Quantum spin dynamics of mode-squeezed Luttinger liquids in two-component atomic gases

Artur Widera, Stefan Trotzky, Patrick Cheinet, Simon Fölling, Fabrice Gerbier, and Immanuel Bloch
Johannes Gutenberg-Universität, Institut für Physik, Staudingerweg 7, 55099 Mainz, Germany

Vladimir Gritsev, Mikhail D. Lukin, and Eugene Demler
Department of Physics, Harvard University, Cambridge MA 02138

We report on the observation of many-body spin dynamics of interacting, one-dimensional (1D) ultracold bosonic gases with two spin states. By controlling the non-linear atomic interactions close to a Feshbach resonance we are able to induce a phase diffusive many-body spin dynamics of the relative phase between the two components. We monitor this dynamical evolution by Ramsey interferometry, supplemented by a novel, many-body echo technique which unveils the role of quantum fluctuations in 1D. We find that the time evolution of the system is well described by a Luttinger liquid initially prepared in a multimode squeezed state. Our approach allows us to probe the non-equilibrium evolution of one-dimensional many-body quantum systems.

PACS numbers: 03.75.Gg, 03.75.Mn, 03.75.Kk, 71.10.Pm

Among the applications of ultracold atomic gases, atom interferometry stands out due to its potential for high precision measurements [1]. In atom interferometry, the physical quantity of interest is measured in terms of the relative phase accumulated by the atomic wavefunction, subsequently mapped onto atomic populations for efficient read-out. Due to their intrinsic phase coherence and the possibility to create non-classical spin states for precision metrology, Bose-Einstein condensates (BEC) seem ideal candidates for such experiments. However, interatomic interactions mitigate this conclusion. For a two-component interacting BEC, it has been shown [2, 3] using a single-mode approximation (SMA) that the relative phase between the two components undergoes a complicated evolution (Fig. 1c-e), creating quantum correlations [4] while single-particle coherence is suppressed. Therefore, this dynamics is often termed phase diffusion.

In this work, we investigate such an interaction induced dynamics in quasi-1D two-component quantum gases by monitoring the loss of coherence in a Ramsey-type interferometer sequence. In order to distinguish different contributions affecting the coherence through the spin or spatial wave functions, we employ a novel many-body spin echo sequence using a Feshbach resonance to adjust sign and magnitude of the atomic interactions. When applied to a single spatial mode BEC, this spin echo would lead to full revivals of coherence, which are not observed in our experiment. In contrast, quantum fluctuations play a key role for 1D interacting systems [5, 6], which must necessarily be described as multimode quantum gases, as during the dynamical evolution higher energy modes become populated [7]. The Luttinger liquid (LL) formalism [8, 9], which reduces the interacting problem to an effective low-energy model of decoupled harmonic oscillator modes, provides such a description. We show theoretically that our preparation sequence amounts to producing a multimode squeezed state in the spin excitation modes of the LL oscillators, with each oscillator itself prepared in a well-defined mode-squeezed state, and remaining in a squeezed state at all times [10]. Monitoring the phase dynamics of this strongly non-equilibrium state allows to probe fundamental aspects of 1D physics, namely the competing dynamics of the (quasi-) condensate fraction (zero momentum mode) and of the low-energy excitations, highly relevant for squeezing experiments in 1D configurations [11]. From our model we find that only the lowest oscillator mode shows the familiar revival dynamics, whereas the full model leads to the partial revivals that we observe experimentally.

The system we consider is an array of two-component 87Rb spinor gases confined to quasi-1D traps (tubes). We experimentally realize this system by loading a 87Rb BEC of around 2.8×10^5 atoms into a 2D-optical lattice [12], hence creating a 2D array of 1D degenerate quantum gases (see Fig. 1b). The lattice laser wavelength is $\lambda = 843$ nm, and the radial and axial trap frequencies within each tube are $\omega_r \approx 2\pi \times 42$ kHz, and $\omega_{ax} \approx 2\pi \times 90$ Hz, respectively, from which we calculate a mean number per tube of $N \approx 60$.

In order to extract information about the phase dynamics, we experimentally monitor the coherence of the system.

FIG. 1: (a) Array of quasi-1D spinor systems. (b,c) Within each tube, a coherent spin-state is created exhibiting Gaussian distributed fluctuations of the mean spin. (c-e) Time evolution of the initial CSS transition.
by recording interference fringes in a Ramsey-type interferometer. In the following we use the well-known analogy with a quasi spin-1/2 system in order to describe our two-component gas. Starting from a spin-polarized ensemble in state $|\downarrow\rangle \equiv |F = 1, m_F = +1\rangle$, we use a two-photon $\pi/2$-pulse combining a microwave and a radio frequency photon to couple this state to the $|\uparrow\rangle = [2, -1]$ spin state and bring each atom into the single-particle superposition $(|\uparrow\rangle + |\downarrow\rangle)/\sqrt{2}$. This prepares a coherent spin state (CSS) within each tube with expectation value of the magnetization $\langle \hat{n}_i \rangle = 0$ and variance $\langle \hat{m}_z^2 \rangle = N/2$, with $\hat{m}_z = \hat{n}_z - \hat{n}_\uparrow$ (see Fig. 1b, cf. 13). In order to observe interaction driven effects, we set the system evolve for a given time at a particular value of the inter-spin-state interaction strength, selected by using a Feshbach resonance around $B = 9.12$ G. Thereby the inter-species scattering length a_{21} can be changed by a few 10% from its background value 1415, where a_{ij} is the s-wave scattering length for collisions between atoms in spin states i and j.

After this time evolution, a final $\pi/2$-pulse with phase θ relative to the first pulse is applied, mapping the final relative phase onto populations of spin states $|\uparrow\rangle$ and $|\downarrow\rangle$ that are read out using state-selective absorption imaging. In the absence of interactions and dephasing, such a sequence results in sinusoidal Ramsey fringes in the relative population $N_\uparrow/N_{\text{tot}}$ as a function of θ. Experimentally the coherence is quantified through the visibility of the Ramsey fringe

$$\frac{N_\uparrow}{N_{\text{tot}}} = \frac{1}{2} \left(1 + \mathcal{V}(t) \times \cos(\theta) \right), \quad (1)$$

which is used to fit the experimental data and extract $\mathcal{V}(t)$ for a specific interaction time. Far from the Feshbach resonance ($B = 8.7$ G), where the effect of the phase dispersion can be neglected, we measure a e^{-1}-decay time $t_{\text{dec}} = 54$ ms, which can be attributed to residual single particle decoherence effects, e.g. caused by magnetic field fluctuations.

Close to the Feshbach resonance, however, we find a markedly faster decay of the Ramsey contrast. In Fig. 2 we monitor such a behavior of the Ramsey fringe over time for two magnetic fields located almost symmetrically around the center of the Feshbach resonance. Such a behavior can be expected from enhanced phase diffusion due to increased interactions near the resonance. Phase diffusion results from a spread in the distribution of populations which are converted into phase fluctuations by the non-linear interactions during the evolution, see Fig. 1c-e. In the simplest case where all atoms occupy the same orbital wave function, the Ramsey fringe contrast decays according to

$$\mathcal{V}_{\text{SMA}}(t) \approx \exp \left(- \frac{1}{2} \chi^2 \langle \hat{m}_z^2 \rangle t^2 \right). \quad (2)$$

For the initial state we prepare, the population variance $\langle \hat{m}_z^2 \rangle = N/2$ leads to a phase uncertainty $(\Delta \phi_0)^2 = 2/N \approx 0.033$ of the collective spin vector in the equatorial plane (see Fig. 1) in each tube, and a phase spreading time scale $t_\phi \sim 1/(\chi \sqrt{N})$. The parameter χ, related to the second derivative of the chemical potential 3, is directly proportional to the difference $\alpha_s = (a_{1\uparrow} + a_{1\downarrow} - 2a_{2\uparrow})/2$. Far from the resonance, all three scattering lengths $a_{1\uparrow}, a_{1\downarrow}$, and $a_{2\uparrow}$ are approximately equal, so that $\chi \approx 0$ and interaction-induced phase spreading can be neglected. However, near the Feshbach resonance, the change of inter-species scattering length can lead to a significant non-linear interaction energy. Following Refs. 31617, we estimate $\chi \approx 2\times 4.6$ Hz for $B = 9.131$ G and our trapping parameters with an atom number of $N \approx 60$. Although this value, together with the observed decoherence rate, is roughly on the order of the observed rate at which the coherence is lost in the quasi-1D regime investigated here, the pure SMA Eq. (2) cannot explain our experimental observation in Fig. 2. Close to the resonance we lose up to 50% of the atoms due to inelastic collisions. However, as these collisions usually remove atoms from both spin states symmetrically, they do not modify the magnetization of the system and thus only weakly influence the dynamical evolution of the coherence for our measurement times 318.

In contrast to the simple model of Eq. (2) which predicts a symmetric decay around the resonance, we systematically observe a faster drop of contrast below the resonance. In fact, changing the sign of the effective interaction strength has severe consequences on the spatial wave function of the atoms. Below resonance, the inter-species repulsion is stronger than the intra-species repulsion $(\chi < 0)$, and the system becomes dynamically unstable towards demixing of the two species. This reduces the Ramsey fringes visibility below the resonance, which cannot be distinguished from the effect of the coherent phase diffusion dynamics.

In order to separate the effects of phase diffusion from other mechanisms reducing the Ramsey fringe contrast, we apply a many-body spin echo operation after an initial evolution time T, similar to the one used in cavity quantum electro dynamics experiments 19. We stress that our echo technique is acting on the many-body quantum state, whereby extending previous theoretical work on echo operations neglecting phase diffusion 20. Such a many-body spin echo operation is performed by first holding the sample for a time $T = 6$ ms at a magnetic field $B_1 = 9.131$ G above the Feshbach resonance $(\chi > 0)$, and subsequently jumping below the resonance $(\chi < 0)$. This operation effectively changes the sign of the non-linear interaction parameter χ, while heating or atom loss can be avoided 13. In a SMA one would expect this sequence to correspond to a perfect time reversal, leading to a full revival of the contrast after another interaction time T according to

$$\mathcal{V}_{\text{SMA}}(t) = \mathcal{V}_0 \exp \left(- \frac{\chi^2}{2} \langle \hat{m}_z^2 \rangle (t - 2T)^2 \right). \quad (3)$$

This contradicts our observation of only partial revivals, shown for two spin echo sequences in Fig. 3.

In order to explain our observation, we model our system in a LL approach going beyond the usual SMA 22. A drastic simplification follows from the near equality $a_{1\downarrow} \approx a_{1\uparrow}$, which results in a decoupling of elementary excitations into almost
FIG. 2: Ramsey fringe contrast drop for a time evolution at at $B = 9.106 \text{G} \,(\circ)$ and $B = 9.131 \text{G} \,(\bullet)$. The dashed line indicates the independently measured decoherence far away from resonance ($\delta_{\text{loc}} = 54 \text{ ms}$). The solid lines are predictions of our LL model with the phase width $\langle \Delta \phi_{\text{LL}} \rangle^2 = (\Delta \phi_0)^2 \approx 0.033$ fixed. The dashed dotted line is a prediction of Eq. (2) based on SMA. For values see text.

independent density and spin fluctuations. The latter can be described in terms of two conjugate fields, \hat{m}_t and $\hat{\phi}_s$, describing respectively fluctuations of the local magnetization and of the relative phase. At long-wavelengths, the spin-part of the Hamiltonian reads

$$H_s = \int d\xi \left[g_s \hat{m}_t^2 + \frac{n_{\text{tot}}}{4M} \left(\nabla \hat{\phi}_s \right)^2 \right],$$

with $n_{\text{tot}} = n_t + n_1$ the linear density. For a uniform 1D system of length L, the fields \hat{m}_t and $\hat{\phi}_s$ can be expanded in terms of momentum eigenmodes a_q, a_q^\dagger as $\hat{\phi}_s(x) = \phi_0 + \sum_q (2qL/k_B)^{-1/2} e^{-i|q|2\xi_h} \text{sgn}(q) \{ e^{i\xi_h}a_q + \text{h.c.} \}$. Each mode is characterized by the wave vector q and frequency $\omega_q(t) = v_r(t)q$, where $v_r(t) = (g_s(t)\delta_{\text{loc}}/M)^{1/2}$ is the spin velocity and $g_s(t)$ denotes the spin coupling constant. The sum over LL modes exclude the zero mode, and are restricted to values of q below a cut-off momentum $q_c \sim \xi_h^{-1}$, where ξ_h is the healing length. The interactions are encoded in the LL parameter K which can take values ranging from 1 (the so-called Tonks-Girardeau limit [17, 22]) to infinity (noninteracting gas). For weakly interacting bosons $K \approx \pi/[\sqrt{\gamma}(1 - \sqrt{2\gamma})^{1/2}]$ where $\gamma = 2a_0 M v_r/\hbar n_{\text{tot}}$. In our experiments $\gamma \sim 0.1 - 0.2$ and $K \sim 5 - 8$ for different data sets. The contribution of the zero energy mode ϕ_0 is identical to that in the SMA, as described before [2]. The dynamics of the low-energy LL excitations on top of the zero mode dynamics is that of a collection of independent harmonic oscillators with (time-dependent) frequencies $\omega_q(t)$.

In order to use the LL decomposition to compute the time evolution, we need to identify how to describe the initial state in terms of those LL modes. Our experimental scheme ideally corresponds to an instantaneous projection of the spin state (initially polarized in $|\downarrow\rangle$) onto a state with zero relative phase directly after the first $\pi/2$-pulse, $\hat{\phi}_s(x)|\psi(0)\rangle \approx 0$. The connection with the LL formalism is done by identifying the initial CSS as a multimode squeezed state for the elementary spin excitations,

$$|\psi(0)\rangle = \hat{S}(|w_q\rangle)|0\rangle = \prod_q \sqrt{1 - |w_q|^2} \exp(w_q \hat{a}_q^\dagger \hat{a}_q)|0\rangle$$

where \hat{S} is a squeezing operator, with the factor $w_q = (1 - \alpha_q)/(1 + \alpha_q)$. Here, $\alpha_q = \Delta \phi_{\text{LL}}|q|/2\xi_h$ is a mode squeezing parameter, and the phase variance $\langle \Delta \phi_{\text{LL}} \rangle^2 = (\Delta \phi_0)^2 = \frac{2}{\gamma}$. In reality, due to various experimental imperfections (e.g. unknown temperature), the exact width of the prepared squeezed state is unknown and cannot be determined independently. We still consider the initial state as a squeezed state of the LL oscillators, with a fitted $\Delta \phi_{\text{LL}}$ of the squeezed state.

The time evolution of a squeezed state under the LL Hamiltonian amounts to the replacement $\hat{a}_q \rightarrow \hat{a}_q \exp(-i\omega_q t)$. In addition, the reversal of the sign of interaction at time $t = T$ amounts to a sign reversal of the spring constant of each LL harmonic oscillator. We are able to compute this time evolution exactly [13], using the formalism of harmonic oscillators with time-dependent frequencies $\omega_q(t)$ [23]. Here, we concentrate on the comparison between the predictions of the calculations and the experimental results. From our model we are able to calculate the coherence factor $V(t) = \text{Re} \left\{ \int_0^L dx \langle \psi(t)|e^{i\hat{\phi}_s(t)}|\psi(t)\rangle \right\}$, measuring the relative phase $\hat{\phi}_s$ between $|\uparrow\rangle$ and $|\downarrow\rangle$. In the LL formalism, the coherence factor can be generally written as $V(t) = V_{\text{SMA}}(t) \times V_{\text{qf}}(t)$, where $V_{\text{SMA}}(t)$ is given by Eqs. (23), and the term describing the contribution of the $q \neq 0$ modes to the decay of contrast $V_{\text{qf}}(t)$ is known explicitly [13]. The combination of these effects leads to the typical behavior of $V(t)$ illustrated in Fig. 3 where we qualitatively compare the experimental results with the predictions of our LL model. The interaction parameters of the LL model were determined from the microscopic data [15], and in our computations we only consider the density in the central tubes computed in the Thomas-Fermi approximation [13]. Overall, we find very good agreement between the LL model and the experimental data using $\Delta \phi_{\text{LL}}$ as the only fit parameter. For our data we find values that are of the same order of magnitude as the initial width. For longer times ($t > 20 \text{ ms}$), the model deviates from the measured data. This breakdown is due to the phenomenon of demixing discussed above, when the excitations become so strong that density fluctuations are significant [6]. Its timescale can be estimated as the time required for the formation of random magnetization domains, when $\sum_q |\langle \hat{m}_q \rangle|^2 \sim N$. For our experimental parameters, it is of the order $\approx 20 - 25 \text{ ms}$ which is of the order of $1/\chi$.

From this analysis we find indeed that although the zero mode evolution is perfectly refocused by changing the sign of g_s, the non-zero modes still undergo dephasing even under the echo sequence. The reason for this is the kinetic energy term in Eq. (4), unaffected by the spin echo. Hence, the reversal is exact for the $q = 0$ mode, significant for low-lying spin waves with $q \sim 1/L$, but increasingly less efficient for higher lying spin waves modes with $L^{-1} \ll q < q_c$. Note that a full revival could be in principle achieved by also reverting the second,
knowledge support from IFRAF and ANR. VG, ED and ML acknowledge support from NSF, Harvard-MIT CUA, AFOSR, and MURI. VG is also supported by Swiss NSF.

We thank Servaas Kokkelmans for providing us with up-to-date calculations on the hyperfine Feshbach resonance. We simultaneously during the interferometer sequence.

\[\Delta B \]

While our work demonstrates that these quantum fluctuations can be realized by inducing a negative effective mass, e.g., through a weak optical lattice along the direction of the tubes [24].

In conclusion, we have studied the phase dynamics of quasi-1D two-component quantum gases with adjustable interaction. For strong interactions we observe an accelerated decay of coherence in the system. We attribute this revival to the dynamical evolution of higher lying modes in 1D systems. We show that quantum fluctuations are a crucial component in the discussion of phase diffusion [2] and spin-squeezing [11] in low dimensional systems. While our work demonstrates that these quantum fluctuations fundamentally limit the performance of atom interferometers in 1D, it also indicates an avenue to overcome such limitations by inverting both interaction and kinetic energy terms simultaneously during the interferometer sequence.

We thank Servaas Kokkelmans for providing us with updated calculations on the hyperfine Feshbach resonance. We acknowledge financial support by the DFG, and the EU under STREP (OLAQUI) and MC-EXT (QUASICOMBS). FG acknowledges support from IFRAF and ANR. VG, ED and ML

\[G \]

\[s \]

\[a \]

\[K \]

\[\chi \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]

\[\Delta \]

\[\chi \]

\[\gamma \]

\[\phi \]