1.

The low energy Lagrangian describing the nematic or-
der and nodal particle reads [25]

L = LΨ + Lφ + LΨφ,

LΨ =

Nf
∑

a=1

Ψ†
1a(∂τ − ivf∂xτz − iv∆∂yτx)Ψ1a

+ Ψ†
2a(∂τ − ivf∂yτz − iv∆∂xτx)Ψ2a,

Lφ =
1

2
(∂τφ)2 +

c2

2
(∇φ)2 +

r

2
φ2 +

u0

4!
φ4,

LΨφ = λ0φ

Nf
∑

a=1

(Ψ†
1aτxΨ1a + Ψ†

2aτxΨ2a). (1)

The Nambu fermion Ψ is defined in the standard con-
vention: Ψ1a = (f1a, ǫabf

†
3b) and Ψ2a = (f2a, ǫabf

†
4b). a

and b are spin indices, f1, f2, f3 and f4 are slow fermion
modes at nodal points (Q, Q), (−Q, Q), (−Q,−Q) and

b

dc

a

FIG. 2: The Feynman diagram used in this work, the dashed
lines are the propagators of nematic order parameter φ. a, the
self-energy correction to fermion Ψ; b, the self-energy correc-
tion to φ; c, the vertex correction to fermion bilinear Ψ†

i TAΨj ;
d, the vertex correction to fermion bilinear Ψt

iTAΨj .
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FIG. 3: Plot of local density of states with v∆0/vf0 = 1/5,
v∆0/vf0 = 1/10, v∆0/vf0 = 1/20 from the top to bottom.
The horizontal axis is in scale of ω/Tc. The curves are y =
x0.91 (red), y = x0.935 (blue), y = x0.955 (green), y = x
(black).

(Q,−Q) respectively. If the system develops long range
order of φ, the four nodal points of the d−wave supercon-
ductor will be shifted and break the C4v symmetry down
to C2v due to the coupling LΨφ [25]. The lagrangian (1)
is not Lorentz invariant because in the real system v∆/vf

is in general not unity. Also, the coupling LΨφ breaks the
Lorentz invariance, since Ψ†τxΨ is only one component
of the space-time current of the Dirac fermion. Therefore
a realistic scaling procedure is to allow v∆ and vf flow
independently under renormalization group (RG).

The nematic transition fixed point in Ref. [26] was ob-
tained by expansion of v∆/(vfNf ), assuming a small ini-
tial value v∆0/vf0, and in the current situation Nf = 2.
The RG flow of velocities is obtained by calculating the
one-loop self-energy in Fig. 2a, with dressed φ propa-
gator at order 1/Nf in Fig . 2b. The renormalization
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condition is chosen to be keeping the coupling constant
λ0 in LΨφ invariant under RG flow. After the one-loop
correction, the flow of the self-energy and velocities reads

dΣ1

d ln Λ
= C1(−iω) + C2vfkxτz + C3v∆kyτx,

dvf

d ln Λ
= (C1 − C2)vf ,

dv∆

d ln Λ
= (C1 − C3)v∆,

d(v∆/vf )

d ln Λ
= (C2 − C3)(v∆/vf ). (2)

Λ is the momentum cut-off. C1, C2 and C3 are functions
of v∆/vf and Nf , their detailed forms are given in the
appendix. Using these RG equations, we are ready to
calculate the scaling of the local density of states (LDOS)
accessible by scanning tunneling microscope (STM):

ρ(ω) ∼

∫

dkxdky

(2π)2
Tr{ImG1,ret(vfkx, v∆ky, ω)

+ ImG2,ret(vfky, v∆kx, ω)}

=
1

v∆vf
Tr{

∫

dk′
xdk′

y

(2π)2
ImG1,ret(k

′
x, k′

y, ω)

+

∫

dk′
xdk′

y

(2π)2
ImG2,ret(k

′
y , k′

x, ω)}. (3)

G1 and G2 are retarded single particle propagator for
Ψ1 and Ψ2. The RG equations in Eq. 2 are calculated
by rescaling momentum cut-off. Since v∆/vf is much
smaller than 1 and flows to zero under RG, for frequency
ω, the corresponding momentum scale is p̃ = ω/vf .
Therefore d ln ω/d ln p̃ = 1 + d ln vf/d ln p̃. Now the scal-
ing equation for ρ(ω) reads:

d ln ρ

d lnω
=

d ln ρ

d ln p̃ × d ln ω
d ln p̃

= −
d ln ρ

d lnΛ × (1 −
d ln vf

d ln Λ
)

=
(1 − C1) −

d ln

“

1

vf v∆

”

d ln Λ

1 −
d ln vf

d lnΛ

=
1 − C3 − C2 + C1

1 + C2 − C1

. (4)

The ultraviolet cut-off of the theory is taken to be the
transition temperature Tc at the critical doping of ne-
matic transition. Although v∆ will be renormalized to
be zero in the infrared limit, the expansion of C2 and C3

with small v∆/vf given in Ref. [26] shows that v∆ ap-
proaches zero slowly with energy scale, therefore for the
experimentally relevant energy scale, one cannot naively
take the fixed point value of v∆. Instead, we have to
integrate Eq. 4 numerically from the ultraviolet cut-off,
and the result at certain frequency ω depends on the ini-
tial value of v∆0/vF0. The results of ρ(ω) with initial
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FIG. 4: Plot of nodal fermion contribution to specific heat
with v∆0/vf0 = 1/5, v∆0/vf0 = 1/10, v∆0/vf0 = 1/20 from
the top to bottom. The horizontal axis is in scale of T/Tc.
The curves are y = x1.86 (red), y = x1.91 (blue), y = x1.945

(green), y = x2 (black).

value v∆0/vF0 = 1/5, 1/10, 1/20 are plotted in Fig. 3,
for frequency between e−4 < ω/Tc < e−1. unlike ordi-
nary d−wave superconductor with LDOS ρ(ω) ∼ ω, in
all three plots the LDOS scales with frequency as

ρ(ω) ∼ ωα, α < 1. (5)

This simple power law relation fits well for the frequency
range e−4 < ω/Tc < e−1, and it can be checked by STM
technique on samples in the quantum critical regime.

The fluctuation of nematic order parameter certainly
affects the thermal dynamical quantities. The free energy
F = T lnZ/V has scaling dimension d + z, the singular
part of the free energy can be written as

F ∼ (ξτ ξxξy)−1. (6)

Now temperature is taken to be the infrared cut-off: ξτ ∼
1/T , and the spatial correlation length can be estimated
to be ξx ∼ vxξτ , ξy ∼ vyξτ . The anisotropic velocity of
Ψi leads to the following contribution to the free energy:

FΨ ∼
1

vfv∆

T 3,

d lnCΨ

d lnT
=

2 +
d ln

(

1

vf v∆

)

d ln T

1 + C2 − C1

=
2 + 2C1 − C2 − C3

1 + C2 − C1

. (7)

The φ contribution to the free energy and specific heat
can be estimated in the same manner, although there is
no velocity anisotropy for the φ field. The velocity of φ
in the large Nf limit can be evaluated by calculating the
one loop correction to the self-energy of φ. In the case
of small v∆/vf , the velocity of φ can be taken to be vf
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isotropically:

Fφ ∼
1

v2
f

T 3

d lnCφ

d lnT
=

2 + 2C1 − 2C2

1 + C2 − C1

. (8)

The solutions of Eq. 7 with different v∆0/vF0 are plotted
in Fig. 4. The equations are solved for the experimentally
relevant temperature range e−4 < T/Tc < e−1. In gen-
eral, the nodal fermions contribute more to the specific
heat compared with φ field, because v∆ scales stronger
with temperature compared with vf . For e−4 < T/Tc <
e−1, the scaling of specific heat is

C ∼ T β, β < 2, (9)

which distinguishes the current situation from the ordi-
nary d−wave superconductor with nodes.

Another way to probe the density of states is the NMR
relaxation rate 1/T1, which is related to the following
Green function:

F (ω) ∼

∫

dqxdqy
1

ω
χ′′(qx, qy, ω), (10)

in the limit of ω → 0. The scaling of 1/(T1T ) with tem-
perature is the same as the scaling of F (ω) with ω, as
T and ω can both serve as infrared cut-off of the theory.
The momentum integrated susceptibility should involve
spin density at various “slow” momenta. At the low en-
ergy theory of the nodal particles, following fermion bi-
linears are low energy spin density modes that have uni-
versal scalings:

~q = (0, 0), Ψ†
1σ

aΨ1 + Ψ†
2σ

aΨ2;

~q12A = (2Q, 0), Ψ†
2σ

aΨ1;

−~q12A = (−2Q, 0), Ψ†
1σ

aΨ2;

~q12B = (0, 2Q), Ψt
1τ

yσyσaΨ2;

−~q12B = (0,−2Q), Ψ†
2τ

yσaσyΨ∗
1,

~q11 = (2Q, 2Q), Ψt
1τ

yσyσaΨ1;

−~q11 = (−2Q,−2Q), Ψ†
1τ

yσaσyΨ∗
1,

~q22 = (−2Q, 2Q), Ψt
2τ

yσyσaΨ2;

−~q22 = (2Q,−2Q), Ψ†
2τ

yσaσyΨ∗
2 (11)

σa are three spin Pauli matrices. To evaluate F (ω) we
need to calculate the correlation of all the fermion bilin-
ears above. The susceptibility χ gains fermion self-energy
correction as in Fig. 2a as well as vertex corrections Fig
2c and Fig. 2d for vertices Ψ†

iTAΨj and Ψt
iTAΨj respec-

tively. For a general fermion bilinear with flavor matrix

0.05 0.10 0.15 0.20 0.25 0.30 0.35
T

0.05

0.10

0.15

1

T1T

FIG. 5: Plot of 1/(T1T ) with T from contribution of spin
density at ~q = (0, 0), with v∆0/vf0 = 1/5, v∆0/vf0 = 1/10,
v∆0/vf0 = 1/20 from the top to bottom. The horizontal axis
is in scale of T/Tc. The curves are y = x1.74 (red), y = x1.83

(blue), y = x1.89 (green), y = x2 (black).

TA, the vertex correction RG equation is conventionally
written as

dTA

d ln Λ
= CATA. (12)

CA is a function of v∆/vf . The details of calculations are
given in the appendix, the results are

C0 = −C1, Cτx = C4 = −C3,

Cτy = C3 − C1 − C2, Cτz = −C2

C12A = C12B = −0.3486
v∆/vf

Nf
+ · · ·

C11 = C22 = −Cτy . (13)

C0 is the vertex correction for fermion bilinear Ψ†
iΨi

and Ψ†
iσ

aΨi, because spin is a good quantum number
spin Pauli matrices do not change the vertex correc-
tion. C12A and C12B are vertex corrections to Ψ†

1σ
aΨ2

and Ψt
1τ

yσyσaΨ2, C11 and C22 are vertex corrections to
Ψt

1τ
yσyσaΨ1 and Ψt

2τ
yσyσaΨ2 respectively.

After taking into account of both self-energy and ver-
tex corrections, the scaling equation of the relaxation rate
reads:

d lnF (ω)

d lnω
=

2 − 2C1 − 2CA + 2
d ln

(

1

vf v∆

)

d ln ω

1 + C2 − C1

=
2 − 2CA − 2C2 − 2C3 + 2C1

1 + C2 − C1

. (14)

Equation (14) leads to the following scaling equation for
1/(T1T ) with temperature:

d ln 1/(T1T )

d lnT
=

2 − 2CA − 2C2 − 2C3 + 2C1

1 + C2 − C1

. (15)
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FIG. 6: Plot of 1/(T1T ) with T from contribution of spin
density at ~q = (2Q, 0) and ~q = (0, 2Q), with v∆0/vf0 = 1/5,
v∆0/vf0 = 1/10, v∆0/vf0 = 1/20 from the top to bottom.
The horizontal axis is in scale of T/Tc. The curves are y =
x1.88 (red), y = x1.9 (blue), y = x1.93 (green), y = x2 (black).
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FIG. 7: Plot of 1/(T1T ) with T from contribution of spin
density at ~q = (2Q, 2Q) and ~q = (2Q,−2Q), with v∆0/vf0 =
1/5, v∆0/vf0 = 1/10, v∆0/vf0 = 1/20 from the bottom to the
top. The horizontal axis is in scale of T/Tc. The curves are
y = x2.08 (red), y = x2.05 (blue), y = x2.025 (green), y = x2

(black).

The contribution from different fermion bilinear compo-
nents listed in Eq. 11 should be solved individually, and
the solutions of each component are plotted in Fig. 5,
6 and 7. One can see that at small frequency the spin
density at (0, 0) makes the most substantial contribution,
which makes the scaling of 1/(T1T ) differ from the ordi-
nary d−wave superconductor:

1

T1T
∼ T γ, γ < 2. (16)

The superconductivity can be fully suppressed by
strong enough magnetic field. Since the nematic quan-
tum critical point is most likely in the underdoped regime
with low Tc, it is possible to apply strong enough inplane
magnetic field H > Hc2 in experiments. With supercon-

ductivity fully suppressed by inplane magnetic field, the
universality class of the nematic transition becomes the
z = 3 theory described in Ref. [21]. The z = 3 quan-
tum critical point leads to a large number of low energy
excitations, which will contribute to thermal dynamics
and transport. The standard mean field theory leads to
following results at low temperature [21]:

C ∼ T 2/3, ρ ∼ T 4/3. (17)

These results will finally crossover to d = 3 scalings close
enough to the critical point:

C ∼ T, ρ ∼ T 5/3. (18)

Similar z = 3 nematic quantum critical point was dis-
cussed in Ref. [29].

In a summary, in this work we computed the scaling
of physical quantities close to a nematic quantum critical
point in a d−wave superconducting phase of the newly
discovered material SmFeAsO1−xFx, motivated by recent
experiments on the polycrystal sample. For the exper-
imentally relevant energy range, the scaling of LDOS,
specific heat, NMR relaxation rate all deviates from an
ordinary d−wave superconductor. These results also ap-
ply, essentially unchanged, to the cuprate superconduc-
tors [25, 26]. This research is supported by the NSF
under grant DMR-0537077.

APPENDIX

In this section we shall calculate the vertex corrections
to the fermion bilinears listed in Eq. 11. For a gen-
eral vertex Ψ†

iTAΨj, the vertex correction is calculated
according to Feynman diagram in Fig. 2c:

TA = TA +
1

Nf

∫

d2p

(2π)2
dΩ

2π

[

τxGi(Ω, p)

×TAGj(Ω, p)τx
] 1

Γ2(Ω, p)
. (19)

For a general vertex Ψt
iTAΨj , the vertex correction is

calculated according to Feynman diagram in Fig. 2d:

TA = TA +
1

Nf

∫

d2p

(2π)2
dΩ

2π
(−1)

[

τxGi(Ω, p)

×TAGj(Ω, p)τx
] 1

Γ2(Ω, p)
. (20)

Γ2(Ω, p) is the self-energy of φ from integrating out
fermions:

Γ2(ω, p) = Π2(kx, ky, ω) + Π2(ky, kx, ω),

Π2(kx, ky, ω) =
1

16vfv∆

ω2 + v2
fk2

x

(ω2 + v2
fk2

x + v2
∆k2

y)1/2
.(21)
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Π2 is reminiscent of the vacuum polarization of the 2+1d
QED, with a gauge invariant form Πµν(p) ∼ p(δµν −
pµpν/p2), and Π2 = Πxx(p).

The RG equation is defined as the change of parame-
ters after rescaling the cut-off. The cut-off is introduced
in a smooth function K(p2/Λ2), with K(0) = 1 and falls
rapidly when y → 1. Now following the notation in Ref.
[26], we change the momentum space integral to cylin-
drical coordinates pµ = yΛ(vfx, cos θ, sin θ), and the RG
equations in Eq. 2 and Eq. 12 are obtained when the
cut-off is reduced from Λ to Λ − dΛ, with

C1 = −C0 =
2(v∆/vf )

π3Nf

∫ +∞

−∞

dx

∫ 2π

0

dθ

×
(x2 − cos2 θ − (v∆/vf )2 sin2 θ)

(x2 + cos2 θ + (v∆/vf )2 sin2 θ)2
G(x, θ);

C2 = −Cτz =
2(v∆/vf )

π3Nf

∫ +∞

−∞

dx

∫ 2π

0

dθ

×
(−x2 + cos2 θ − (v∆/vf )2 sin2 θ)

(x2 + cos2 θ + (v∆/vf )2 sin2 θ)2
G(x, θ);

C3 = −Cτx =
2(v∆/vf)

π3Nf

∫ +∞

−∞

dx

∫ 2π

0

dθ

×
(x2 + cos2 θ − (v∆/vf )2 sin2 θ)

(x2 + cos2 θ + (v∆/vf )2 sin2 θ)2
G(x, θ);

Cτy = −C11 = −C22 =
2(v∆/vf )

π3Nf

∫ +∞

−∞

dx

∫ 2π

0

dθ

×
(x2 + cos2 θ + (v∆/vf )2 sin2 θ)

(x2 + cos2 θ + (v∆/vf )2 sin2 θ)2
G(x, θ)

= C3 − C1 − C2;

C12A = C12B =
2(v∆/vf )

π3Nf

∫ +∞

−∞

dx

∫ 2π

0

dθ

(−x2) ×
1

x2 + cos2 θ + (v∆/vf )2 sin2 θ

×
1

x2 + (v∆/vf )2 cos2 θ + sin2 θ
G(x, θ);

G−1(x, θ) =
x2 + sin2 θ

√

x2 + (v∆/vf )2 cos2 θ + sin2 θ

+
x2 + cos2 θ

√

x2 + (v∆/vf )2 sin2 θ + cos2 θ
. (22)

It was noted in Ref. [26] that function C3 has a rather
singular form in the small v∆/vf limit:

C3 =
8

π2

[

ln(vf/v∆) − 0.9601
]v∆/vf

Nf
+ · · · . (23)

Plugging this function into Eq. 2, one can see that
v∆/vf approaches zero a little faster than the ordi-
nary marginally irrelevant operators, but for the exper-
imentally relevant energy scale, v∆/vf still flows slowly.
Therefore all the plots in our paper, though integrated
from a complicated equation, can be fit with a simple
power law.
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