Quantum Criticality of the Kagome Antiferromagnet with Dzyaloshinskii-Moriya Interactions

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1103/PhysRevB.81.144432</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:7480787</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>
Quantum criticality of the kagome antiferromagnet with Dzyaloshinskii-Moriya interactions

Yejin Huh, Lars Fritz, and Subir Sachdev

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany

(Dated: March 5, 2010)

We investigate the zero-temperature phase diagram of the nearest-neighbor kagome antiferromagnet in the presence of Dzyaloshinskii-Moriya interaction. We develop a theory for the transition between \mathbb{Z}_2 spin liquids with bosonic spinons and a phase with antiferromagnetic long-range order. Connections to recent numerical studies and experiments are discussed.

I. INTRODUCTION

The nearest neighbor spin $S = \frac{1}{2}$ antiferromagnet on the kagome lattice has been the focus of extensive theoretical and experimental study because it is a prime candidate for realizing a ground state without antiferromagnetic order.

On the experimental side, much attention has focused on the $S = 1/2$ compound herbertsmithite $\text{ZnCu}_3(\text{OH})_6\text{Cl}_2$. It has $J \approx 170$ K and no observed ordering or structural distortion. However, there is an appreciable amount of substitutional disorder between the Zn and Cu sites (believed to be of the order 5-10 %) which affects the low T behavior. More importantly, there is an upturn in the susceptibility at $T = 75$ K which has been ascribed to the DM interactions.

On the theoretical side, the most recent evidence on the the nearest-neighbor antiferromagnet points consistently to a ground state with a spin gap of $0.05J$ and valence bond solid (VBS) order. The pattern of the VBS order is quite complex with a large unit cell, but was anticipated by Marston and Zeng by an application of the VBS selection mechanism described in the $1/N$ expansion of the SU(N) antiferromagnet.

The influence of the DM interactions has also been studied theoretically. Starting with an “algebraic spin liquid” ground state, Hermele et al. argued that the DM coupling, D, was a relevant perturbation, implying that an infinitesimal D would induce long-range magnetic order. In a recent exact diagonalization study, Cepas et al. reach a different conclusion: they claim that there is a non-zero critical DM coupling D_c beyond which magnetic order is induced. They estimate $D_c/J \approx 0.1$, quite close to the value measured for $\text{ZnCu}_3(\text{OH})_6\text{Cl}_2$ which has $D/J \approx 0.08$. This proximity led Cepas et al. to suggest that the quantum criticality of the DM-induced transition to magnetic order controls the observable properties of this kagome antiferromagnet.

The purpose of this paper is to propose a theory for the quantum critical point discovered by Cepas et al. We will compute various observables of this theory, allowing a potential comparison with numerics and experiments.

Given the evidence for VBS order in the model without DM interaction, it would appear we need a theory for the transition from the VBS state to the magnetically ordered state. However, the VBS ordering is weak, and can reasonably be viewed as a perturbation on some underlying spin-liquid ground state. Schwandt, Mambrini, and Poilblanc have recently presented evidence that the kagomé antiferromagnet is proximate to a \mathbb{Z}_2 spin liquid state, and that vison condensation in this state leads to weak VBS ordering. Their dimer representation leads naturally to \mathbb{Z}_2 spin liquid states in the same class as that originally described by the Schwinger boson method. We will therefore neglect the complexities associated with the VBS ordering and work with the parent \mathbb{Z}_2 spin liquid state. This is equivalent to ignoring the physics of the vison sector, and assumes that the magnetic ordering transition can be described in a theory of the spinons alone. The main result of this paper will be a theory of the quantum phase transition from the Schwinger boson \mathbb{Z}_2 spin liquid to the magnetically ordered state as induced by the DM interactions.

We will begin in Section II with a description of the mean-field theory of the \mathbb{Z}_2 spin liquid and its transition to the magnetically ordered state in the presence of DM interactions. This will be carried using the $\text{Sp}(N)$ Schwinger boson formulation, for which the mean-field theory becomes exact in the large N limit. We will turn to fluctuation corrections and the nature of the quantum critical point in Section III. Here we will show that the critical theory is the familiar three dimensional XY model. However, its connection to experimental observables is subtle: in particular, the XY field itself is not directly observable.

While this paper was in preparation, a description of the Schwinger boson mean field theory in the presence of DM interactions also appeared in Ref. [22]. They consider mean-field solutions with larger unit cells than we do, but did not analyze the critical field theory. Where they overlap, our results are in agreement with theirs. We also note the recent experimental observations of Helton et al. who present evidence for quantum criticality in $\text{ZnCu}_3(\text{OH})_6\text{Cl}_2$.

II. MEAN FIELD THEORY

The model we consider is a standard Heisenberg Hamiltonian supplemented by an additional DM interaction. It
FIG. 1: Staggered DM interaction from triangle to triangle in z-direction as in Ref. [34]. The arrowheads indicate D to come out of the plane, whereas the tails denote D to go into the plane. Note that the triangles are summed clock- and anticlockwise, respectively, indicated by the arrows on the bonds.

assumes the form

$$\mathcal{H} = \frac{1}{2} \sum_{i,j} [J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + D_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j)] .$$ \tag{1}

\mathbf{S}_i in this notation denotes the spin operator at site i, J_{ij} is assumed to be uniform and of the nearest neighbor type, and $D_{ij} = D_{ij} e_z$ is taken along the z-axis and staggered from triangle to triangle [34], see Fig. 1. This additional term explicitly breaks the spin-rotation symmetry by favoring configurations lying in the x-y plane. Furthermore this term increases the tendency of classical spin ordering. It has been shown in earlier works [29,30] that Schwinger bosons are ideally suited to describe phase transitions between paramagnetic and magnetically ordered phases in spin models. Following Ref. [27] we introduce a Sp(N) generalization of the spin operators, which formally allows to consider a controlled large-N limit particularly suited for the study of frustrated spin systems such as kagome or triangular antiferromagnets. In the Sp(1) case, which is isomorphic to SU(2), one can represent the spin variables as

$$\mathbf{S}_i = b_{i\sigma}^* \tau_{\sigma\sigma'} b_{i\sigma'} ,$$ \tag{2}

with τ being the Pauli matrices and with

$$b_{i\sigma} = \begin{pmatrix} b_{i\uparrow} \\ b_{i\downarrow} \end{pmatrix} \quad \text{and} \quad \sum_{\sigma} b_{i\sigma}^* b_{i\sigma} = 2S = n_b .$$ \tag{3}

In the case of the large-N generalization the Schwinger bosons acquire another index counting the copies of the system (we drop this index in the following discussions, but display N whenever it is essential). The large-N generalization formally justifies the mean-field, with the saddle point becoming exact in the limit $N \to \infty$. In order to properly reformulate the problem at hand we introduce two decoupling parameters

$$Q_{ij} = \sum_{\sigma\sigma'} \epsilon_{\sigma\sigma'} b_{i\sigma} b_{j\sigma'} ,$$

$$P_{ij} = \sum_{\sigma\sigma'} \tau_{\sigma\sigma'} b_{i\sigma} b_{j\sigma'}$$ \tag{4}

where $\epsilon_{\sigma\sigma'}$ is the antisymmetric tensor and τ^x is just the standard Pauli matrix. We see from the above expressions that $Q_{ij} = -Q_{ji}$, whereas $P_{ij} = P_{ji}$. This implies that the bond variables P_{ij} do not have a direction.

The constraint Eq. (3) is implemented via a Lagrangian multiplier in a standard way. The Hamiltonian of the system formulated in the fields defined in Eq. (4) consequently reads

$$\frac{\mathcal{H}}{N} = - \frac{1}{2} \sum_{i,j} J_{ij} Q_{ij} Q_{ij} - \frac{i}{4} \sum_{i,j} D_{ij} (P_{ij} Q_{ij} - Q_{ij}^* P_{ij})$$

$$+ \sum_i \lambda_i (b_{i\sigma}^* b_{i\sigma} - \kappa)$$ \tag{5}

where $\kappa = n_b/N$. We furthermore introduce N_u as the number of unit cells in the systems and N_s as the number of sites within the unit cell. We can write the mean-field Hamiltonian per flavor and unit cell as

$$\frac{H_{MF}}{NN_u} = \frac{1}{N_u} \sum_k \Psi^*(k) \mathbb{H}(q_{ij}, p_{ij}, \lambda, k) \Psi(k)$$

$$+ \frac{j}{2} \sum_{(ij)'} |q_{ij}|^2 + \frac{iD}{4} \sum_{(ij)'} (p_{ij}^* q_{ij} - q_{ij}^* p_{ij})$$

$$- N_s \lambda (1 + \kappa)$$ \tag{6}

where $\sum_{(ij)'}$ denotes the sum over bonds belonging to the unit cell,

$$\Psi^*(k) = (b_{1\uparrow}^*(k), ..., b_{N_s \downarrow}^*(k), b_{1\downarrow}(-k), ..., b_{N_s \uparrow}(-k)) ,$$ \tag{7}

and the matrix

$$\mathbb{H} = \begin{pmatrix} \mathbb{I} & \mathbb{C}^*(k) \\ \mathbb{C}(k) & \mathbb{I} \end{pmatrix}$$ \tag{8}

with the matrices \mathbb{I} (identity) and $\mathbb{C}(k)$ being $N_s \times N_s$ matrices; the explicit form of these matrices is given in Appendix A. As mentioned before, one of the major assets of the Schwinger boson approach is that it can describe magnetically disordered gapped spin liquid phases as well as magnetically ordered states. On a formal level in the large-N approach this is achieved by introducing the following notation for the Schwinger bosons

$$b_{i\sigma} = (\sqrt{N} x_i, b_{i\sigma}^m) \quad \text{where} \quad m = 2, ..., N .$$ \tag{9}

The first component is thus a classical field. If $x \neq 0$ it signals condensation which causes long range order to appear. Following Ref. [27,29] we can integrate out the
Schwinger bosons and the zero-temperature mean field energy assumes the following form

\[
\frac{E_{MF}}{N^2 N_a} = \frac{1}{N_a} \sum_{k,\mu=1,..,N_s} \omega_\mu(k) - N_s \lambda + \lambda \sum_{i'\sigma} |x_{i\sigma}|^2
\]

\[
+ \frac{J}{2} \sum_{(ij)'} \left[|q_{ij}|^2 - (q_{ij}^* \epsilon_{\sigma\sigma'} x_{i\sigma} x_{j\sigma'} + h.c.) \right]
\]

\[
+ \frac{iD}{4} \sum_{(ij)'} (p_{ij}^* q_{ij} - q_{ij}^* p_{ij})
\]

\[
- \frac{iD}{4} \sum_{(ij)'} (p_{ij}^* \epsilon_{\sigma\sigma'} x_{i\sigma} x_{j\sigma'} + q_{ij}^* \rho_{\sigma\alpha} x_{i\sigma} x_{j\sigma'})
\]

\[
+ \frac{iD}{4} \sum_{(ij)'} (p_{ij}^* \epsilon_{\sigma\sigma'} x_{i\sigma} x_{j\sigma'} + q_{ij}^* \rho_{\sigma\alpha} x_{i\sigma} x_{j\sigma'})
\] (10)

where \(\sum_{i'}\) denotes the sum over all sites within one unit cell. In the following we solve the self-consistency equations according to

\[
\kappa = \langle b_{i\sigma}^* b_{i\sigma} \rangle_{MF}
\]

\[
q_{ij} = \langle Q_{ij} \rangle_{MF},
\]

\[
p_{ij} = \langle P_{ij} \rangle_{MF}.
\] (11)

with the Hamiltonian defined in Eq. (6).

Our solution of the mean-field equations follows previous work\cite{27,28}, which classified physically different \(Z_2\) spin liquid solutions without the DM interactions. We found that these solutions have a natural generalization in the presence of DM terms, with values of the \(p_{ij}\) which reflect the symmetries of the \(q_{ij}\). Two stable solutions were found in previous work, with only two possibly distinct values of \(q_{ij}\) as illustrated in Fig. [2]. Including the DM interactions, these solutions extended to

(i) \(q_1 = q_2\) real, \(p_1 = -p_2\) pure imaginary: upon increasing \(\kappa\), the Schwinger bosons condense at \(k = 0\), with the spins at angles of \(120^\circ\) to each other within the unit cell.

(ii) \(q_1 = -q_2\) real, \(p_1 = p_2\) pure imaginary: upon increasing \(\kappa\), the Schwinger bosons condense at \(k = 0\), with the spins at angles of \(120^\circ\) to each other within the unit cell.

This states is therefore called the \(k = 0\) state.

A. Phase diagram

Our phase diagram is shown in Fig. [II A] as a function of \(\kappa = n_b/N\) (which corresponds to the spin size) and the parameter \(D/J\). Our phase diagram is similar to that obtained recently by Messio et al.\cite{32}. They also considered solutions with a larger unit cell which were stable over some portion of the phase diagram.

We start with a discussion of the classical limit. While for \(D = 0\) the long-range ordered state of the \(\sqrt{3} \times \sqrt{3}\) type is generically preferred,\cite{27} infinitesimal \(D\) favors the so-called \(k = 0\) state. This is reproduced by our mean-field equations in the large spin limit \(\kappa \to \infty\). For finite values of \(\kappa\) there is a small slab in which long-range order of the \(\sqrt{3} \times \sqrt{3}\) type is favored over the \(k = 0\). These states are separated by a first order transition driven by the ratio \(D/J\).

A similar behavior appears for the corresponding spin liquid states at small \(\kappa\). The \(q_1 = -q_2\) is favored at small \(D/J\), and then undergoes a first order transition to the \(q_1 = q_2\) state at large \(D/J\).

In exact diagonalization studies of the spin \(S = \frac{1}{2}\) kagome antiferromagnet with DM interactions a second order phase transition between a phase with short ranged
\(k = 0 \) correlations\(^{28,35} \) (obtained in the pure Heisenberg case) and phase with \(k = 0 \) long range order was found\(^{22} \).

Such a transition is also present in our mean-field theory, which therefore can be used for a study of critical properties in Section III.

III. QUANTUM CRITICALITY

We will consider only the transition out of the \(q_1 = q_2 \) spin liquid, because that is what is seen in the numerical studies\(^{18,35} \). The corresponding transition out of the \(q_1 = -q_2 \) spin liquid can be treated in a similar manner. Throughout this section we will consider the physical SU(2) antiferromagnet directly, and not take the large \(N \) limit. The method followed below has been reviewed in a more general context in Ref. 30.

Since we are at \(k = 0 \), we can write the effective action for the bosons by making the small momentum expansion of the matrix in Eq. (A2). We take 3 sites, \(u, v, w \), in each unit cell (see Fig. 2), and then take the continuum limit of the saddle-point Lagrangian. We write the boson operators on these sites as \(b_u = U_\sigma, b_v = V_\sigma \) etc., and set \(q_1 = q_2 = q \), and \(p_1 = p_2 = ip \) with \(q \) and \(p \) real. Then, we write the final Lagrangian in the form

\[
\mathcal{L} = \mathcal{L}_H + \mathcal{L}_{DM}
\]

representing the contributions of the Heisenberg exchange and the DM coupling, respectively.

From Eq. (A2) we obtain the Lagrangian in the absence of a DM term (which describes the \(k = 0 \) solution of Ref. 27):

\[
\mathcal{L}_H = \frac{1}{2} \bigg(\frac{U_\sigma}{\sqrt{6}} \frac{\partial U_\sigma}{\partial \tau} \bigg) + \bigg(\frac{V_\sigma}{\sqrt{6}} \frac{\partial V_\sigma}{\partial \tau} \bigg) + \bigg(\frac{W_\sigma}{\sqrt{6}} \frac{\partial W_\sigma}{\partial \tau} \bigg) + \lambda \left(|U_\sigma|^2 + |V_\sigma|^2 + |W_\sigma|^2 \right)
\]

\[
- \frac{J_q}{2} \epsilon_{\sigma \sigma'} \left(\partial_1 U_\sigma \partial_1 V_{\sigma'} + \partial_2 U_\sigma \partial_2 V_{\sigma'} \right) + \partial_3 W_\sigma \partial_3 U_{\sigma'}
\]

+ c.c.

(13)

where \(\partial_i \) is the gradient along the direction \(e_i \) in Eq. (A1).

We now perform a unitary transformation to new variables \(X_\sigma, Y_\sigma, Z_\sigma \). These are chosen to diagonalize only the non-gradient terms in \(\mathcal{L}_H \).

\[
\begin{pmatrix}
U_\sigma \\
V_\sigma \\
W_\sigma
\end{pmatrix} = \begin{pmatrix}
\zeta & \frac{1}{\zeta} & i \\
\frac{1}{\zeta^2} & \frac{1}{\zeta^2} & i \zeta \\
\frac{1}{\zeta} & \frac{1}{\zeta} & -i \zeta
\end{pmatrix} \begin{pmatrix}
\zeta & -i \zeta & 0 \\
0 & \zeta & -i \zeta \\
0 & 0 & \zeta
\end{pmatrix} \begin{pmatrix}
Z_\sigma \\
Y_\sigma \\
X_\sigma
\end{pmatrix}
\]

(14)

where \(\zeta = e^{\frac{2\pi i}{3}} \). The tensor structure above makes it clear that this transformation is rotationally invariant, and that \(X_\sigma, Y_\sigma, Z_\sigma \) transform as spinors under SU(2) spin rotations. Inserting Eq. (14) into \(\mathcal{L}_H \) we find

\[
\mathcal{L}_H = \left(\frac{\partial X_\sigma}{\partial \tau} + Y_\sigma \frac{\partial Z_\sigma}{\partial \tau} + Z_\sigma \frac{\partial Y_\sigma}{\partial \tau} + (\lambda + \sqrt{3} J_q)|Z_\sigma|^2 \right)
\]

\[
+ (\lambda - \sqrt{3} J_q)|Y_\sigma|^2 + \lambda |X_\sigma|^2
\]

\[
+ \frac{J_q \sqrt{3}}{2} \left((|\partial_\tau Z_\sigma|^2 + |\partial_\tau Y_\sigma|^2) + \ldots \right)
\]

(15)

The ellipses indicate omitted terms involving spatial gradients in the \(X_\sigma \) and \(Y_\sigma \) which we will not keep track of. This is because the fields \(Y_\sigma \) and \(X_\sigma \) are massive relative to \(Z_\sigma \) (for \(q < 0 \) which is the case in our mean-field solution), and so can be integrated out. This yields the effective Lagrangian

\[
\mathcal{L}_H' = \frac{1}{(\lambda - \sqrt{3} J_q)} \left(|\partial_\tau Z_\sigma|^2 + \frac{J_q \sqrt{3}}{2} (|\partial_\tau Z_\sigma|^2 + |\partial_\tau Y_\sigma|^2) \right)
\]

\[
+ (\lambda + \sqrt{3} J_q)|Z_\sigma|^2 + \ldots
\]

(16)

Note that the omitted spatial gradient terms in \(X_\sigma, Y_\sigma \) do contribute a correction to the spatial gradient term in Eq. (16), and we have not accounted for this. This Lagrangian shows that the mean-field theory has a transition to magnetic order at \(\lambda = |\sqrt{3} J_q| \), which agrees with earlier result\(^{22} \).

The effective Lagrangian \(\mathcal{L}_H' \) is almost the complete solution for the critical theory in the system without the DM interactions. However, we also need higher order terms in Eq. (16), which will arise from including the fluctuations of the gapped fields \(Q \) and \(\lambda \). Rather than computing these from the microscopic Lagrangian, it is more efficient to dedicate our structure from symmetry considerations. The representation in Eq. (14), and the connection of the \(U, V, W \) to the lattice degrees of freedom, allow us to deduce the following symmetry transformations of the \(X, Y, Z \):

- Under a global spin rotation by the SU(2) matrix \(g_{\sigma \sigma'} \), we have \(Z_\sigma \rightarrow Y_{\sigma'} Z_\sigma \), and similarly for \(Y \) and \(Z \). When DM interactions are included, the global symmetry is reduced to U(1) rotations about the \(z \) axis, under which

\[
\begin{align*}
Z_\uparrow & \rightarrow e^{i \theta} Z_\uparrow, & Z_\downarrow & \rightarrow e^{-i \theta} Z_\downarrow \\
Y_\uparrow & \rightarrow e^{i \theta} Y_\uparrow, & Y_\downarrow & \rightarrow e^{-i \theta} Y_\downarrow \\
X_\uparrow & \rightarrow e^{i \theta} X_\uparrow, & X_\downarrow & \rightarrow e^{-i \theta} X_\downarrow
\end{align*}
\]

(17)

- Under a 120° lattice rotation, we have \(U_\sigma \rightarrow V_\sigma \), \(V_\sigma \rightarrow W_\sigma \), \(W_\sigma \rightarrow U_\sigma \). From (14), we see that this symmetry is realized by

\[
Z_\sigma \rightarrow \zeta Z_\sigma, \quad Y_\sigma \rightarrow \zeta Y_\sigma, \quad X_\sigma \rightarrow X_\sigma
\]

(18)

Note that this is distinct from the SU(2) rotation because \(\det(\zeta) \neq 1 \).
• Under time-reversal, we have $U_\sigma \to \epsilon_{\sigma\sigma'} U^*_\sigma$, and similarly for V_σ, W_σ. This is realized in Eq. (14) by

$$Z_\sigma \to i Z_\sigma, \ Y_\sigma \to -i Y_\sigma, \ X_\sigma \to \epsilon_{\sigma\sigma'} X^*_\sigma.$$ \hspace{1cm} (19)

In particular, note that Z^* does not map to Z under time-reversal.

It is easy to verify that Eq. (15) is invariant under all the symmetry operations above. These symmetry operators make it clear that the only allowed quartic term for the Heisenberg Hamiltonian is $(\sum_\sigma |Z_\sigma|^2)^2$: this implies that the Z_2 spin liquid to antiferromagnetic order transition of this model is in the universality class of the O(4) model, as we will see from the analysis of observables in Section III A. This transition does indeed correspond to the development of spiral magnetic order in the x-y plane. The choice between Z^* and Z is controlled by the sign of D.

Eq. (22) also contains terms which couple the two XY models to each other. The lowest allowed term, σ, couples the energy densities and does not have any important effects. More interesting is the w term, which shows that the global symmetry is not $O(2) \otimes O(2)$ but $O(2) \otimes Z_2$. In the magnetically ordered phase with $(Z_\uparrow) \neq 0$, this term will induce a small ordering field $\sim Z_\uparrow^0$ in the XY model for Z_\uparrow. However, the action for Z_\downarrow has a ‘mass’ term s_1 with a positive co-efficient, and this sixth order term will not immediately induce ordering in Z_\downarrow: i.e. a magnetic phase with $(Z_\uparrow) \neq 0$ and $(Z_\downarrow) = 0$ has a finite range of stability. Thus close to the transition we can neglect the Z_\downarrow field entirely, and transition is in the universality class of the three-dimensional XY model.

The choice above of Z_\uparrow over Z_\downarrow gives the incorrect appearance that we are breaking the spin reflection symmetry $S_z \to -S_z$ of \mathcal{H}, suggesting the appearance of a net z ferromagnetic moment. However, notice that the theory of Z_\uparrow is relativistic, and so contains both spinons and anti-spinons which carry $S_z = +1/2$ and $S_z = -1/2$ respectively. The spin of Z_\uparrow also carries $S_z = -1/2$, and this is degenerate with the anti-spinon of Z_\downarrow in the O(4) invariant theory in Eq. (16). It is this latter degeneracy which is lifted by the DM interactions, which induce a vector spin chirality along the z direction (as we will see below). We will also see there is no net ferromagnetic moment, because time-reversal symmetry is preserved.

A. Observables

To determine the operators corresponding to the ferromagnetic moment, let us couple a uniform external field h to the lattice Hamiltonian. This adds to the continuum Lagrangian the term

$$\mathcal{L}_h = -h \cdot \tau_{\sigma\sigma'} (U^*_\sigma U_\sigma' + V^*_\sigma V_\sigma' + W^*_\sigma W_\sigma')$$ \hspace{1cm} (23)

Inserting the parameterization in Eq. (14) this becomes

$$\mathcal{L}_h = -h \cdot \tau_{\sigma\sigma'} (X^*_\sigma X_\sigma' + Y^*_\sigma Z_\sigma' + Z^*_\sigma Y_\sigma')$$ \hspace{1cm} (24)

We now need to integrate out X_σ and Y_σ in the Lagrangian $L_H + L_{DM} + L_h$ defined by the sum of Eqs. (15), (21), and (24), and collect the terms linear in h. Without the DM coupling, we obtain

$$\sim h \cdot \tau_{\sigma\sigma'} \left(Z^*_\sigma \frac{\partial}{\partial \tau} - \frac{\partial Z^*_\sigma}{\partial \tau} Z_\sigma' \right)$$ \hspace{1cm} (25)

Comparing with L^*_H in Eq. (16) we see that this is just the coupling to the conserved SU(2) charges of the O(4) model: this is the usual term which determines the magnetic susceptibility of the Heisenberg antiferromagnet. Upon including the effects of L_{DM} we find that the essential structure of Eq. (25) does not change: the τ matrices get multiplied by some σ-dependent factors $\tau_{\sigma\sigma'} \to f_\sigma \tau_{\sigma\sigma'} f_\sigma$ which do not modify the scaling considerations. No term with a new structure is generated by the DM coupling. It can now be seen that these expressions have vanishing expectation values under L_Z in
Eq. (22), and so there is no net ferromagnetic moment in the absence of an external field.

We now turn to the antiferromagnetic order parameter; for a coplanar antiferromagnet, this is described by

$$S_i \propto N_1 \cos(Q \cdot r_i) + N_2 \sin(Q \cdot r_i),$$

where $N_{1,2}$ are 2 orthogonal vectors representing the spiral order, and Q is wavevector at which the spin structure factor is peaked. For our model, we can see that

$$N_1 + iN_2 = S_u + \zeta S_v + \zeta^2 S_w.$$

Using Eq. (14), and keeping only the lowest order term, we therefore obtain

$$N_1 + iN_2 = \left(\begin{array}{c} i(Z^2_\uparrow - Z^2_\downarrow)/2 \\ -iZ^2_\uparrow Z^2_\downarrow \\ -iZ^2_\downarrow \\ \end{array} \right) ;$$

in a notation that makes the rotational invariance evident, this relationship is

$$N_1 + iN_2 = \frac{i}{2} \epsilon_{\alpha\beta} \tau_{\beta\alpha} Z_\alpha Z_\alpha.$$

Note that a phase with $\langle Z^\uparrow \rangle \neq 0$ and $\langle Z^\downarrow \rangle = 0$ has spiral order in the x-y plane.

To complete the list of operators which are quadratic in the Z_σ, we consider the vector spin chirality. This is defined here by

$$S_u \times S_v + S_v \times S_w + S_w \times S_u .$$

Using Eq. (14), we find that the leading operator mapping to vector spin chirality is (dropping an overall factor of $|Z^\uparrow|^2 + |Z^\downarrow|^2$)

$$Z^\sigma_\alpha \tau_{\alpha\beta} Z^\beta_\sigma .$$

Note that in the presence of the DM term, the couplings in the effective theory imply that the z component of the vector spin chirality is always non-zero.

B. Critical properties

Let us assume the transition to magnetic order proceeds via the condensation of Z_\uparrow. The transition is in the XY universality class, and the dimension of the antiferromagnetic order parameter is

$$\dim[N_1] = \dim[N_2] = \dim[Z^\uparrow_\uparrow] = \frac{1 + \eta}{2} .$$

The value of the exponent η can be read off from results for the three-dimensional XY model and we obtain $\eta \approx 1.474$. The antiferromagnetic susceptibility will diverge at the critical point as $T^{-2-\eta}$. We note the recent work of Ref. [40] in a different context, which also considered a model with an XY critical point at which the physically measurable magnetic order was the square of the XY field.

The behavior of the uniform magnetic susceptibility follows from the scaling dimension of the operators in Eq. (25). For h along the z direction, the magnetization is the just the conserved U(1) charge of the XY model: it has scaling dimension 2, and the susceptibility $\sim T$. For h along the x or y directions, we have to integrate out Z_\uparrow, and then the lowest dimension operator coupling to the square of the field is $|Z^\uparrow|^2$. This means that the susceptibility only has a weak singularity at the quantum critical point given by that in $|Z^\uparrow|^2$: at the quantum critical point, there is a non-analytic term $\sim T^{3-1/\nu}$, above an analytic background.

IV. CONCLUSION

We have presented a theory for the quantum critical point between a Z_2 spin liquid and an ordered antiferromagnet for the kagomé antiferromagnet in the presence of DM interactions. The critical theory is just the three-dimensional XY model. However, the XY order parameter carries a Z_2 gauge charge, and so it is not directly observable. In particular, the antiferromagnetic order parameter is the square of the XY order parameter. Specifically, the theory is given by \mathcal{L}_Z in Eq. (22), and its observables are described in Section III A.

It is interesting to compare our results with recent observations of quantum critical scaling in ZnCu$_3$(OH)$_6$Cl$_2$ by Helton et al [52]. Their neutron scattering measurements show an antiferromagnetic susceptibility which scales as $T^{-0.66}$. This is actually in reasonable agreement with our theory, which has a susceptibility $\sim T^{-0.526}$. However, they also observe a similar divergence in measurements of the uniform magnetization, while our theory only predicts a very weak singularity. We suspect that this difference is due to the present of impurities which can mix the uniform and staggered components. A complete study of impurities near the quantum critical point described above is clearly called for.

Acknowledgments

We thank L. Messio, O. Cépas, C. Lhuillier, and E. Vicari for useful discussions. This research was supported by the National Science Foundation under grant DMR-0757145, by the FQXi foundation, and by a MURI grant from AFOSR. Y.H. is also supported in part by a Samsung scholarship.

Appendix A: Microscopic form of the Hamiltonian

We here give explicit expressions for the Hamiltonian introduced in Sec. IV. We introduce the following set of
unit vectors

\[e_1 = a \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right) \]
\[e_2 = a \left(\frac{1}{2}, -\frac{\sqrt{3}}{2} \right) \]
\[e_3 = a(-1, 0) \]

which allows to express \(k_i = k \cdot e_i \). In the following we concentrate on the states with 3 sites per unit cell. In that case the vector \(\Psi \) introduced in Eq. (7) has 6 components and the matrix \(C \) consequently is a \(3 \times 3 \) matrix with the following entries:

\[
\begin{align*}
C_{uv} &= \frac{J}{2} q_1^* e^{ik_1} + \frac{J}{2} q_2^* e^{-ik_1} + \frac{iD}{4} p_1^* e^{ik_1} + \frac{iD}{4} p_2^* e^{-ik_1} + \frac{iD}{4} q_1^* e^{ik_1} + \frac{iD}{4} q_2^* e^{-ik_1} \\
C_{uw} &= -\frac{J}{2} q_1^* e^{-ik_3} - \frac{J}{2} q_2^* e^{ik_3} - \frac{iD}{4} p_1^* e^{-ik_3} - \frac{iD}{4} p_2^* e^{ik_3} - \frac{iD}{4} q_1^* e^{-ik_3} - \frac{iD}{4} q_2^* e^{ik_3} \\
C_{vw} &= \frac{J}{2} q_1^* e^{ik_2} + \frac{J}{2} q_2^* e^{-ik_2} + \frac{iD}{4} p_1^* e^{ik_2} + \frac{iD}{4} p_2^* e^{-ik_2} + \frac{iD}{4} q_1^* e^{ik_2} + \frac{iD}{4} q_2^* e^{-ik_2} \\
C_{vu} &= -\frac{J}{2} q_1^* e^{-ik_2} - \frac{J}{2} q_2^* e^{ik_2} - \frac{iD}{4} p_1^* e^{-ik_2} - \frac{iD}{4} p_2^* e^{ik_2} - \frac{iD}{4} q_1^* e^{-ik_2} - \frac{iD}{4} q_2^* e^{ik_2} \\
C_{wu} &= \frac{J}{2} q_1^* e^{ik_3} + \frac{J}{2} q_2^* e^{-ik_3} + \frac{iD}{4} p_1^* e^{ik_3} + \frac{iD}{4} p_2^* e^{-ik_3} + \frac{iD}{4} q_1^* e^{ik_3} + \frac{iD}{4} q_2^* e^{-ik_3}.
\end{align*}
\]

Appendix B: Dispersion of the lowest excited spinon state

For \(q_1 = q_2 \) and \(D = 0 \), the ground state is doubly degenerate. The degeneracy splits as \(D \) moves away from 0. In all cases, the minimum excitation energy occurs at \(k = 0 \). Fig. 4 plots the momentum dependence of the energy of the lowest excited spinon at \(D/J = 0.3, \kappa = 0.2 \). There is a finite energy gap at \(k = 0 \) making it a gapped spin liquid. On the other hand, Fig. 5 is the dispersion plot for a case with long-range magnetic order. The energy gap at \(k = 0 \) is closed and condensation occurs at this wave vector.

For \(q_1 = -q_2 \), there is a unique ground state even for \(D = 0 \). Energy minima is at \(k = \pm (2\pi/3, 0) \). Fig. 6 shows the dispersion of the lowest lying state of the spin liquid with \(D/J = 0.03, \kappa = 0.55 \). A case with long range ordering is shown in Fig. 7.
FIG. 5: Dispersion of the lowest excited spinon state for the $q_1 = q_2$ state at $D/J = 0.3, \kappa = 0.4$. The energy gap closes at $k = 0$ and condensation occurs.

FIG. 6: disorder: $q_1 = -q_2, D/J = 0.05, \kappa = 0.3$

Appendix C: Condensation

For the $q_1 = q_2$ state Eq. [14] leads to the following parametrization of the condensation of Z_\downarrow field at $k = 0$.

\[
\begin{pmatrix}
 x_{k+}^u \\
 x_{k-}^u
\end{pmatrix} = \ell \begin{pmatrix}
 i \\
 1
\end{pmatrix}, \\
\begin{pmatrix}
 x_{k+}^v \\
 x_{k-}^v
\end{pmatrix} = \ell \begin{pmatrix}
 i \zeta^2 \\
 \zeta
\end{pmatrix}, \\
\begin{pmatrix}
 x_{k+}^w \\
 x_{k-}^w
\end{pmatrix} = \ell \begin{pmatrix}
 i \zeta \\
 \zeta
\end{pmatrix}
\]

(C1)

where ℓ is the size of the condensate. Condensation of Z_\uparrow can be written similarly. For $D > 0$, Z_\uparrow field condensation is energetically favored while the opposite is true for $D < 0$. The two condensations are degenerate for $D = 0$.

For the $q_1 = -q_2$ state, condensation occurs at $\tilde{k} \equiv \vec{k} = \left(2\pi/3, 0\right)$ or $\vec{k} = -\vec{k}$. The two states have identical energies and the condensation is spontaneously chosen. Similar analysis to Eqns. [13] and [14] gives the eigenvectors corresponding to the lowest lying state. For $\tilde{k} = \vec{k}$ this is $(i, -i, 1, -1, 1)$ while for $\vec{k} = -\vec{k}$ the corresponding eigenvector is $(-i, i, -1, -1, 1)$. Therefore condensations can be parametrized as

\[
\begin{pmatrix}
 x_{k+}^u \\
 x_{k-}^u
\end{pmatrix} = \ell \begin{pmatrix}
 i \\
 1
\end{pmatrix}, \\
\begin{pmatrix}
 x_{k+}^v \\
 x_{k-}^v
\end{pmatrix} = \ell \begin{pmatrix}
 -i \\
 -1
\end{pmatrix}, \\
\begin{pmatrix}
 x_{k+}^w \\
 x_{k-}^w
\end{pmatrix} = \ell \begin{pmatrix}
 i \\
 1
\end{pmatrix}
\]

(C2)

for $\vec{k} = \vec{k}$, and

\[
\begin{pmatrix}
 x_{k+}^u \\
 x_{k-}^u
\end{pmatrix} = \ell \begin{pmatrix}
 -i \\
 1
\end{pmatrix}, \\
\begin{pmatrix}
 x_{k+}^v \\
 x_{k-}^v
\end{pmatrix} = \ell \begin{pmatrix}
 i \\
 -1
\end{pmatrix}, \\
\begin{pmatrix}
 x_{k+}^w \\
 x_{k-}^w
\end{pmatrix} = \ell \begin{pmatrix}
 -i \\
 1
\end{pmatrix}
\]

(C3)

for $\vec{k} = -\vec{k}$.
