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ABSTRACT

Peptide-recognition modules (PRMs) are used
throughout biology to mediate protein–protein
interactions, and many PRMs are members of large
protein domain families. Recent genome-wide
measurements describe networks of peptide–PRM
interactions. In these networks, very similar PRMs
recognize distinct sets of peptides, raising the
question of how peptide-recognition specificity is
achieved using similar protein domains. The analysis
of individual protein complex structures often gives
answers that are not easily applicable to other mem-
bers of the same PRM family. Bioinformatics-based
approaches, one the other hand, may be difficult to
interpret physically. Here we integrate structural
information with a large, quantitative data set of
SH2 domain–peptide interactions to study the phys-
ical origin of domain–peptide specificity. We develop
an energy model, inspired by protein folding, based
on interactions between the amino-acid positions in
the domain and peptide. We use this model to suc-
cessfully predict which SH2 domains and peptides
interact and uncover the positions in each that
are important for specificity. The energy model is
general enough that it can be applied to other mem-
bers of the SH2 family or to new peptides, and the
cross-validation results suggest that these energy
calculations will be useful for predicting binding
interactions. It can also be adapted to study other
PRM families, predict optimal peptides for a given
SH2 domain, or study other biological interactions,
e.g. protein–DNA interactions.

INTRODUCTION

In the crowded cellular milieu, the ability of proteins to
specifically interact with different molecules, e.g. sites
on DNA or short peptides, is essential to virtually every
cellular process from DNA replication to cell signaling.

The inherent challenges of this problem and nature’s
apparent success at engineering these specific interactions
raise a number of questions, which usually center on either
the kinetics of the process or the equilibrium picture: How
does recognition happen rapidly and specifically?
Here we study one flavor of the equilibrium problem:

how does a peptide-recognition module (PRM) discrimi-
nate its particular targets from a large pool of peptides?
PRMs are protein domains that recognize specific peptides
and are used to mediate protein–protein interactions in
many contexts. There are a number of large protein
domain families that serve as PRMs. The members of
these families are quite similar to each other, but each
member can recognize a specific subset of the peptide
pool.
Our goal is to gain a physical understanding of this

recognition problem. To do this, we construct a potential
that describes the interaction energies between a family of
PRMs and their peptides. We aim to construct this poten-
tial in a way that allows us to apply it to domain–peptide
pairs unseen in the construction process, to use the calcu-
lated energy to predict whether or not they interact and to
gain some insight into the mechanism used to achieve
peptide-binding specificity in families of similar PRMs.
Our approach uses a minimum amount of prior knowl-
edge about the particular PRM family, so it can be easily
applied to new families and can be used both when struc-
tures are available and when they are not.
As a model system, we use the SH2 domain family of

PRMs, which transmit signals from receptor tyrosine
kinases (RTKs) to the cell interior by interacting with
the RTK cytoplasmic domains, specifically the tyrosines
that are phosphorylated upon RTK activation and their
surrounding residues (1). In 2006, MacBeath and cowor-
kers published a protein microarray-based study that
quantitatively assessed the interaction strength of almost
every human SH2 domain with pY peptides extracted
from four ErbB family RTKs (2). The availability of this
large amount of data describing the interactions between a
variety of SH2 domains and peptides, all measured using
the same technology, makes the SH2 domain family an
ideal test case for our effort.
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Other efforts to understand the origins of PRM–peptide
specificity usually follow a structural biology-, computa-
tional structural biology-, or a bioinformatics-based
approach (3–7). Structural biologists have long studied
the structures of PRM–peptide complexes, visually ana-
lyzing them for positions in the domain and peptide that
appear to be important for recognition based on their
proximity and likelihood of interaction [e.g. (8–12)]. This
approach is sometimes difficult to apply to large amounts
of structural data, and it may be difficult to generalize the
results to an entire PRM family.
Several computational structural biology approaches

have also been applied to the PRM specificity problem.
These approaches generally develop energy models of the
PRM–peptide interactions based on collections of struc-
tural data. The SH2 problem has been studied using a
variety of these methods (13–16), most recently in a
study in which an empirical energy model was constructed
to predict genome-wide targets of nine human SH2
domains (17). Some of these techniques have been quite
successful at recapitulating in vitro and in vivo interaction
data, but may be computationally intensive or difficult to
apply to domains with no structural data.
A method developed by Ferraro et al. (18) is among

these structurally based methods of predicting PRM spe-
cificity and works by transferring contacts observed in a
few available structures into domains and peptides lacking
such structural information. Zhang et al. (19) integrated a
large amount of interaction and structural data to model
SH3 and PDZ domain–peptide interactions. They use a
combination of neural networks and support vector
machines to construct classifiers based on various physical
and chemical properties of amino acids. Chen et al. (20)
have implemented a method developed in collaboration
with our group and similar to one presented here.
Our approach is different from these studies in the fol-

lowing aspects: First, along with direct protein–peptide
contacts inferred from structural data, we use an informa-
tion-based approach to detect more distant pairs of resi-
dues that nevertheless demonstrate signs of co-evolution
(21). Furthermore, we evaluate contributions of such indi-
rect interactions and demonstrate their significant role in
providing specificity through ‘indirect readout’. Second,
in contrast to machine-learning approaches such as
neural networks and support vector machines, our
method provides information about the origin of specifi-
city by quantifying the energy contribution of each con-
tact. However, direct comparison of these different
methods is complicated by the different quality criteria
and domain families used by each study, calling for a
community-wide effort, similar to the CASP initiative in
protein folding (22).
Bioinformatics-based approaches often center on

machine learning methods, which are able to leverage
large amounts of data, but do not always give a physical
understanding of specificity. Many of these methods seek
to calculate position-specific scoring matrices (PSSMs),
which give the likelihood of an amino acid occurring at
a given position of a bound peptide (23–26). Two notable
previous efforts to model PRM–peptide interactions
applied a modified Gibb’s sampler (25) and a probabilistic

discriminative model (23) to infer the PSSMs of SH3
domains. The former study employed a discriminative
prior to find motifs that discriminate between bound
and unbound domain–peptide pairs in a yeast two-
hybrid SH3 domain interaction network. The latter elimi-
nated the user-defined parameters utilized in the first
approach and used a normalization technique to avoid
over-fitting of the model to phage display and yeast two-
hybrid data. While moderately successful at recapitulating
the SH3 interaction network, these approaches are not
transferable to unseen domains and do not give insight
into the general principles responsible for SH3 peptide
recognition. There are also more general models [e.g.
(27)], that aim to explain the general properties of pro-
tein–protein networks. There have also been successful
applications of structure-based threading approaches
to other PRM specificity problems, e.g. the recognition
of peptides by MHC molecules (28,29), a unique and
widely-studied PRM problem (30).

Due to the similarity of the problems, approaches in
protein–DNA interactions also merit mention. There are
approaches to derive energy potentials from structural
studies (31–36), physics-based methods of deriving
PSSMs from large scale-binding data (37), and methods
to combine structural and sequence data to predict bind-
ing sites for a family of transcription factors (38).

Here we develop a physically motivated energy model to
describe the interaction energy between SH2 domains and
their pY peptides. We measure the performance of the
basic model and several variants for predicting the exper-
imentally characterized interactions of a diverse set of SH2
domains and peptides. We find that an amino-acid-based
potential with non-specific interaction terms can accu-
rately predict SH2 domain–peptide interactions and that
the amino acid-based potential can be used to predict
interactions with domains or peptides that were not used
to derive the potential. Using structure- and information-
based techniques, we find the amino-acid positions in the
SH2 domains and pY peptides that confer specificity to
the interactions. The technique is sufficiently general that
it can be used to predict the peptide partners for new SH2
domains and to model interactions for other PRM
families.

MATERIALS AND METHODS

Data preparation

The data is taken from (2). Only the 115 SH2 domains are
considered, so the 44 PTB domains are discarded. There
are 10 double-SH2 domains, which are also discarded.
There are 66 peptides, but we discard all unphosphory-
lated peptide data points. There are 33 peptides which
are singly phosphorylated; two are discarded due to
high background binding, leaving 31 peptides and
105�31=3255 interactions. Domain–peptide pairs
with measured Kd values less than 2 mM are considered
bound (198 pairs), all others are considered unbound.
The SH2 domains are aligned using MUSCLE (39), and
the peptides are aligned by the pY position.
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Interaction map construction

To create an energy model to describe domain–peptide
interactions, our approach requires two steps: identifying
pairs of amino-acid positions in the domain and peptide
involved in recognition (the interaction map), and deriving
an energy potential that describes in interaction energy
between pairs of amino acids. Here we describe three
methods for constructing an interaction map: an informa-
tion-based method, a structure-based method and a
hybrid method. For each construction method, we first
define a potential set of domain–peptide amino-acid posi-
tion pairs—pairs of positions in the domain sequence
alignment (made using MUSCLE) and in the peptide
sequence alignment (aligned with the pY position as posi-
tion 0). Then, we order the pairs using some criteria
and add them to the interaction map in the order specified
by the criteria.

For the information-based interaction maps, all posi-
tion pairs are considered, and the criteria used to evaluate
the pairs are the normalized Kullback–Leibler (KL) diver-
gence between the amino-acid distributions at the posi-
tion. The general formula for KL divergence of two
discrete probability distributions p and q is

KL ¼
X
i

pðiÞ log
pðiÞ

qðiÞ

� �

In our case, for each possible domain–peptide pair, we let
p be the distribution of amino acid–amino acid frequencies
in the bound cases and q is the distribution in the unbound
cases. For example, to calculate the KL divergence of the
10–0 position pair, we extract the amino-acid pairs present
in position 10 of the domain (according to the MUSCLE
alignment) and position 0 of the peptide (the pY position).
We then tabulate the observed frequencies of each possible
amino-acid pair for bound and unbound cases, adding a
pseudocount of 1 to each entry to avoiding taking the log
of or dividing by 0. Using these empirical p and q distribu-
tions, we find the KL divergence. To control for differ-
ences in the inherent diversity of the data set at each
position pair, we also calculate the KL divergence for a
control where the bound/unbound labels are shuffled
randomly. We do this 100 times and calculate the
mean and standard deviation of the KL divergence for
the random shuffles. We then assess the significance of
the ‘real’ KL divergence by calculating a Z-score:
Z ¼ KL� KLcontrolh ið Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðKLcontrolÞ

p
, and pick contacts

with the largest Z-scores.
For the structure-based maps, position pairs found to

be in ‘contact’ in SH2–peptide structures are considered.
We download all the SH2 structures available in the
Protein Data Bank (40) as defined by SCOP (41) (144
structures as of February 2006) and manually sort through
the structures, retaining only those bound to a tyrosine-
containing peptide. We remove structures with peptides
containing two phosphorylated peptides and non-stan-
dard amino acids and structures with extraneous domains.
For NMR structures, only one model is used, either the
averaged model or the first model in ensemble. For struc-
tures with multiple identical copies of the domain–peptide

pair, only the first domain–peptide combination is
retained. After this filtering 38 structures remain, 11
NMR structures and 27 crystal structures. The crystal
structures have a resolution of at least 3 Å, with an aver-
age of 1.9 Å and a R-factor of 0.23 or better. The PDB
codes of these structures are listed in Supplementary
Table S2. Using RasMol (42), for each structure, we
extract all domain–peptide position pairs in which non-
backbone atoms are within a given distance threshold of
each other. We vary the threshold from 3.5 to 6.5 Å in 1-Å
increments. To construct an interaction map, we add posi-
tion pairs by the number of structures in which they are
found to be in contact.
For the hybrid interaction maps, we only consider posi-

tion pairs found to be in contact according to the structure
criteria and then order the pairs by information-based
significance.
To ensure that low-resolution NMR structures do not

introduce spurious contacts into the analysis, structure-
based and hybrid contact maps were constructed by
excluding NMR structures while using best parameter
combination (distance cutoff = 5.5 Å, number of contacts
=10). The obtained structure-based contact maps were
identical to the maps calculated using all the structures.
For the hybrid contact map, 7/10 of the contacts were
identical.

Optimization of energy potential

To optimize the energy potential given an interaction map,
we adapt the procedure presented in (43). In Equations
(1)–(3), we describe our basic energy model. Here,
for brevity, let us assume the calculated energy of a
domain–peptide pair can be written, as in Equation (3), as:

E ¼ d � u:

We assume our energy potential u is a 1� 400 vector in
which each element corresponds to the energy of interac-
tion between a particular amino acid x in the domain and
amino acid y in the peptide, hence the 20� 20=400
values. In each corresponding element in d, there is a
count of the number interactions that involve amino
acid x in the domain and y in the peptide.
To derive the optimal energy potential (u�) for a given

interaction map, first, we define a score, Z, which
expresses Figure 1A mathematically:

Z ¼
�� � �þ
�� þ �þ

,

where �+ and �+ are the mean and standard deviation of
the calculated energies of the bound domain–peptide pairs
�� and �� are the same for the unbound pairs. For the
basic model, we can write �+ and �+ as:

�þ ¼ dðkÞ � u
� �

k2 all bound pairs
¼ dðkÞ
� �

� u ¼ dþ � u

�� ¼ dðlÞ
� �

l2 all unbound pairs
�u ¼ d� � u

�2þ ¼ var dðkÞ � uð Þ ¼ u0 � cov dðkÞð Þ � u

�2� ¼ u0 � cov dðlÞð Þ � u
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Here d+ and d� are the average d vectors for the bound
and unbound domain–peptide pairs, respectively.
With this, we can rewrite Z as:

Z ¼
d� � u� dþ � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u0 � cov d lð Þð Þ � uþ u0 � cov d kð Þð Þ � u
p

¼
d� � dþð Þ � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u0 � cov d lð Þð Þ þ cov d kð Þð Þ½ � � u
p ¼

a � uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0 � B � u
p

Here B ¼ cov d lð Þð Þ þ cov d kð Þð Þ. For convenience, we

optimize Z2. Setting
d Z2ð Þ
du ¼ 0, we get:

u� / B�1a

Since the performance metrics of a particular energy
potential u are unchanged if it is scaled by a constant c

or increased by a constant b, the scale of the optimal u is
arbitrary.

When adding terms to the energy model the Z-score is
modified accordingly and optimized with respect to each
term separately. For example, the non-specific energy
terms of Equations (5) and (6) are calculated by optimiz-
ing the Z-score with respect to the each of energy terms.
The resulting terms are proportional to the number of
interactions in which each domain/peptide is involved.

Scoring and cross-validation

We use two scores to assess the model performance:
bound rank and ROC AUC. As shown in Figure 1C, to
calculate the bound rank, the domain–peptide pairs are
ordered by the predicted energy. Bound rank is then cal-
culated by taking the median rank of the bound domain–
peptide pairs. We report the bound rank score as a ratio
of the median bound rank to the number of data points in
the test set, which varies depending on cross-validation
technique. The best possible bound rank score is
ðnbound þ 1Þ=2, where nbound is the number of bound
domain–peptide pairs. The expected bound rank score
for a random model is ðntotal þ 1Þ=2, where ntotal is the
total number of domain–peptide pairs.

Receiver operating characteristic (ROC) curves are con-
structed by plotting the true positive rate (TPR) versus the
false positive rate (FPR), given all possible energy thresh-
olds. For a given threshold, all domain–peptide pairs
below the threshold are predicted to be bound, and all
pairs above are predicted to be unbound. The TPR and
FPR are then given by:

TPR ¼
TP

TPþ FN

FPR ¼
FP

FPþ TN

Here TP are true positives—domain–peptide pairs both
predicted and experimentally found to be bound, TN are
true negatives—domain–peptide pairs both predicted and
experimentally found to be unbound, FP are false posi-
tives—domain–peptide pairs predicted to be bound and
experimentally found to be unbound, and FN are false
negatives—domain–peptide pairs predicted to be unbound
and experimentally found to be bound. The ROC area
under the curve (AUC) is calculated by estimating the
area under this curve using the trapezoidal rule.

As with all cross-validation techniques, the two meth-
ods we use divide the data into two sets: the training set,
from which the model parameters are inferred, and the test
set, on which the model is applied and tested. The strati-
fied 10-fold cross-validation is done by dividing the data
into 10 equal parts with the same proportion of bound
and unbound pairs as the total data set. The training set
contains 9 of the 10 parts, and the test set is the remaining
part. The method uses each tenth as the test set in turn,
and averages the result. For some of our tests, we
repeat this method 50 times. Other cross-validation tests
(3-, 5- and 7-fold) are done accordingly.

To carry out the leave-one-group-out (LOGO) cross-
validation, all the domain–peptide pairs involving the

Figure 1. An illustration of the energy potential construction method
and the performance metrics. (A) Given an interaction map, which
specifies the interacting amino acids between the peptide and the
domain, we find an energy potential that maximizes the gap between
the mean energy of the bound (red) and unbound (blue) peptide–
domain pairs, while minimizing the width of these distributions. (B)
This is analogous to a method used in protein folding that finds,
given a map of intramolecular contacts, a potential that maximizes
the energy gap between the native structure (red line) and decoys
(blue distribution), while minimizing the width of decoy energy distri-
bution. (C) We use two metrics to assess the ability of a potential to
distinguish between bound and unbound domain–peptide pairs, based
on their relative energies. To find the bound rank metric, we order the
pairs by increasing energy and calculate the median rank of the bound
pairs. In this illustration, the bound pairs are shown as open, red circles
on the energy scale and the unbound pairs are filled blue circles. The
bound rank here would be median [1, 3]=2. (D) To calculate the ROC
AUC, the area under the ROC curve, we construct a ROC curve by
plotting the true positive rate versus the false positive rate for various
energy thresholds and calculate the area under the curve. The ROC
AUC corresponds to the probability that the energy of a randomly
chosen bound pair is less than a randomly chosen unbound pair.
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given domain or peptide were excluded from the training
set and then used as the test set. Neither bound, nor
unbound peptides of the excluded domain were excluded
during the LOGO cross validation.

RESULTS

Development of a physically-based energy model

The goal of our study is to create a physically based model
of the interaction energy between a class of PRMs and
their peptides and to use this model to predict whether
or not PRM–peptide pairs interact. Here, we use a
coarse-grained amino acid-based approach to describe
the energy of interaction E. We choose this level of
detail because it is easy to transfer to new PRM–peptide
pairs and, unlike atomistic potentials, do not require
detailed structural information. This level of description
also allows us to take into account interactions between
residues that are not in direct contact, but that are rather
mediated by other structural changes. For each domain–
peptide pair, we define E as:

E ¼
X
i

X
j

�ijU a ið Þ,a jð Þð Þ 1

Here � is the interaction map, a matrix in which �ij=1 if
amino acid i in the domain interacts (not necessarily
directly) with amino acid j in the peptide and �ij=0
otherwise. In order to use the same map for all domain–
peptide pairs, we align the PRMs and the peptides (sepa-
rately), creating a common numbering system for each.
U is an energy potential, where U x,yð Þ is the energy of
interaction between amino acids x and y, and a(i) and
a(j) are the amino-acid identities at positions i and j of
the domain and peptide, respectively. We sum over all
positions i in the domain and j in the peptide. We also
explore the possibility of using a form of the energy func-
tion in which each interacting pair, or contact, (i, j) has its
own energy potential [see Equation (4)].

Since we use the same interaction map and potential for
each domain–peptide pair, this form is amenable to our
goal of being able to apply this potential to new PRMs
and peptides. Working in this amino acid-centric manner
may also allow us to gain insight into the basis of specifi-
city, since the amino acid is the basic unit of change
between proteins.

To rewrite Equation (1) in a more compact form, we let
D be a 20� 20 matrix

Dðx,yÞ ¼
X
i

X
j

�xa ið Þ�ya jð Þ�ij, 2

therefore Dðx,yÞ is a count of the number of interactions
between an amino acid of type x in the domain
and type y in the peptide. Here d is the Kronecker delta
function. Now, if we reshape the 20� 20 D matrix into
a 1� 400 row vector d and reshape the 20� 20 matrix U
into a 400�1 column vector u, we can rewrite Equation
(1) as:

E ¼ d � u 3

In order to achieve maximum discriminatory power
between the energies of bound and unbound domain–
peptide pairs, we aim to find the potential U that maxi-
mizes the energy gap between the bound and unbound
pairs, while minimizing the variance of the two energy
distributions (Figure 1A). The approach is inspired by a
method using to derive folding potentials in protein fold-
ing field (43), in which the energy potential is designed
to maximize the gap between the energy of the native
structure and the mean energy of all other structural
decoys, while minimizing the variance of energies of the
decoys (Figure 1B). Here, the interaction map and energy
potential describe intramolecular contacts, rather than
intermolecular contacts, but are otherwise completely ana-
logous. This method is similar to an earlier formulation by
Goldstein et al. (44), and to an approach used to infer
PSSMs for protein–DNA recognition that is related to
the support vector machine methodology (45).
Another method from protein folding which we might

have chosen to optimize U is a perceptron learning
method that uses neural networks to solve a system of
inequalities that ensure the native structure is lower in
energy than all the decoys (46). However, we choose not
to use this method because it has been shown to give sim-
ilar results to the energy gap method (47) and is slightly
harder to generalize to the case where one native structure
is replaced by a set of bound pairs.
Given Equation (3) and an interaction map �, there

is an analytical solution [similar to (44)] that provides
the potential U that maximizes the energy gap between
the bound and unbound domain–peptide pairs, explicitly
using both positive and negative examples (Materials and
Methods section).
Therefore, once the problem is written in this fashion,

the challenge is to find the interaction map � that gives
the optimal separation between energies of the bound and
unbound pairs, a problem we explore after defining some
performance metrics.

Performance metrics and cross-validation techniques

In order to assess the performance of our model, we use
several metrics and cross-validation techniques. (For a
more in-depth discussion, see Materials and Methods
section). We focus on two metrics, based on their use in
similar studies and their intuitive physical interpretation:
the bound rank and the area under the receiver operating
characteristic curve (ROC AUC).
The bound rank score assesses the clustering of bound

pairs to the low end of the predicted energy distribution
and is calculated by ordering all the domain–peptide pairs
by increasing energy, E and then calculating the median
rank of the bound pairs (Figure 1C). We report the bound
rank score as a fraction of the median bound rank
divided by the number of data points in the test set,
which varies depending on the type of cross-validation
used. The bound rank gives a sense of how far down an
ordered list of energy predictions one should look to
find bound domain–peptide pairs. The best possible
bound rank score, which is obtained when all the bound
pairs have lower energies than all the unbound pairs, is

Nucleic Acids Research, 2009, Vol. 37, No. 14 4633



ðnbound þ 1Þ=2, where nbound is the number of bound
domain–peptide pairs. The expected bound rank score
for a random classifier is ðntotal þ 1Þ=2, where ntotal is the
total number of domain–peptide pairs.
ROC curves are commonly used to assess how well a

classifier categorizes two populations, e.g. in our case
how well the predicted interaction energy E separates
the bound and unbound pairs. In these problems there is
usually a tradeoff between the true positive rate (TPR) and
the false positive rate (FPR), and ROC curves summarize
this tradeoff by plotting these rates against each other. For
example, in this problem, we pick an energy threshold,
and we predict that domain–peptide pairs with energies
below the threshold are bound. If we raise this threshold
we will increase our TPR, the fraction of bound pairs
that are correctly classified, but we will also increase our
FPR, the fraction of unbound pairs that are incorrectly
classified.
The ROC AUC corresponds to the probability that the

energy of a randomly chosen bound pair is less than
a randomly chosen unbound pair and is calculated by
integrating the area under a ROC curve (Figure 1D). It
is commonly used to summarize a ROC curve in a single
number. The ROC AUC for a random classifier is 0.50
and for a perfect classifier is 1.0.
In order to avoid over fitting and to assess the likely

performance of the method on unseen examples, we use
two types of cross-validation: 10-fold, in which nine-tenths
of the data are used to fit the model, which is then applied
to the remaining one-tenth of the data; and leave-one-
group-out (LOGO), in which one domain or peptide is
left out of the training process and then used as the test
data set. We also use 3-, 5- and 7-fold cross-validations
to further test how the size of the training set influences
the results.

Interaction map optimization

As mentioned above, given an interaction map �, there is
an analytical way to find the potential U that maximizes
the energy gap. So the challenge is to find an interaction
map that characterizes the generic binding of SH2
domains to pY peptides. We use three methods—an infor-
mation-based method, a structure-based method and a
hybrid method. While most structure-based approaches
use contacts present in the native structure of the complex,
our hybrid approach attempts to refine the set of relevant
interactions using information-based approaches [similar
to correlated mutations, e.g. (48)]. This refinement aims to
(i) eliminate the direct interactions that are not contribut-
ing to specificity and (ii) identify indirect interactions
mediated by structural rearrangements. Some aspects of
the hybrid approach are similar in spirit to approaches
used by Ferraro et al. (18).
In each interaction map construction method, each

potential contact—a pair of positions in the aligned col-
lection of SH2 domains and peptides—is ranked by some
criteria aimed at assessing its role in recognition. Then we
construct interaction maps by taking the top ncontacts
ranked contacts, where ncontacts can be varied, and setting
the corresponding elements of � to 1. Briefly, the

information-based method ranks potential contacts
using a normalized measure of the divergence between
the amino-acid composition of bound and unbound
domain–peptide pairs. The structure-based method ranks
the contacts by the number of experimentally determined
SH2–peptide structures in which the contact is within
some distance cutoff. The hybrid method uses the struc-
ture-based method to select potential position pairs and
ranks them using the information-based criteria.

In order to find the optimal interaction map, we com-
pare the 10-fold cross-validated ROC AUC and bound
rank scores for interaction maps constructed using
the three methods and different numbers of contacts
(Supplementary Figure S1). The best-performing
(‘optimal’) interaction map is a hybrid interaction map
with 10 contacts, using a distance cutoff of 5.5 Å, with
ROC AUC of 0.87 (bound rank = 31/325). The informa-
tion-based technique performs quite well, plateauing at
a ROC AUC of 0.82, with five contacts (bound rank =
37/325). Both of the ROC AUC scores and the bound
rank scores are well above the scores expected for
random classifiers (0.50 and 163/325, respectively). Other
cross-validations (3-, 5- and 7-fold) gave similar results on
the hybrid interaction map (AUC: 0.85, 0.86, 0.87).

To assess the role of low-resolution NMR structures, we
constructed structure-based and hybrid contact maps
by excluding NMR structures from consideration
(see Methods section). The results for the structure-
based map were identical whether or not NMR structures
were included and for the hybrid contact map, the results
were comparable (cross-validated ROC AUC of 0.84 with-
out the NMR structures, versus 0.87 with the NMR
structures).

Physics-based energy potential can predict SH2–peptide
interactions

Figure 2A compares the performance of the best informa-
tion-based map, the optimal hybrid map and a ‘standard’
energy potential. The ROC curves unambiguously show
the energy predictions from the hybrid and information-
based interaction maps far outperform a standard energy
potential used in protein folding (49). The derived poten-
tial is indeed quite different from potentials used for
protein folding (43,49), as is evident in Supplementary
Figure S4. The failure of the standard folding potential
shows that SH2–peptide recognition is based on a very
specific set of amino acids interactions and the important
role of electrostatic interactions (12,50), that are different
from hydrophobic interactions central to protein folding.

In Figure 2B, we plot the energy of bound and unbound
peptide–domain pairs, sorted by domain, and it shows
that the bound pairs tend to have energies on the low
end of the energy spectrum.

Using the hybrid interaction map, we can achieve a
TPR of 0.90, predicting 179 of 198 bound pairs correctly,
with a FPR of 0.06, predicting 190 of 3057 unbound pairs
incorrectly. In other words, at this level about half of the
pairs that are identified to be ‘bound’ actually are. If we
use a lower energy threshold, 165 of 198 bound pairs are
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predicted correctly and 135 of 3057 unbound pairs are
predicted incorrectly.

Using the optimal interaction map, we carry out LOGO
cross-validation to see how the method will fare on unseen
domains and peptides. The results are shown in Figure 3,
and are quite impressive, with mean ROC AUC values of
0.84 for both unseen domains and peptides. For a number
of domains and peptides, the ROC AUC is 1, indicating
that the method perfectly separates bound and unbound
domain–peptide pairs. (See Supplementary Table S1 for
a list of domains and peptides with their ROC AUCs.)
Interestingly, the performance of the model on an

unseen domain seems to be uncorrelated to the sequence
identity of the test domain to its nearest sequence neighbor
in the training set when using the whole domain sequence
or just the sequences at the contact positions, r=0.19 and
0.30, respectively (Supplementary Figure S2).
To further test the model, we applied the method to

data from Songyang et al. (51). In this study, the binding
preferences of a few SH2 domains for a synthetic library
of peptides were assessed using successive rounds of affin-
ity purification. This additional data source allows us to
test how well the model does on a set of peptides that are
completely unrelated to the ErbB-derived peptides and

Figure 2. Performance of the basic energy model for predicting domain–peptide interactions. (A) Here we compare the ROC curves for the optimal
hybrid interaction map (solid blue line), the best information-based interaction map (dashed red line) and a negative control (black dot-dash line),
which is a standard energy potential of amino-acid interactions used for protein folding. The hybrid interaction map performs the best, with the
information-based map close behind. When applying the control potential (49) to the hybrid interaction map, the ROC AUC is 0.54, which is close
to the score of random predictors, 0.50. (B) This diagram shows the energy of bound pairs (open red circles) as compared to unbound pairs (filled
blue dots), organized into columns by domain. The energy scale is arbitrary. There is a clear trend for the bound pairs to be on the low end of the
energy spectrum.

Figure 3. Performance of the basic model on unseen domains and peptides. In order to assess the expected performance of the energy model on
peptides or domains not used in the construction process, we perform LOGO cross-validation. To do this, we exclude all the pairs including a
particular domain or peptide from the training set used to create the potential and then used the derived potential to predict the interaction energies
of the excluded pairs. In (A), we plot the ROC AUC scores for excluded peptides and in (B) we plot the scores for excluded domains. In both cases,
the average ROC AUC is very high, 0.84, indicating that the energy function transfers well to new domains and peptides.
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interactions that were measured using a different experi-
mental technique. In Figure 4, we plot the predicted inter-
action energies for the domains that overlap between the
two data sources, for both the ErbB-derived peptides and
the preferred peptide, according to Songyang et al. (51).
This allows us to compare the predicted energies of the
preferred peptide and bound ErbB-derived peptides. For
the majority of domains, the performance of the method is
roughly equivalent on the ErbB-derived and preferred
peptides, indicating that there is not a strong bias to
make better predictions for the ErbB-derived peptides
used in the training set.

Position-specific energy potentials over-fit the data

In the results above, a common energy potential is used
for all positions in the interaction map. But given the
different structural and chemical contexts of each position,
it may be more realistic to describe each position
using a separate energy potential. The form of such an
energy function is similar to Equation (1), but now
the number of parameters in the energy potential
is 202 � ncontacts ¼ 202 � 10—10-fold larger than the example
above. Supplementary Figure S3 shows the results of
using a mixture of position-specific and common energy
potentials:

E ¼ � �
X
i

X
j

�ijU a ið Þ,a jð Þð Þ

þ ð1� �Þ
X
i

X
j

�ijUij a ið Þ,a jð Þð Þ
4

Variables are defined as before; with the ij subscript indi-
cating that the energy matrix Uij is specific is to position-
pair ij and � being a scalar weight. While the use of a
position-specific energy map gives excellent results when
the entire data set is used (ROC AUC = 0.99), it is not
robust to 10-fold cross-validation (ROC AUC = 0.76),
indicating that we do not have enough data to infer this
increased number of parameters without over-fitting.

Non-specific energy is informative

When examining the data set, it is immediately obvious
that the bound pairs are very unevenly distributed over the
different domains and peptides—the number of domains
or peptides bound by a peptide or domain varies widely.
In light of this observation, we try adding another term to
the energy function—the non-specific domain (d) or pep-
tide (p) energy of interaction.

E ¼ � �
X
i

X
j

�ijU a ið Þ,a jð Þð Þ þ 1� �ð Þp 5

E ¼ � �
X
i

X
j

�ijU a ið Þ,a jð Þð Þ þ 1� �ð Þd 6

Figure 5 shows performance is optimal when � is 0.90 for
peptides and 0.80 for domains indicating that a modest
contribution from non-specific energy terms gives better
predictive performance. However, these non-specific
energy terms can only be derived for domains and peptides
for which we have data. This means that we can use these
terms if we are making predictions for new peptides with a

Figure 4. Performance of the basic energy model on new peptides. To test the method on a set of peptides unrelated to the ErbB receptor-derived
peptides, we use data from the Songyang et al. study, which measured the binding specificity of a few SH2 domains against a synthetic peptide
library. Here, we compare predicted energies of domain–peptide interactions for peptides in the Jones et al. (2) data set with the preferred peptide
found by Songyang et al. (51). As in Figure 2, bound domain–peptide pairs are red circles, unbound pairs are blue dots and the preferred peptide for
each domain, according to the Songyang et al. (51) study, is marked by a green star. For most domains, the preferred peptide (51) has a very low
energy, comparable to that of bound peptides in the Jones, et al. data set. This clearly demonstrates that our method is useful for predicting binding
specificity to peptides not used in the method construction.
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characterized domain or new domains with a tested pep-
tide, but these non-specific terms cannot be used to predict
interactions between domains and peptides that are both
uncharacterized. However, the main (left) term of the
energy function, which describes pair-wise interactions,
can be applied in any of these cases, even when both the
domain and the peptide are uncharacterized.

Interaction map includes unexpected contacts

The results above, Figure 3 in particular, indicate that an
amino-acid based potential with a common interaction
map can predict the binding of SH2 domains to pY pep-
tides, even when the domain or peptide was not used in the

construction of the potential. Now, to understand the
origin of specificity, we inspect the optimal interaction
map, shown in Figure 6. To review, this map is con-
structed using the hybrid method, which selects potential
contacts by searching for those that are physically close in
at least one experimentally determined domain–peptide
structure and then ranks them by an information-based
criterion. The information-based criterion finds contacts
that have different amino-acid composition in the bound
and unbound pairs.
While about half of the positions in our interaction map

overlap with those identified in a study of SH2 domain
selectivity (51), there are two unexpected features of this

Figure 6. An illustration of the optimal hybrid interaction map. This figure shows a PDB structure of a sample SH2 domain (60), with the domain in
a green ribbon depiction and the peptide in a yellow space-filling mesh. The figure was made with MacPyMOL (61). The interacting amino acids are
highlighted in space-filling blue (domain) and red (peptide). The cartoon on the right shows the interaction map schematically, where the numbers on
the left correspond to positions in the SH2 domain alignment and the numbers on the right correspond to the peptide positions, where position 0 is
the location of the phosphorylated tyrosine, and the positions above and below are towards the N- and C-termini, respectively.

Figure 5. Performance of the basic energy model with a non-specific interaction energy term. Here, we plot the ROC AUC of energy models that
include a non-specific energy term for peptides (A) and domains (B). The x-axis corresponds to 1 – a in Equations (5) and (6)—a is the weight
applied to the basic energy model and 1 – a is the weight applied to the non-specific energy term. Here we can see a modest contribution of either
domain or peptide non-specific energy terms increases the ROC AUC, and the domain non-specific energy term is more informative than the peptide
term.

Nucleic Acids Research, 2009, Vol. 37, No. 14 4637



interaction map. First, there are three contacts with the
pY position, numbered as position 0, which is unexpected.
Since all peptides have a phosphorylated tyrosine in this
position, it cannot be responsible for determining any dif-
ference in domain specificity. Therefore, the amino acids
identities at the domain positions must specify some sort
of general ‘stickiness’, which is derived separately but is
related to the non-specific energy terms. For example, only
three of the six most highly bound domains (the N-term-
inal domains of PIK3R1, PIK3R2 and PIK3R3) contain
an alanine residue at position 120, interacting with the
pY residue.
The second surprising observation is the lack of contacts

with the +3 position of the peptide, which has been pre-
viously identified as a mediator of specificity (52). Analysis
revealed that the most informative +3 domain contact
positions overlap with the +2 positions, but the +2 posi-
tions were more informative, which is why they are
included in the interaction map. This observation may
reflect the choice of peptides included in the data set—
they have a more diverse set of +2 than +3 positions—
but is nonetheless interesting, since the peptide set is
derived from natural peptide sequences and may be a
better representative of what they SH2 domains are
exposed to in real cell than the random peptides used in
phage display experiments or the small set of peptides avail-
able in experimentally determined structures of SH2
domain–peptide complexes.

DISCUSSION

One of the significant features of domain–peptide interac-
tions is that large, highly conserved families of domains
interact specifically with sets of similar peptides. How is
this specificity achieved? The amino-acid level is the nat-
ural level on which to study this problem: how do changes
in amino-acid sequence alter the specificity of a particular
PRM? With this in mind, we created model of domain–
peptide interaction energies using an amino acid-based
potential. Two major features of our basic model are
that (i) it can be applied to SH2 domains or pY peptides
that are not used in the model construction and (ii) it is
physically interpretable.
It was not obvious from the outset that this level of

detail was appropriate to describe the problem, as isotro-
pic contact potentials have been shown to be insufficient
for protein folding (43,53), i.e. they do not provide suffi-
cient specificity to identify a native protein structure from
an astronomical number of alternatives. Our results show,
this energy model is surprisingly effective at predicting
domain–peptide interactions. This success may be in
part due to the relatively small set of possible peptides
that contain a central tyrosine residue, as compared to
the large set of possible protein structures.
The results of the LOGO cross-validation show that the

model is successful at predicting the interactions involving
a new domain or peptide. This is useful in predicting inter-
actions that could not be measured, e.g. those involving
domains that are difficult to express, or have not been
measured, e.g. interactions with mouse SH2 domains.

The LOGO cross-validation performance actually gave
insight into experimental considerations, as well. Of the
ten domains with the worst LOGO ROC AUC scores, five
were difficult to express, and domains that were hard to
express generally had below average LOGO ROC AUC
scores [A. Gordus, personal communication].

Additionally, a more complicated position-specific
energy potential, while excellent at fitting the entire data
set, fares poorly under cross-validation, indicating that the
data set is not large enough to specify the large number of
parameters in the position-specific model. On the other
hand, non-specific energy terms, which indicate the gen-
eral ‘stickiness’ of the domains and peptides, improve the
predictive capability of the model. These results may
inform fields of computational biology aimed at predicting
protein–protein and protein–DNA interactions, e.g.
(38,54–56).

Insights from the interaction map

To make the model generally applicable, we used a single
interaction map to describe all SH2 domain–pY peptide
interactions. Based on the accuracy of the binding predic-
tions, this simplification seems to work for the majority of
cases. This result is somewhat unexpected, especially since
others have described several binding modes for SH2–
peptide interactions (57).

We tried various interaction map construction strategies
based on structural data and information-based techni-
ques. From these efforts come two interesting observa-
tions. First, the information-based techniques are quite
effective, implying that sequence information is sufficient
to build an energy-based classifier of protein–peptide
interactions. This is useful for a variety of reasons,
e.g. for some domain families, structural data may be
sparse or unreliable and processing structural data is
labor-intensive. Second, the hybrid technique that com-
bines structural and information-based data is most effec-
tive, which is unsurprising since it supplements structural
information, which may average over a variety of binding
modes, with the information contained in the sequence
data. Significant role of information-based contacts,
which do not correspond to direct protein-peptide inter-
actions, suggests the importance of the indirect readout in
protein-peptide recognition.

By studying the optimal interaction map, we learn two
things. First, contacts with the pY position specify a gen-
eral ‘stickiness’ of the domain that is informative for pre-
dictions. Second, the contacts with the+2 position and+3
position are redundant, but in a peptide population derived
from actual protein sequence, the +2 position is more
informative. Because we used a different alignment of the
SH2 domains, it is difficult to directly compare the interac-
tion map to previous studies. However, an informal com-
parison shows that there is a significant overlap between the
positions in our interaction map and those identified in a
seminal study of SH2 domain selectivity (51).

Comparison to previous approaches

Our approach has several advantages over other techni-
ques used to dissect the specificity of domain–peptide
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interactions and to predict binding. In comparison to tra-
ditional structural biology methods, which generally rely
on manual, individual analysis of complexes, our method
allows us to combine structural data from a number of
similar complexes with large-scale proteomic data.
Moreover, our method incorporates negative data for
domain–peptides pairs that do not interact, as well as pos-
itive data from those that do interact. In contrast to some
computational structural biology approaches [e.g. (17)],
our method does not provide true quantitative predictions
of interaction energies, but it is able to provide sufficiently
accurate interaction energy rankings to correctly predict
which domain–peptide pairs are bound. By using an inter-
action map in place of direct amino-acid contacts, our
method finds amino-acid positions that are directly
and indirectly involved in specific recognition and can be
applied to members of a PRM family for which there is no
structural data.

In comparison to other bioinformatics-based techni-
ques, our approach gives results that are physically inter-
pretable: an interaction map that specifies the positions
that are important for recognition and an amino-acid-
based energy potential (Supplementary Figure S4). It is
also applicable to domains that are not present in the
training set, a feature not available in previous studies
(23,25).

Future directions

The success of this method opens up a number of future
research directions. Most directly, the interaction map and
energy potential can be used to scan databases of physio-
logically phosphorylated peptides [e.g. Phospho.ELM
(58)] for potential SH2 interaction partners or to predict
likely peptide partners for SH2 domains not included in
the study. It would also be interesting to use this approach
to predict ‘optimal’ peptides for each SH2 domain and to
experimentally verify that these domain–peptide pairs
actually interact. This approach is also easily applicable
to any PRM family with a large-scale interaction data set,
e.g. PTB domains (2) and PDZ domains (59). It would be
interesting to attempt an adaptation of this method for
protein–DNA interactions, as well.

One obvious drawback of this study is that is does not
use the quantitative data available from the SH2 protein
microarray experiments (2). As a result, computed scores
can be used to predict only binding peptide–SH2 pairs, but
not the binding energy. As expected, computed scores do
not correlate with measured binding energies
(Supplementary Figure S5).

Considering there are only �200 positive data points in
the data set and the comparable number of parameters in
the model, modeling the strength of these interactions
quantitatively will be challenging and may call for a dif-
ferent approach. In fact, negative data points that do not
have an associated quantitative measurement (i.e. pep-
tide–SH2 pairs that do not bind each other) are equally
valuable, as they are present in high abundance in the
whole-genome dataset (3057 negative versus 190 positive
ones).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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